Math 361 lecture for Wednesday, Week 3

Discriminants

Our goal is to prove the theorem on discriminants stated last time:

Theorem 1. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} . Then the discriminant $\Delta[\alpha_1, ..., \alpha_n]$ is a nonzero rational number. It is positive if all of the θ_i are real. It is a rational integer if the α_i are algebraic integers.

We first introduce the necessary tools.

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}.$$

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i)$$

Sketch of proof. Think of det V as an element of the polynomial ring $\mathbb{Q}[x_1, \ldots, x_n]$. Note that if we set $x_i = x_j$, then V has two equal rows, and hence, the determinant becomes 0. It turns out the this means that $x_j - x_i$ divides det V for all $1 \le i < j \le n$. Next, compare degrees. We find deg $V = \binom{n}{2} = \deg \prod_{1 \le i < j \le n} (x_j - x_i)$. Hence,

$$\det V = r \prod_{1 \le i < j \le n} (x_j - x_i)$$

for some $r \in \mathbb{Q}$. Next, the coefficient of $x_2 x_3^2 \cdots x_n^{n-1}$ is 1 on the left-hand side of the above equation and r on the other. So it follows that r = 1.

Symmetric polynomials. Let R be a ring, and consider $R[x_1, \ldots, x_n]$, the ring of polynomials in n variables with coefficients in R. If π is a permutation of the numbers $1, \ldots, n$, and $f \in R[x_1, \ldots, x_n]$, define a new polynomial $f^{\pi} \in R[x_1, \ldots, x_n]$ by

$$f^{\pi}(x_1,\ldots,x_n) = f(x_{\pi(1)},\ldots,x_{\pi(n)}).$$

In this way, we get an action of the symmetric group S_n of permutations of $1, \ldots, n$ on the polynomial ring $R[x_1, \ldots, x_n]$. A polynomial f is symmetric if $f^{\pi} = f$ for all $\pi \in S_n$.

Example 2. Suppose that n = 4 and π is the permutation that $\pi(1) = 3$, $\pi(2) = 1$, $\pi(3) = 4$, and $\pi(4) = 2$, Let $f = 3x_1^2 - 5x_2x_3 + x_1x_4^3$. Then

$$f^{\pi} = 3x_3^2 - 5x_1x_4 + x_3x_2^3$$

Since $f \neq f^{\pi}$, the polynomial f is not symmetric. On the other hand, the polynomial $x_1^3 + x_2^3 + x_3^3 + x_4^3$ is symmetric, as is $x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4$.

Definition 3. For $1 \le r \le n$, the elementary symmetric polynomials in x_1, \ldots, x_n are $s_r(x_1, \ldots, x_n)$ formed by summing all products of exactly r of the indeterminates x_1, \ldots, x_n :

$$s_1 = x_1 + x_2 + \dots + x_n$$

 $s_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$
:
 $s_n = x_1 x_2 \dots x_n$.

Let $h \in R[x_1, \ldots, x_n]$ be any polynomial. Note that $h(s_1, \ldots, s_n)$ is symmetric. For instance, $2s_1^2 - 5s_2^2 x_5^4$ is symmetric. A first theorem in the theory of symmetric functions is that the converse holds:

Theorem 4. (I. Newton) Let R be a ring, and let $f \in R[x_1, \ldots, x_n]$. Then f is symmetric if and only if there exists $h \in R[x_1, \ldots, x_n]$ such that

$$f = h(s_1, \ldots, s_n)$$

where the s_i are the elementary symmetric polynomials.

Proof. See our textbook, Theorem 1.12.

We now explain how the theory of symmetric functions is crucially connected to our subject. Suppose, for example that $f \in \mathbb{Q}[x]$ is a monic polynomial of degree 4. By the fundamental theorem of arithmetic, there exists $\theta_1, \ldots, \theta_4 \in \mathbb{C}$ such that

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4)$$

Expand the product to find that

$$f = x^{4} - (\theta_{1} + \dots + \theta_{4})x^{3} + (\theta_{1}\theta_{2} + \dots + \theta_{3}\theta_{4})x^{2} - (\theta_{1}\theta_{2}\theta_{3} + \dots + \theta_{2}\theta_{3}\theta_{4})x + (\theta_{1}\theta_{2}\theta_{3}\theta_{4})$$
$$= x^{4} - s_{1}(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4})x^{3} + s_{2}(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4})x^{2} - s_{3}(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4})x + s_{4}(\theta_{1}, \theta_{2}, \theta_{3}, \theta_{4}).$$

Thus, the coefficients of f are, up to sign, the elementary functions of the roots of f. Further, since f has rational coefficients, we see that the elementary functions of the roots of f are rational numbers. If f has integer coefficients, then these elementary functions would be integers.

