
Math 361 lecture for Friday, Week 4

Cyclotomic fields II

We continue our discussion from last time. Let ζ = e2πi/p where p 6= 0 is a prime, and
consider the cyclotomic field K = Q(ζ). We saw that the minimal polynomial for ζ over Q
is

f(x) = xp−1 + xp−2 + · · ·+ x+ 1 =
xp − 1

x− 1
=

p−1∏
i=1

(x− ζi).

So [K :Q] = p− 1, and the embeddings K → Q are given by σi : σ 7→ ζi for i = 1, . . . , p− 1.

We will need some of the calculations we did last time:

N(ζj) = −1 for all i ∈ Z
N(1− ζ) = p

and

T (ζj) =

{
−1 if j 6= 0 mod p

p− 1 if j = 0 mod p.

Our goal is to show that

OK = Z[ζ] = SpanZ{1, ζ, . . . , ζp−2}.

Proof. Let α ∈ OK . Since {1, ζ, . . . , ζp−2} is a Q-basis for K, we may write

α = a0 + a1ζ + + · · ·+ ap−2ζ
p−2

for some unique a0, . . . , ap−2 ∈ Q. We must show that ai ∈ Z for all i.

Last time, we showed that bi := pai ∈ Z for all i. So it suffices to show that p|bi for all i.
Defining λ = 1− ζ, we have

pα = pa0 + pa1ζ + · · ·+ pap−2ζ
p−2

= b0 + b1ζ + · · ·+ bp−2ζ
p−2

= b0 + b1(1− λ) + · · ·+ bp−2(1− λ)p−2.

If we expand this last equation as a polynomial in λ, what are the coefficients? The constant
coefficient is

b0 + b1 + · · ·+ bp−2.

The coefficient of λ is
−b1 − b2 − · · · − bp−2.
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The coefficient of λ2 is

b2

(
2

2

)
+ b3

(
3

2

)
+ · · ·+ bp−2

(
p− 2

2

)
,

and so on. In general, for i = 0, . . . , p− 2, the coefficient of λi is

ci := (−1)i
p−2∑
j=i

(
j

i

)
bj ∈ Z.

So we have

pα = b0 + b1ζ + · · ·+ bp−2ζ
p−2

= b0 + b1(1− λ) + · · ·+ bp−2(1− λ)p−2

= c0 + c1λ+ · · ·+ cp−2λ
p−2.

By symmetry, since ζ = 1− λ, we have

bi = (−1)i
p−2∑
j=i

(
j

i

)
cj .

Note that p does not divide any
(
j
i

)
appearing in above. Hence, to achieve our goal of

proving p|bi for each i, it suffice to show that p|ci for each i, which we now do by induction.
For the case i = 0, we have

c0 := (−1)0
p−2∑
j=0

(
j

0

)
bj = b0 + · · ·+ bp−2 = p(a0 + · · ·+ ap−2).

We can not immediately conclude that p|c0 since all we know about the ai at this point is
that they are rational numbers. However, we can use the fact that since α ∈ OK , we know
its trace is an integer. Calculate:

T (α) = T (a0 + a1ζ + · · ·+ ap−2ζ
p−2)

= T (a0) + T (a1ζ) + · · ·+ T (ap−2ζ
p−2),

and since each σi is the identity on Q,

T (akζ
k) =

p−2∑
i=1

σi(akζ
k) =

p−2∑
i=1

aiσi(ζ
k) =

p−2∑
i=1

akT (ζk).

for each k = 0, . . . , p− 2. It follows from our earlier trace calculations that

T (α) = a0(p− 1)− a1 − · · · − ap−2

= pa0 − a0 − a1 − · · · − ap−2

= b0 − (a0 + · · ·+ ap−2).
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Since T (α) and b0 are integers, so is a0 + · · · + ap−2. Thus, we may finally conclude that
p|c0.
We proceed with the induction step. Let 1 ≤ k ≤ p − 2, and suppose that p|ci for i < k.
Thus, we can write ci = pni for some ni ∈ Z for i = 0, . . . , k − 1. Thus,

pα =

p−2∑
i=1

ciλ
i

= pn0 + pn1λ+ · · ·+ pnk−1λ
k−1 +

p−2∑
i=k

ciλ
i.

We now factor p in OK , defining γ as follows:

p = N(1− ζ) =

p−1∏
i=1

(1− ζi) = (1− ζ)p−1
p−1∏
i=1

1 + ζ + · · ·+ ζi−1

︸ ︷︷ ︸
γ

.

Here, we are using the fact that 1−ζi
1−ζ = 1 + ζ + · · ·+ ζi−1. Note that (1− ζ)p−1 and γ are

in OK . Hence, factors in OK as

p = (1− ζ)p−1γ = λp−1γ.

Continuing with our above calculation of pα:

λp−1γα = pα

= pn0 + pn1λ+ · · ·+ pnk−1λ
k−1 +

p−2∑
i=k

ciλ
i

= λp−1 + λp−1γn1λ+ · · ·+ λp−1γnk−1λ
k−1 +

p−2∑
i=k

ciλ
i

Solving for the ckλ
k term, we see

ckλk = λk+1µ

for some µ ∈ OK . It follows that ck = λµ. Take norms:

cp−1
k = N(ck) = N(λ)N(µ) = pN(µ)

where N(µ) ∈ Z. Since p divides the integer cp−1
k and p is prime, it follows that p|ck. That

completes the induction and the proof.
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