
Math 361 lecture for Friday, Week 6

Operations on ideals

Our next big goal: let OK be the ring of integers in a number field. We have seen in home-
work that elements of OK do not necessarily have uniquely factor into primes. However, it
turns that ideals in OK uniquely factor into prime ideals (which we define below). Thus,
for instance, if α ∈ OK does not factor into primes, its corresponding principal ideal (α)
will.

Let R be a ring (commutative, with 1). Recall that a nonempty subset I ⊆ R is an
ideal if it is closed under addition (a, b ∈ I ⇒ a + b ∈ I) and “inside-out” multiplication
(r ∈ R, a ∈ I ⇒ ra ∈ I). Equivalently, I is an R-submodule of R.

An ideal I is finitely generated if it is finitely generated as an R-module. This means that
there exist a1, . . . , ak ∈ R for some k such that

I = (a1, . . . , ak) := {
∑k

i=1 riai : r1, . . . , rk ∈ R}.

Definition 1. The sum and product of ideals I and J of R are defined as follows:

I + J = {a+ b : a ∈ I and b ∈ J},
IJ = {

∑k
i=1 aibi : k ∈ Z>0, ai ∈ I, bi ∈ J for all i}.

The proof that I + J and IJ are ideals and the proof of the following proposition are left
as straightforward exercises.

Proposition 2. Let I, J and K be ideals of R, and let a, b ∈ R.

1. I(J +K) = IJ + IK,

2. (IJ)K = I(JK),

3. IJ = JI,

4. I(0) = (0),

5. I(1) = I,

6. (a1, . . . , ak) + (b1, . . . , b`) = (ai + bj : 1 ≤ i ≤ k, 1 ≤ j ≤ `),

7. (a1, . . . , ak)(b1, . . . , b`) = (aibj : 1 ≤ i ≤ k, 1 ≤ j ≤ `),

8. (a) ⊆ (b) if and only if b|a, and

9. if R is a domain, then (a) = (b) if and only if a = ub for some unit u.

Definition 3. Let P be an ideal of R. Then

1. P is prime if P 6= R and ab ∈ P implies a ∈ P or b ∈ P , and
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2. P is maximal if P 6= R and if whenever Q is an ideal of R and P ( Q, then Q = R.

Proposition 4.

1. P is prime if and only if for all ideals I and J such IJ ⊆ P , we have I ⊆ P or J ⊆ P .

2. If P is maximal, then P is prime.

3. P is prime if and only if R/P is a domain.

4. P is maximal if and only if R/P is a field.

Proof.

1. Homework.

2. Suppose that P is maximal. Let ab ∈ P with a 6∈ P . Then P ( (a) + P . By
maximality, (a) + P = R. So there exist r ∈ R and p ∈ P such that 1 = ra + p.
Multiplying by b, we find b = rab+ bp ∈ P .

3. (⇒) Suppose that P is prime and that a b = 0 ∈ R/P with a 6= 0. Then ab ∈ P and
a 6∈ P . Since P is prime, b ∈ P , and hence b = 0 ∈ R/P . We have shown that R/P
is a domain.

(⇐) Suppose that R/P is a domain and that ab ∈ P with a 6∈ P . It follows that ab =
a b = 0 ∈ R/P and a 6= 0. Since R/P is a domain, b = 0 ∈ R/P . Hence, b ∈ P . We
have shown that P is prime.

4. Homework.

Exercise 5. In this exercise, we look at a number ring which is not a UFD. We hint at
uniqueness of factorization into primes can be recovered by passing from elements to ideals.

Consider the number field K = Q(
√
−5). Since −5 6= 1 mod 4, the number ring of K is

OK = Z[
√
−5]. In homework, we have seen that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

where 2, 3, 1 ±
√
−5 are non-associated irreducibles. (We say a, b is a ring are associates

if a = ub for some unit u. Note that association is an equivalence relation.) Thus, OK

is not a UFD. Further, none of 2, 3, 1 ±
√
−5 is prime. (For instance, a straightforward

calculation shows that although (1 +
√
−5) divides 2 · 3, it divides neither 2 nor 3: we

have (1 +
√
−5)(a+ b

√
−5) = (a− 5b) + (a+ b)

√
−5 ∈ Z if and only if a+ b = 0. So in this

case, (1 +
√
−5)(a+ b

√
−5) = 6a. Then 6a = 2 and 6a = 3 have no integer solutions.)

Define
P1 = (2, 1 +

√
−5), P2 = (3, 1 +

√
−5), P3 = (3, 1−

√
−5).
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We claim these ideals are all primes. We will have better methods of proving this later,
but for now, let’s show that P1 is prime by showing that Z[

√
−5]/P1 is isomorphic to the

field Z/2Z. That implies that P1 is maximal, hence prime. First note that for a, b ∈ Z,
working modulo P1,

a+ b
√
−5 = (a+ b

√
−5)− b(1 +

√
−5) = a− b mod P1.

since 1 +
√
−5 ∈ P1. Further, since 2 ∈ P1, we can take the value of a− b modulo 2.

Define

φ : Z[
√
−5]→ Z/2Z

a+ b
√
−5 7→ a− b

We claim that φ is a well-defined isomorphism of rings. To show it is well-defined, we must
show that φ(p) = 0 for all elements p ∈ P1. It suffices to show that the generators P1 are
sent to 0 ∈ Z/2Z. First, we have φ(2) = 2 = 0. Next, we have φ(1 +

√
−5) = 1− 1 = 0.

We now show that φ preserves sums and products. Let a, b, c, d ∈ Z. Then

φ((a+ b
√
−5) + (c+ d

√
−5)) = φ((a+ c) + (b+ d)

√
−5)

= a+ c− b+ d

= a− b− c− d
= φ(a+ b

√
−5) + φ(c+ d

√
−5),

and, recalling that 1 = −1 in Z/2Z,

φ((a+ b
√
−5)(c+ d

√
−5)) = φ((ac− 5bd) + (ad+ bc)

√
−5)

= ac− 5bd − ad+ bc

= ac+ bd+ ad+ bc

whereas

φ(a+ b
√
−5)φ(c+ d

√
−5) = (a− b)(c− d)

= ac+ bd+ ad+ bc.

. Since φ(0) = 0 and φ(1) = 1, we see that φ is surjective. To show injectivity, suppose
that φ(a + b

√
−5) = a− b mod 2. So a = b + 2k for some k ∈ Z. We must show that a +

b
√
−5 ∈ P1. We have

a+ b
√
−5 = (b+ 2k) + b

√
−5 = 2k + b(1 +

√
−5) ∈ P1 = (2, 1 +

√
−5).

We now want to consider factoring the principal ideal (6) in OK . We leave it to reader to
check the following calculations:

P 2
1 = (2), P2P3 = (3), P1P2 = (1 +

√
−5), P1P3 = (1−

√
−5).
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We may factor (6) into prime ideals as

(6) = (2)(3) = (P1)
2(P2P3) = P 2

1P2P3.

or
(6) = (1 +

√
−5)(1−

√
−5) = (P1P2)(P1P3) = P 2

1P2P3.

To recap: 2, 3, 1±
√
−5 are irreducible but not prime in OK . Their corresponding principal

ideals factor into prime ideals, and when we do that, we get two corresponding factorizations
of (6) into prime ideals. These two factorizations are, in fact, the same! This example
illustrates the general phenomenon of unique factorization of ideals into primes in a number
field.
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