
Math 361 lecture for Wednesday, Week 4

Cyclotomic fields I

Let
ζm = e2πi/m = cos(2π/m) + i sin(2π/m),

for m ∈ Z≥2, and consider the field K = Q(ζm). The powers of ζm are the m-th roots of
unity :

xm − 1 =
m∏
k=1

(x− ζk).

Since ζm satisfies a monic polynomial with integer coefficients, it is an algebraic integer.

Example 1.

1. Case m = 2. We have ζ2 = −1 and K = Q.

2. Case m = 3. We have

ζ3 = cos(2π/3) + i sin(2π/3) =
1

2
+ i

√
3

2
=

1 + i
√

3

2
x3 − 1 = (x− 1)(x2 + x+ 1),

and the minimal polynomial for ζ3 is x2 + x+ 1. So [Q(ζ3) : Q] = 2.

3. Case m = 4. We have

ζ4 = cos(2π/4) + i sin(2π/4) = i

x4 − 1 = (x2 − 1)(x2 + 1) = (x− 1)(x+ 1)(x2 + 1)

and the minimal polynomial for ζ4 is x2 + 1. So [Q(ζ3) : Q] = 2, also.

Theorem 2. We have
[Q(ζm) : Q] = φ(m)

where φ is the Euler totient function:

φ(m) = |{a : 1 ≤ a < m and gcd(a,m) = 1}| = m
∏
p|n

p prime

(
1− 1

p

)
.

Further, OQ(ζm) has integral basis 1, ζm, ζ
2
m, . . . , ζ

φ(m)−1
m , i.e., OQ(ζm) = Q[ζm].

Example 3. Let m = 4. Then numbers 1 and 3 are relatively prime to m. Therefore,

φ(4) = 2 = 4

(
1− 1

2

)
.

The ring of integers in Q(i) is Z[i] = SpanZ{1, i}.
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Our next goal is to prove the above theorem in the case where m is an odd prime. For the
rest of this lecture, let

ζ = ζp = e2πi/p

where p is an prime. (In the case p = 2, we have ζ = 1 and Q(ζ) = Q.)

Minimal polynomial of ζ. We use the following criterion for irreducibility to find the
minimal polynomial for ζ.

Theorem 4. (Eisenstein’s criterion.) Let

f = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x].

Suppose there is a prime q ∈ Z such that

• q|ai for i = 0, 1, . . . , n− 1,

• q - an, and

• q2 - a0.

Then up to a constant factor, f is irreducible in Z[x] and, hence, f is irreducible in Q[x].

Proof. See Theorem 1.8 in our text for the (easy) proof.

Proposition 5. The minimal polynomial for ζ is f(x) = xp−1 + xp−2 + · · ·+ x+ 1.

Proof. First note that

xp−1 + xp−2 + · · ·+ x+ 1 =
xp − 1

x− 1
,

and, thus, all of the p-th roots of unity except 1 are zeros of f . So it remains to show
that f is irreducible over Q. For that, it suffices to show that f(x + 1) is irreducible since
f(x) = g(x)h(x) if and only if f(x+ 1) = g(x+ 1)h(x+ 1). We have

f(x+ 1) =
(x+ 1)p − 1

(x+ 1)− 1

=
xp +

(
p
p−1
)
xp−2 + · · ·+

(
p
1

)
x+ 1− 1

x

= xp−1 +

(
p

p− 1

)
xp−2 +

(
p

p− 2

)
xp−3 + · · ·+

(
p

1

)
.

Eisenstein’s criterion now applies. Note that
(
p
k

)
= p!

k!(p−k)! is divisible by p for 1 ≤ k ≤
p− 1.
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Corollary 6. We have [K : Q] = p− 1 and
{

1, ζ, . . . , ζp−2
}

is a Q-basis for K.

Up to this point we have proved almost all of Theorem 2 for the case where m is prime.
The only thing that is left is to show 1, ζ, . . . , ζp−2 is a Z-basis OQ(ζ). For that, we will
need to calculate some norms and traces and to prove a useful lemma. The complete proof
of this special case of Theorem 2 will then be finished in the next lecture.

