Math 361 lecture for Monday, Week 5

Noetherian rings

Definition 1. An R-module M is Noetherian if every submodule of M is finitely generated.

Example 2. As a special case, one may consider R itself as an R-module. Its submodules
are its ideals. Thus, for example, if R is a PID, it is Noetherian since each of its submodules
is generated by a single element. For instance, Z is Noetherian, and the polynomial ring K[z]
is Noetherian for any field K.

Proposition 3. The following are equivalent for an R-module M:

1. M is Noetherian.

2. M satisfies the ascending chain condition on submodules: every ascending chain of
submodules of M,
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eventually stabilizes. In other words, there exists k such that Ny = Ng4q =---.

3. Every nonempty collection of submodules of M has a maximal element under inclu-
sion.

Proof. (1 = 2) Suppose M is Noetherian and let Ny C Ny C --- be a chain of submodules.
Let N := U;>1N;. Then N is a submodule of M (exercise). Hence, by assumption, N is
finitely generated by, say ni,...,ns € N. Since N = U;>1N;, for each i =1,...,s, we have
n; € Ni, for some k;. Let k = max{k;}. Then n; € Ny, for all i. It follows that

N =Spang{ni,...,ns} = Ny = Ngp1 = .

(2 = 3) Suppose every ascending chain of submodules of M stabilizes. Let A be a nonempty
of submodules of M. Pick N7 € A. If Ny is not a maximal element of A, there exists Ny € A
with N7 C Na. If Ny is not a maximal element of A, then there exists N3 € A such that
N1 € Ny C N3. Repeat. Since every ascending chain eventually stabilizes, we must
eventually reach a maximal element of A.

(3 = 1) Suppose that every nonempty collection of submodules of M has a maximal element,
and let N be a submodule of M. Let A be the collection of all finitely generated submodules
of N. Then A is nonempty since it contains the zero module. Take a maximal element N’ €
A. So N' C N. For sake of contradiction, suppose that N’ # N, and take n € N \ N'.
Consider the module N” := N’ + Rn, the smallest R-module containing both N’ and n.
Since n € N’, we have N’ C N”. However, N € A, too, contradicting the maximality
of N'. O



Mappings of modules. A sequence of R-module mappings
M S Y M
is exact at M if im ¢ = ker 1.

Example 4. Consider the sequence of R-module mappings
0— M % M.

There is only one choice for the mapping 0 — M’. It sends 0 to 0 € M’. The sequence
of mappings is exact at M’ if and only if ¢ is injective. Similarly, a sequence of R-module
mappings

MY M0

is exact at M" if and only if 1) is surjective.

Short exact sequences. A short exact sequence of R-modules is a sequence of R-module
mappings

0— M & M5 M -0
if it is exact at M’, M, and M". In that case, M’ is isomorphic to its image in M, so we can
identify M’ with its image and write M’ C M. We then have an isomorphism of R-modules

~

M/M' = M.

where ¢(m) := ¢(m).

Proposition 5. Let
0 M S ME M o

be a short exact sequence of R-modules. Then M is Noetherian if and only if M" and M"”
are Noetherian.

Proof. (=) Suppose that M is Noetherian. We may assume M’ C M. Every submodule
of M’ is a submodule of M, and hence is finitely generated. Therefore, M’ is Noetherian.
Next, suppose that N is a submodule of M”. Then ¢~ () is a submodule of M (exercise).
Since M is Noetherian, 1y~ (IN) is finitely generated, say by n1,...,ny. It is straightforward
to check that 1(ny),...,1¥(ng) generate N. Hence, M" is Noetherian.

(<) Suppose that M’ and M"” are Noetherian, and let N be a submodule of M. Now
¥(N) is a submodule of M”, hence finitely generated. Let 7y,...,7; be generators with
corresponding nq, ....nx € M such that ¢(n;) = m; for all i. Next, identifying M’ with its
image ¢(M’), we have the submodule N N M’ of M’. Since M’ is Noetherian, N N M’ is
finitely generated by, say, v1, ..., vp.



