
Math 361 lecture for Monday, Week 5

Noetherian rings

Definition 1. An R-module M is Noetherian if every submodule of M is finitely generated.

Example 2. As a special case, one may consider R itself as an R-module. Its submodules
are its ideals. Thus, for example, if R is a PID, it is Noetherian since each of its submodules
is generated by a single element. For instance, Z is Noetherian, and the polynomial ring K[x]
is Noetherian for any field K.

Proposition 3. The following are equivalent for an R-module M :

1. M is Noetherian.

2. M satisfies the ascending chain condition on submodules: every ascending chain of
submodules of M ,

N1 ⊆ N2 ⊆ · · · ,

eventually stabilizes. In other words, there exists k such that Nk = Nk+1 = · · · .

3. Every nonempty collection of submodules of M has a maximal element under inclu-
sion.

Proof. (1 ⇒ 2) Suppose M is Noetherian and let N1 ⊆ N2 ⊆ · · · be a chain of submodules.
Let N := ∪i≥1Ni. Then N is a submodule of M (exercise). Hence, by assumption, N is
finitely generated by, say n1, . . . , ns ∈ N . Since N = ∪i≥1Ni, for each i = 1, . . . , s, we have
ni ∈ Nki for some ki. Let k = max{ki}. Then ni ∈ Nk for all i. It follows that

N = SpanR{n1, . . . , ns} = Nk = Nk+1 = · · · .

(2⇒ 3) Suppose every ascending chain of submodules of M stabilizes. Let A be a nonempty
of submodules of M . Pick N1 ∈ A. If N1 is not a maximal element of A, there exists N2 ∈ A
with N1 ( N2. If N2 is not a maximal element of A, then there exists N3 ∈ A such that
N1 ( N2 ( N3. Repeat. Since every ascending chain eventually stabilizes, we must
eventually reach a maximal element of A.

(3⇒ 1) Suppose that every nonempty collection of submodules of M has a maximal element,
and let N be a submodule of M . Let A be the collection of all finitely generated submodules
of N . Then A is nonempty since it contains the zero module. Take a maximal element N ′ ∈
A. So N ′ ⊆ N . For sake of contradiction, suppose that N ′ 6= N , and take n ∈ N \ N ′.
Consider the module N ′′ := N ′ + Rn, the smallest R-module containing both N ′ and n.
Since n 6∈ N ′, we have N ′ ( N ′′. However, N ′′ ∈ A, too, contradicting the maximality
of N ′.
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Mappings of modules. A sequence of R-module mappings

M ′
φ−→M

ψ−→M ′′

is exact at M if imφ = kerψ.

Example 4. Consider the sequence of R-module mappings

0→M ′
φ−→M.

There is only one choice for the mapping 0 → M ′. It sends 0 to 0 ∈ M ′. The sequence
of mappings is exact at M ′ if and only if φ is injective. Similarly, a sequence of R-module
mappings

M
ψ−→M ′′ → 0

is exact at M ′′ if and only if ψ is surjective.

Short exact sequences. A short exact sequence of R-modules is a sequence of R-module
mappings

0→M ′
φ−→M

ψ−→M ′′ → 0

if it is exact at M ′, M , and M ′′. In that case, M ′ is isomorphic to its image in M , so we can
identify M ′ with its image and write M ′ ⊆M . We then have an isomorphism of R-modules

M/M ′
∼−→M ′′.

where φ(m) := φ(m).

Proposition 5. Let

0→M ′
φ−→M

ψ−→M ′′ → 0

be a short exact sequence of R-modules. Then M is Noetherian if and only if M ′ and M ′′

are Noetherian.

Proof. (⇒) Suppose that M is Noetherian. We may assume M ′ ⊆ M . Every submodule
of M ′ is a submodule of M , and hence is finitely generated. Therefore, M ′ is Noetherian.
Next, suppose that N is a submodule of M ′′. Then ψ−1(N) is a submodule of M (exercise).
Since M is Noetherian, ψ−1(N) is finitely generated, say by n1, . . . , nk. It is straightforward
to check that ψ(n1), . . . , ψ(nk) generate N . Hence, M ′′ is Noetherian.

