Math 361 lecture for Wednesday, Week 3

Discriminants

Our goal is to prove the theorem on discriminants stated last time:

Theorem 1. Let K = Q(f) be a number field, with embeddings ¢; and with 6; = 0;(6) for
i=1,...,n. Let aj,...,a, be a basis for K over Q. Then the discriminant Alaq, ..., ay]
is a nonzero rational number. It is positive if all of the 0; are real. It is a rational integer if
the a; are algebraic integers.

We first introduce the necessary tools.

Vandermonde matrix. Let x1,...,z, be indeterminates, and consider the n x n matrix
2 n—1
1 o xy ... 2 X
2 n—
1 xo x5 ... @y
v=|1 x5 2% zpt
1 : :
2 n—1
1 =z, =z Ty
Then

detV = H (xj —x4).

1<i<j<n

Sketch of proof. Think of det V' as an element of the polynomial ring Q[z1,...,z,]. Note
that if we set x; = x;, then V has two equal rows, and hence, the determinant becomes 0.
It turns out the this means that z; — z; divides det V for all 1 <17 < j < n. Next, compare
degrees. We find degV = (}) = deg [Ti<icj<n(zj — ;). Hence,

detV =r H (xj — )

1<i<j<n

for some r € Q. Next, the coefficient of x9z3 - - - 2"~ ! is 1 on the left-hand side of the above

equation and r on the other. So it follows that r = 1. O
Symmetric polynomials. Let R be a ring, and consider R[zy,...,z,], the ring of poly-
nomials in n variables with coefficients in R. If 7 is a permutation of the numbers 1,...,n,

and f € R[zy,...,x,], define a new polynomial f™ € R[xy,...,z,] by

fﬂ—(xla o 7xn) = f(xrr(l)w . 'axw(n))‘

In this way, we get an action of the symmetric group S, of permutations of 1,...,n on the
polynomial ring R[x1,...,2,]. A polynomial f is symmetric if f* = f for all w € S,,.



Example 2. Suppose that n = 4 and 7 is the permutation that 7(1) = 3, n(2) = 1,
7(3) =4, and 7(4) = 2, Let f = 32} — 5agzs + z175. Then

= 3:6:2;, — bxix4 + xgxg.

Since f # f7™, the polynomial f is not symmetric. On the other hand, the polynomial
x:{’ + x% + :1:% + x?l is symmetric, as is r1x9 + 123 + X174 + X223 + Tox4 + T3T4.

Definition 3. For 1 < r < n, the elementary symmetric polynomials in x1,...,x, are
Sr(z1,...,2,) formed by summing all products of exactly r of the indeterminates x1, ..., xy:

Ss1=x1+T2+ -+ xp

S§2 = T1X2 +T1T3 + -+ + Tp—1Tn

Sp = T1T2...Tn.

Let h € R[z1,...,z,] be any polynomial. Note that h(si,...,S,) is symmetric. For in-
stance, 2s? — 5s3z3 is symmetric. A first theorem in the theory of symmetric functions is
that the converse holds:

Theorem 4. (I. Newton) Let R be a ring, and let f € R[z1,...,x,]. Then f is symmetric
if and only if there exists h € R[x1,...,2,] such that

th(Sl,...,Sn)

where the s; are the elementary symmetric polynomials.
Proof. See our textbook, Theorem 1.12. O

We now explain how the theory of symmetric functions is crucially connected to our subject.
Suppose, for example that f € Q[z] is a monic polynomial of degree 4. By the fundamental
theorem of arithmetic, there exists 61,...,60; € C such that

f=(x—01)(x—02)(x—03)(x—by).
Expand the product to find that
f=at = (014 + 002 + (0102 + - + 0304)2% — (010203 + - - - + 020304)x + (01020504)
= at — 51(01,02,03,04)2> + 59(01,02,03,04) 2% — 53(61, 02,03, 04)x + 54(01, 02, 03,04).

Thus, the coefficients of f are, up to sign, the elementary functions of the roots of f.
Further, since f has rational coefficients, we see that the elementary functions of the roots
of f are rational numbers. If f has integer coefficients, then these elementary functions
would be integers.



Example 5. Let w = ¢27/3 = _1%“/3 be a cube root of 1. We have
P -1=(z-1)(z—-w)(r—uw?
= (4wt + (1 wHl-WHw-wz— (1 -w-w?)
=23 — 51(1,w,wH)z? + s5(1,w,w?)z — s3(1,w, w?).
Comparing coeflicients, we see that
2y _ 2 _
si(lyw,w’) =14w-4w*=0
2y _ 2 2 _ 2 _
so(liw,w)=1w+l - w+tw-w =w+w +1=0
s3(lw,w?) =1 -w-w?=1.

Since 23 — 1 has integer coefficients, the elementary functions of its roots are all integers,
too.

Proof of Theorem 1. We have seen that 1,0,... ,0""1 is a basis for K over Q. We have
0;(07) = 0;(0)7 = 6!. Therefore, calculating the discriminant involve taking the determinant
of a Vandermonde matrix:

16, 62 ... o0\
1 6y 63 ... o5t
A[L6,....0m =] 1 0 65 .. 657 | = T[ (66>
SR 1<i<j<n
16, 62 ... gt
Letting C' be the change of basis matrix from 1,6,...,6" ! to a,...,a,, we have

Alon, ..., 0n] = (det C)?A[L,0,...,0" " = (det C)> ] (6; - 6:)>.

1<i<j<n

Since the 0; are distinct, the discriminant is nonzero, and if the 8; are real, the discriminant is
positive. To see that the discriminant is rational in general, note that the above expression
is a symmetric polynomial in the 6;. Therefore, the discriminant can be written as a
rational polynomial combination of the elementary symmetric functions in the 6;. Recall
that the ; are the roots to minimal polynomial for 8, which is a monic polynomial with
rational coefficients. Therefore, as we have seen, the elementary symmetric functions in 6;
are rational numbers.

Finally, suppose that ai,...,a, are algebraic integers. This means that for each j there
exists a monic polynomial p; = p;(z) with integer coefficients such that p;(a;) = 0. For



each 7 and j, we claim that o;(c;) is an algebraic integers. To see this, say that p; =
zF + Cljaj‘k_l 4+ -4 c1i. Then

pi(oi(ay)) = (Ui(aj))k + C1j(ai(aj))k_1 + -+

= Ji(a;?) + Ui(clj(aj))k_l + -+ Clk

ik k=1
= O'Z(Ozj toeoyay C A+ C1k)

= 0i(pj(aj)) = 0.

We are using the fact that o; is a homomorphism of fields, hence preserves algebraic opera-
tions, and that o; is the identity when restricted to Q, and hence o;(a;;) = a; for all k. We
have just demonstrated that o;(c;) satisfies a monic polynomial with integer coefficients.
Hence, 0;(a;) is an algebraic integer.

Next, we know that the algebraic integers form a ring. Therefore, the discriminant
Alag, ..., a,] = (det(o;(a;)))?

is an algebraic integer. However, we also know that the discriminant is a rational number.
Therefore, it must be a (rational) integer. O