Example 5. Let $\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$ be a cube root of 1. We have

$$x^{3} - 1 = (x - 1)(x - \omega)(x - \omega^{2})$$

= $x^{3} - (1 + \omega + \omega^{2})x^{2} + (1 \cdot \omega + 1 \cdot \omega^{2} + \omega \cdot \omega^{2})x - (1 \cdot \omega \cdot \omega^{2})$
= $x^{3} - s_{1}(1, \omega, \omega^{2})x^{2} + s_{2}(1, \omega, \omega^{2})x - s_{3}(1, \omega, \omega^{2}).$

Comparing coefficients, we see that

$$s_1(1,\omega,\omega^2) = 1 + \omega + \omega^2 = 0$$

$$s_2(1,\omega,\omega^2) = 1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2 = \omega + \omega^2 + 1 = 0$$

$$s_3(1,\omega,\omega^2) = 1 \cdot \omega \cdot \omega^2 = 1.$$

Since $x^3 - 1$ has integer coefficients, the elementary functions of its roots are all integers, too.

Proof of Theorem 1. We have seen that $1, \theta, \ldots, \theta^{n-1}$ is a basis for K over \mathbb{Q} . We have $\sigma_i(\theta^j) = \sigma_i(\theta)^j = \theta_i^j$. Therefore, calculating the discriminant involve taking the determinant of a Vandermonde matrix:

$$\Delta[1, \theta, \dots, \theta^{n-1}] = \begin{pmatrix} 1 & \theta_1 & \theta_1^2 & \dots & \theta_1^{n-1} \\ 1 & \theta_2 & \theta_2^2 & \dots & \theta_2^{n-1} \\ 1 & \theta_3 & \theta_3^2 & \dots & \theta_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \theta_n^2 & \dots & \theta_n^{n-1} \end{pmatrix}^2 = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2.$$

Letting C be the change of basis matrix from $1, \theta, \ldots, \theta^{n-1}$ to $\alpha_1, \ldots, \alpha_n$, we have

$$\Delta[\alpha_1, \dots, \alpha_n] = (\det C)^2 \Delta[1, \theta, \dots, \theta^{n-1}] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2.$$

Since the θ_i are distinct, the discriminant is nonzero, and if the θ_i are real, the discriminant is positive. To see that the discriminant is rational in general, note that the above expression is a symmetric polynomial in the θ_i . Therefore, the discriminant can be written as a rational polynomial combination of the elementary symmetric functions in the θ_i . Recall that the θ_i are the roots to minimal polynomial for θ , which is a monic polynomial with rational coefficients. Therefore, as we have seen, the elementary symmetric functions in θ_i are rational numbers.

Finally, suppose that $\alpha_1, \ldots, \alpha_n$ are algebraic integers. This means that for each j there exists a monic polynomial $p_j = p_j(x)$ with *integer* coefficients such that $p_j(\alpha_j) = 0$. For

each *i* and *j*, we claim that $\sigma_i(\alpha_j)$ is an algebraic integers. To see this, say that $p_j = x^k + c_{1j}x^{k-1} + \cdots + c_{1k}$. Then

$$p_j(\sigma_i(\alpha_j)) = (\sigma_i(\alpha_j))^k + c_{1j}(\sigma_i(\alpha_j))^{k-1} + \dots + c_{1k}$$
$$= \sigma_i(\alpha_j^k) + \sigma_i(c_{1j}(\alpha_j))^{k-1} + \dots + c_{1k}$$
$$= \sigma_i(\alpha_j^k + c_{1j}\alpha_j^{k-1} + \dots + c_{1k})$$
$$= \sigma_i(p_j(\alpha_j)) = 0.$$

We are using the fact that σ_i is a homomorphism of fields, hence preserves algebraic operations, and that σ_i is the identity when restricted to \mathbb{Q} , and hence $\sigma_i(a_{ik}) = a_{ik}$ for all k. We have just demonstrated that $\sigma_i(\alpha_j)$ satisfies a monic polynomial with integer coefficients. Hence, $\sigma_i(\alpha_j)$ is an algebraic integer.

Next, we know that the algebraic integers form a ring. Therefore, the discriminant

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det(\sigma_i(\alpha_j)))^2$$

is an algebraic integer. However, we also know that the discriminant is a rational number. Therefore, it must be a (rational) integer. $\hfill \Box$