We claim that {vi,...,vs,n1,...,n,} generate N. To see this, let n € N. We can then
write ¥(n) = Ele r;n; for some r; € R. We have ¢)(n — Ele rin;) = 0. Son— Zle rin; €
kert) = im ¢ (and recall that we are identifying im ¢ with M’ since ¢ is injective). Thus,
n— Zle r;n; € NN M'. So we can write

k )4
n — E Tin; = E Sj’Uj.
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So n € Spang{v1,...,vsn1,...,nk}, as claimed. O

Corollary 6. If R is Noetherian, so is R" for each n € N.

Proof. If n =0, 1, the result is trivial. Let n > 1, and suppose the statement is true for R*
with 0 > k < n. We have the short exact sequence

05 RYS RS R 0.

where ¢(r) = (r,0,...,0) and ¢(r1,...,7) = (72,...,75). The result now follows by
induction and Proposition 5. ]

Corollary 7. If R is Noetherian and M is an R-module. Then M is Noetherian if and only
if M is finitely generated. In other words, a finitely generated module over a Noetherian
ring is Noetherian.

Proof. (=) Suppose that M is Noetherian. Then every submodule of M is finitely gener-
ated, which includes M, itself.

(<) Now suppose that M is finitely generated. Say M = Spang{mi,...,m,}. We then
have a surjective homomorphism

Y: R —- M
(riy...yrn) — Zrlml
=1

Let M’ := kert). We have a short exact sequence
0> M RS M0

where M’ — M is the inclusion mapping. Since R is Noetherian, so is R™ by Corollary 6.
Proposition 5 then allows us to conclude that M is Noetherian. O

Corollary 8. Let K be a number field. Then its ring of integer O is Noetherian.

Proof. This follows since Z is a PID, hence, Noetherian, and O is a finitely generated
Z-module. O



Theorem 9. Let R be a Noetherian domain. Then every nonzero non-unit element of R
can be factored into irreducibles.

Proof. We start by considering a set of principal ideals in R. Let
A={(x): 2z € R,z #0, xis a non-unit and cannot be factored into irreducibles}.

Our goal is to prove that A = (). For sake of contradiction, suppose that it is not. Since R is
Noetherian, A then has a maximal element (x) with respect to inclusion. By definition of A,
the element z is not irreducible. Therefore, there exist non-units ¥, z € R such that z = yz.
It follows that x € (y) := {ry : r € R}, and hence, (x) C (y). Further, it is not possible for
(z) = (y), for otherwise, we would have y € (). This would mean there exists w € R such
that y = xw. However, then

y=zw=yzw = y(l-z2w)=0.

Since 0 # = = yz, and R is a domain, we see y # 0. Then, since the cancellation law holds
for domains, y(1 — zw) = 0 implies 1 — zw = 0, i.e., zw = 1. So z is a unit, which is a
contradiction.

We have shown that (z) C (y). Similarly, (z) € (z). My maximality of (z) in A, we know
(y) and (z) are not in A. So y and z can be factored into irreducibles, say as y = [[;~ ¥i
and z = [, z,. However, it then follows that z factors into irreducibles: =z = yz =

[T, vi I1.; 2n. That contradicts the fact that  cannot be factored into irreducibles. [

Corollary 10. Let K be a number field. Then every element of its ring of integers, O,
can be factored into irreducibles in O .

Example 11. Note that Corollary 10 does not say that the ring of integers is a UFD. In
homework, we considered the quadratic field Q(1/—5), whose ring of integers is Z[v/—5]. In

this ring,
6=2-3=(14+vV-5)(1—-+v-5),

and we showed 2, 3,1 £ +/—5 are non-units and irreducible. So 6 has at least two factoriza-
tions into irreducibles in Z[v/—5]. This result is consistent with Corollary 10.



