
Math 361 lecture for Wednesday, Week 5

Hilbert basis theorem

As a motivation question, let t be an indeterminate, and consider the ideal

I = {f ∈ R[x, y, z] : f(t, t2, t3) = 0}.

Examples of elements of I include xiyj − zk for all (i, j, k) ∈ N such that i + 2j = 3k,
i.e., x3k−2jyj − zk where 3k ≥ 2j. For example, xy − z, x − z3, etc. Similarly, I includes
all xizj − yk such that (i, j, k) ∈ N and i+ 3k = 2j. For example, x− y2 ∈ I It also includes
all C[x, y, z-linear combinations of these elements.

Question. Is this ideal finitely generated?

Theorem 1. (Hilbert basis theorem.) Let R and S be rings with R ⊆ S. Suppose that S
is finitely generated as a ring over R and R is Noetherian. Then S is a Noetherian ring.

Remark 2.

• For S to be finitely generated as a ring over R, we mean that there exist s1, . . . , sn ∈ S
such that S = {f(s1, . . . , sn) : f ∈ R[x1, . . . , xn]}.

• Recall that to say a ring R is Noetherian, we consider R as an R-module. The
submodules of R are exactly the ideals in R. Thus, R is Noetherian if all of its ideals
are finitely generated.

• Letting R = K be a field and S = K[x1, . . . , xn], the Hilbert basis theorem says
that every ideal a polynomial ring with coefficients in a field is finitely generated. For
instance, in the example above, we have I = (y2−xz, xy−z, x2−y). [Aside: Consider
the curve in R3 parametrized by t 7→ (t, t2, t3). This curve is the intersection of the
two surfaces, S =

{
(x, y, z) ∈ R : y = x2

}
and math T =

{
(x, y, z) ∈ R : z = x3

}
. One

might think that I would generated by just the two equations y − x2 and z − x3, but
it turns out that a minimum of three generators is required.

Proof of Hilbert basis theorem. Suppose that s1, . . . , sn generate S as a ring over R. Then
there exists an R-module surjection

R[x1, . . . , xn]→ S

f(x1, . . . , xn) 7→ f(s1, . . . , sn).
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Since the image of a Noetherian R-module is Noetherian, it suffices to prove that the polyno-
mial ring R[x1, . . . , xn] is a Noetherian R-module. Since R[x1, . . . , xn] = R[x1, . . . , xn−1][xn],
by induction, it suffices to show that the polynomial ring R[x] is Noetherian.

So we need to show that R[x] is Noetherian. Let I be an ideal in R[x]. We must show
that I is finitely generated, i.e,. I = (f1, . . . , fk) for some polynomials f1, . . . , fk ∈ R[x] for
some k.1 Given any polynomial f =

∑d
i=1 aix

i ∈ R[x] with ad 6= 0, we call ad the leading
coefficient of f . For completeness, we say that zero polynomial has leading coefficient 0.
Let A be the collection of all leading coefficients of elements of I. We claim that A is an
ideal in R. We must show that A is nonempty, closed under addition, and closed under
“in-out” multiplication. Since I is an ideal, it contains the zero polynomial, whose leading
coefficient is 0 ∈ R. Thus, 0 ∈ A. Next, suppose that a, b ∈ A. Then there exist f, g ∈ R[x]
with leading terms a, b, respectively. Without loss of generality, say deg(f) ≤ deg(g), and
let j = deg(g) − deg(f). Define h := xjf . Then h ∈ I, the leading term of h is a, and
deg(h) = deg(g). Then h + g ∈ I and the leading term of h + g is a + b. We have shown
that A is closed under addition. Finally, suppose that f ∈ I with leading coefficient a
and r ∈ R. Then ra ∈ A since it is the leading coefficient of rf ∈ I. This proves the claim.

Since R is Noetherian, and A is an ideal in R, it follows that A = (a1, . . . , as) for some ai ∈ R
and some s ≥ 1. For each i, take gi ∈ I with leading coefficient ai. By multiplying
by appropriate powers of x, we may assume that all of the gi had the same degree d.
Let I<d ⊂ R[x] be the set of all elements of I that have degree strictly less than d. Then I<d

is an R-module (but not an ideal in R[x]). Let M be the R-submodule of R[x] generated
by 1, x, . . . , xd−1. Since R is Noetherian and M is a finitely generated R-module, M is
Noetherian. Since I<d is a submodule of M , it follows that I<d is a finitely generated R-
module. Say h1, . . . , ht are generators. So every element of f ∈ I<d may be written f =∑t

i=1 rihi for some ri ∈ R.

We finish by showing that I is generated by s + t elements:

I = (g1, . . . , gs, h1, . . . , ht).

First note that the gi and hj are elements of I. Then take f ∈ I. We will prove by induction
on the degree of f that f is an R[x]-linear combination of the gi and hj . If deg(f) < d,
then f ∈ I<d, an R-submodule of R[x] generated by the hi. So in that case, f =

∑t
i=1 rihi

for some ri ∈ R, and we are done.

Next, suppose that deg(f) = e ≥ d. Say a ∈ R is the leading coefficient of f . So a ∈ A, and
it follows that a =

∑s
i= riai for some ri ∈ R. Recall that all gi have degree d. Therefore,

f −
s∑

i=1

rix
e−dgi

is an element of I having degree strictly less than e. By induction, f −
∑s

i=1 rix
e−dgi is

an R[x]-linear combination of the gi and hj . Hence, so is f .

1If R is a field, we would be done since R[x] would then be a PID by the division algorithm. However,
we only know that R is Noetherian.
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