(⇐) Suppose that M ′ and M ′′ are Noetherian, and let N be a submodule of M . Now
ψ(N) is a submodule of M ′′, hence finitely generated. Let n1, . . . , nk be generators with
corresponding n1, . . . .nk ∈ M such that ψ(ni) = ni for all i. Next, identifying M ′ with its
image φ(M ′), we have the submodule N ∩M ′ of M ′. Since M ′ is Noetherian, N ∩M ′ is
finitely generated by, say, v1, . . . , v`.
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We claim that {v1, . . . , v`, n1, . . . , nk} generate N . To see this, let n ∈ N . We can then
write ψ(n) =

∑k
i=1 rini for some ri ∈ R. We have ψ(n−

∑k
i=1 rini) = 0. So n−

∑k
i=1 rini ∈

kerψ = imφ (and recall that we are identifying imφ with M ′ since φ is injective). Thus,
n−

∑k
i=1 rini ∈ N ∩M ′. So we can write

n−
k∑
i=1

rini =
∑̀
j=1

sjvj .

So n ∈ SpanR{v1, . . . , v`, n1, . . . , nk}, as claimed.

Corollary 6. If R is Noetherian, so is Rn for each n ∈ N .

Proof. If n = 0, 1, the result is trivial. Let n > 1, and suppose the statement is true for Rk

with 0 ≥ k < n. We have the short exact sequence

0→ R
ψ−→ Rn

φ−→ Rn−1 → 0.

where ψ(r) = (r, 0, . . . , 0) and φ(r1, . . . , rn) = (r2, . . . , rn). The result now follows by
induction and Proposition 5.

Corollary 7. If R is Noetherian and M is an R-module. Then M is Noetherian if and only
if M is finitely generated. In other words, a finitely generated module over a Noetherian
ring is Noetherian.

Proof. (⇒) Suppose that M is Noetherian. Then every submodule of M is finitely gener-
ated, which includes M , itself.

(⇐) Now suppose that M is finitely generated. Say M = SpanR{m1, . . . ,mn}. We then
have a surjective homomorphism

ψ : Rn →M

(r1, . . . , rn) 7→
n∑
i=1

rimi.

Let M ′ := kerψ. We have a short exact sequence

0→M ′ → Rn
ψ−→M → 0

where M ′ → M is the inclusion mapping. Since R is Noetherian, so is Rn by Corollary 6.
Proposition 5 then allows us to conclude that M is Noetherian.

Corollary 8. Let K be a number field. Then its ring of integer OK is Noetherian.

Proof. This follows since Z is a PID, hence, Noetherian, and OK is a finitely generated
Z-module.
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Theorem 9. Let R be a Noetherian domain. Then every nonzero non-unit element of R
can be factored into irreducibles.

Proof. We start by considering a set of principal ideals in R. Let

A = {(x) : x ∈ R, x 6= 0, x is a non-unit and cannot be factored into irreducibles}.

Our goal is to prove that A = ∅. For sake of contradiction, suppose that it is not. Since R is
Noetherian, A then has a maximal element (x) with respect to inclusion. By definition of A,
the element x is not irreducible. Therefore, there exist non-units y, z ∈ R such that x = yz.
It follows that x ∈ (y) := {ry : r ∈ R}, and hence, (x) ⊆ (y). Further, it is not possible for
(x) = (y), for otherwise, we would have y ∈ (x). This would mean there exists w ∈ R such
that y = xw. However, then

y = xw = yzw ⇒ y(1− zw) = 0.

Since 0 6= x = yz, and R is a domain, we see y 6= 0. Then, since the cancellation law holds
for domains, y(1 − zw) = 0 implies 1 − zw = 0, i.e., zw = 1. So z is a unit, which is a
contradiction.

We have shown that (x) ( (y). Similarly, (x) ( (z). My maximality of (x) in A, we know
(y) and (z) are not in A. So y and z can be factored into irreducibles, say as y =

∏m
i=1 yi

and z =
∏n
i=1 zn. However, it then follows that x factors into irreducibles: x = yz =∏m

i=1 yi
∏n
i=1 zn. That contradicts the fact that x cannot be factored into irreducibles.

Corollary 10. Let K be a number field. Then every element of its ring of integers, OK ,
can be factored into irreducibles in OK .

Example 11. Note that Corollary 10 does not say that the ring of integers is a UFD. In
homework, we considered the quadratic field Q(

√
−5), whose ring of integers is Z[

√
−5]. In

this ring,
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5),

and we showed 2, 3, 1±
√
−5 are non-units and irreducible. So 6 has at least two factoriza-

tions into irreducibles in Z[
√
−5]. This result is consistent with Corollary 10.
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