Math 361 lecture for Wednesday, Week 4

Cyclotomic fields I

Let ‘
Cm = €27/™ = cos(27/m) + isin(27/m),

for m € Zs>9, and consider the field K = Q((,). The powers of (,, are the m-th roots of

unaty:
m

xm—lzl_[(a:—gk).

k=1
Since (,, satisfies a monic polynomial with integer coefficients, it is an algebraic integer.

Example 1.

1. Case m =2. We have (3 = —1 and K = Q.
2. Case m = 3. We have

Go — cos(2n/3) + isin(2n/3) = &+ i = LTIV

2 —1=(@x—-1)(a®+z+1),
and the minimal polynomial for (3 is 22 +z + 1. So [Q((3) : Q] =
3. Case m = 4. We have
(4 = cos(2m/4) +isin(2n/4) = ¢
1= - D@2 +1) = (- D+ 1)(a?+1)
and the minimal polynomial for (4 is 22 + 1. So [Q((3) : Q] = 2, also.

Theorem 2. We have
[Q(¢m) : Q] = ¢(m)

where ¢ is the Euler totient function:

¢(m) ={a:1<a<mand ged(a,m) =1} =m [] <1_>

pln
p prime

Further, Ogc,,) has integral basis 1, G, Z,..., Cﬁ(m)_l, ie., Ogcn) = Qléml-

Example 3. Let m = 4. Then numbers 1 and 3 are relatively prime to m. Therefore,

¢@)—2—4<1—;).

The ring of integers in Q(4) is Z[i] = Spany{1,i}.



Our next goal is to prove the above theorem in the case where m is an odd prime. For the
rest of this lecture, let
C —_ Cp — 627Ti/p

where p is an prime. (In the case p = 2, we have ( = 1 and Q(¢) = Q.)

Minimal polynomial of (. We use the following criterion for irreducibility to find the
minimal polynomial for (.

Theorem 4. (Eisenstein’s criterion.) Let
f=anz" +an 12"+ +ajz +ag € Z[z].
Suppose there is a prime ¢ € Z such that
e gla; fori=0,1,...,n—1,
e ¢fay, and
e ¢*tap.
Then up to a constant factor, f is irreducible in Z[z| and, hence, f is irreducible in Q[z].

Proof. See Theorem 1.8 in our text for the (easy) proof. O

Proposition 5. The minimal polynomial for ¢ is f(z) = 2P~ + 2P 2+ .- + 2 + 1.

Proof. First note that
P —1

x—1"

and, thus, all of the p-th roots of unity except 1 are zeros of f. So it remains to show
that f is irreducible over Q. For that, it suffices to show that f(x 4 1) is irreducible since
f(z) = g(x)h(x) if and only if f(x + 1) = g(x + 1)h(x + 1). We have

P PP a1 =

(x+1)P -1

fet )=y

P (L)t (o411

T

_ p-1 p p—2 p p=3 4 ..., (P
T —|—<p_1>m +(p_2)x + —i—(l).

Fisenstein’s criterion now applies. Note that (Z) = ﬁik)! is divisible by p for 1 < k <

p—1.

O



Corollary 6. We have [K : Q] =p—1 and {1, ¢, ... ,CP_Q} is a Q-basis for K.

Up to this point we have proved almost all of Theorem 2 for the case where m is prime.
The only thing that is left is to show 1,¢,...,(P"2 is a Z-basis Og(¢)- For that, we will
need to calculate some norms and traces and to prove a useful lemma. The complete proof
of this special case of Theorem 2 will then be finished in the next lecture.

Some norms and traces. The minimal polynomial for ¢ factors as

n—1

fl@) =] -¢).

i=1
Therefore, the field embeddings are given by
o K=Q) - KcC
¢ (L
The field polynomial for v € Q(() is

p—1

fa(z) = [ (& = oi(a))

=1
= P71 — (o1(a) ++---+ O'p—l(a))-rp72 +oeet (_1)17710.1(05) T O-p—l(a)ﬂ

and the norm and trace of a are given by certain coefficients of f:

p—1 p—1
N(a) =[] oila), T(a)=> oi(a).
=1 =1

In particular, the field polynomial for ¢ is its minimal polynomial:

p—1
fC($):f(z):H($—<i)::Ep_1+ajp_2_|_..._|_x_‘_1’
=1

from which we see (recalling that p is odd),

and
T(O=C+ 4" =—1

By multiplicativity of the norm, 4
N(¢7) =1



for all j € Z. What about the trace of powers of (7 First noteif 1 <i <k <p—1,
0i((7) = o(¢7) = (U = (M = (M =1 = (i — k)j = 0 mod p <= j = 0 mod p.
Therefore, for j # 0 mod p,
[01(¢)s o 0pa () = {6, P P71,

from which it follows that
p—1
T() =) o) =+ ¢+ + P = -1
i=1

If = 0mod p, then ¢/ =1, and T(1) = S oy(1) = P 1=p— 1.

One last useful calculation:

p—1 p—1
N(1—-¢) = (A-0=lla-=r1)=1+---+1=p.
<<)Hla( oHl( =f)=1+--+1=p
= = p times
To summarize:
Proposition 7. Let ¢ = ¢2™/?. Then
N =1 for alli € Z
N(1=¢)=p

and

T(¢T) = -1 if 7 £ 0 mod p
- p—1 if j =0 mod p.

A useful lemma. Let K = Q(¢) where { = (, for an odd prime p. Let a € Og. Then
since {1,(,..., (P72} is a Q-basis for K, we can write
a=ag+ar+- +ap 2’3

for some unique a; € Q. To complete the proof of Theorem 2, we need to show the a; are
integers. We will prove that in the next lecture with the help of the following lemma:

Lemma 8. For 0 <k <p—2,

T(a(™% —al) = pay, € Z.



Proof. First note that since o € O, asis (% = ¢(P~F and ¢, it follows that a( % —al € Ok
(recall that O is a ring). Therefore, T(a¢™* — a() is an integer.

We then calculate:
T(a¢™* ~ a¢) = T(a¢™*) ~ T(al)
= T(aoC ™"+ ar¢F o bap+ -+ apaCFHP2)
—T(ap + a1+ -+ ap—sz_l)

=-—ap—a1— - —ap1+(p—Dag — apy1 — - — ap—2
J— (_aO —_— a/l —_— . e s — ap_z)
= pag.
Note, for instance, that
p—1 p—1 p—1
T(ao¢ ™) =Y oi(ao¢™) =D apoi(¢F) = a0 Y 0s(¢TF) = aoT((F) = —ap
i=1 i=1 i=1
since ag € Q and —k # 0 mod p. O