Some norms and traces. The minimal polynomial for ζ factors as

f(x) =

n−1∏
i=1

(x− ζi).

Therefore, the field embeddings are given by

σi : K = Q(ζ)→ K ⊂ C
ζ 7→ ζi.

The field polynomial for α ∈ Q(ζ) is

fα(x) =

p−1∏
i=1

(x− σi(α))

= xp−1 − (σ1(α) + + · · ·+ σp−1(α))xp−2 + · · ·+ (−1)p−1σ1(α) · · ·σp−1(α),

and the norm and trace of α are given by certain coefficients of fα:

N(α) =

p−1∏
i=1

σi(α), T (α) =

p−1∑
i=1

σi(α).

In particular, the field polynomial for ζ is its minimal polynomial:

fζ(x) = f(x) =

p−1∏
i=1

(x− ζi) = xp−1 + xp−2 + · · ·+ x+ 1,

from which we see (recalling that p is odd),

N(ζ) = ζ · ζ2 · · · ζp−1 = (−1)p−1 = 1

and
T (ζ) = ζ + ζ2 + · · · ζp−1 = −1.

By multiplicativity of the norm,
N(ζj) = 1
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for all j ∈ Z. What about the trace of powers of ζ? First note if 1 ≤ i < k ≤ p− 1,

σi(ζ
j) = σk(ζ

j)⇐⇒ ζij = ζkj ⇐⇒ ζ(i−k)j = 1⇐⇒ (i− k)j = 0 mod p⇐⇒ j = 0 mod p.

Therefore, for j 6= 0 mod p,

{σ1(ζj), . . . , σp−1(ζj)} = {ζ, ζ2, . . . , ζp−1},

from which it follows that

T (ζj) =

p−1∑
i=1

σi(ζ
j) = ζ + ζ2 + · · ·+ ζp−1 = −1.

If j = 0 mod p, then ζj = 1, and T (1) =
∑p−1

i=1 σi(1) =
∑p−1

i=1 1 = p− 1.

One last useful calculation:

N(1− ζ) =

p−1∏
i=1

σi(1− ζ) =

p−1∏
i=1

(1− ζi) = f(1) = 1 + · · ·+ 1︸ ︷︷ ︸
p times

= p.

To summarize:

Proposition 7. Let ζ = e2πi/p. Then

N(ζj) = 1 for all i ∈ Z
N(1− ζ) = p

and

T (ζj) =

{
−1 if j 6= 0 mod p

p− 1 if j = 0 mod p.

A useful lemma. Let K = Q(ζ) where ζ = ζp for an odd prime p. Let α ∈ OK . Then
since {1, ζ, . . . , ζp−2} is a Q-basis for K, we can write

α = a0 + a1ζ + · · ·+ ap−2ζ
p−2

for some unique ai ∈ Q. To complete the proof of Theorem 2, we need to show the ai are
integers. We will prove that in the next lecture with the help of the following lemma:

Lemma 8. For 0 ≤ k ≤ p− 2,

T (αζ−k − αζ) = pak ∈ Z.
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Proof. First note that since α ∈ OK , as is ζ−k = ζp−k and ζ, it follows that αζ−k−αζ ∈ OK

(recall that OK is a ring). Therefore, T (αζ−k − αζ) is an integer.

We then calculate:

T (αζ−k − αζ) = T (αζ−k)− T (αζ)

= T (a0ζ
−k + a1ζ

−k+1 + · · ·+ ak + · · ·+ ap−2ζ
−k+p−2)

− T (a0ζ + a1ζ
2 + · · ·+ ap−2ζ

p−1)

= −a0 − a1 − · · · − ak−1 + (p− 1)ak − ak+1 − · · · − ap−2
− (−a0 − a1 − · · · − ap−2)

= pak.

Note, for instance, that

T (a0ζ
−k) =

p−1∑
i=1

σi(a0ζ
−k) =

p−1∑
i=1

a0σi(ζ
−k) = a0

p−1∑
i=1

σi(ζ
−k) = a0T (ζ−k) = −a0

since a0 ∈ Q and −k 6= 0 mod p.
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