
Math 361 lecture for Monday, Week 3

Discriminants

Theorem 1. (Fundamental theorem of algebra.) Let h ∈ C[x] be a nonconstant polynomial.
Then there exists α ∈ C such that h(α) = 0.

Using polynomial division, we get the following (equivalent) formulation of the fundamental
theorem of algebra:

Corollary 2. A polynomial h ∈ C[x] of degree n has n complex roots θ1, . . . , θn counting
multiplicities (i.e., the θi are not necessarily distinct), and

h = β
n∏
n=1

(x− θi)

for some β ∈ C.

Let K be a subfield of C.

Exercise 3. Show that Q ⊆ K. (Hint: since K is a field, 1 ∈ K.)

Let Q : K → C be a homomorphism of fields, i.e., for all a, b ∈ K,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

Proposition 4. With notation as above,

1. The homomorphism σ is either injective or identically 0.

2. If σ is injective, then σ is the identity mapping when restricted to Q ∈ K.

3. Suppose that α ∈ K and h ∈ Q[x] with h(α) = 0. If σ 6= 0, then h(σ(α)) = 0. Thus,
σ permutes the roots of h in C.

Proof.

1. First, as an exercise, check that kerσ is an ideal in K. (Hint: kerσ is nonempty
since σ(0) = 0, then check that if α, β ∈ kerσ and γ ∈ K, then α + β, γα ∈ kerσ.)
Next, suppose kerσ 6= (0) = {0}. Let α be a nonzero element of kerσ. Since K is a field,
1
α ∈ K, and since kerσ is an ideal, 1

α · α = 1 ∈ kerσ. So kerσ = (1) = K, i.e., σ = 0.

2. Suppose σ is injective. Then the standard argument shows that σ(1) = 1:

σ(1) = σ(1 · 1) = σ(1)σ(1).
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Since σ is injective, σ(1) 6= 0. Multiplying the above equation through by 1/σ(1),
gives σ(1) = 1.

Then, for each n ∈ N,

σ(n) = σ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

The rest is left as an exercise: if n ∈ N with n 6= 0, show σ(1/n) = 1/σ(n) by applying σ
to the identity (1/n)n = 1; next show σ(m/n) = σ(m)/σ(n) for all m,n ∈ N with n 6= 0;
finally, show that for any α ∈ K, we have σ(−α) = −σ(α).

3. Suppose σ 6= 0, in which case σ is injective. Say h =
∑n

i=1 aix
i and that h(α) = 0.

Then, using the fact that σ preserves sums and products, σ is the identity on Q, and the
ai ∈ Q,

0 = σ(0) = σ(
∑n

i=1 aiα
i) =

∑n
i=1 σ(ai)(σ(α))i =

∑n
i=1 ai(σ(α))i = h(σ(α)).

Embeddings of number fields. Let K be a number field (finite extension of Q inside C).
By an embedding of K into C, we mean an injective homomorphism σ : K → C. It turns
out the problem of describing all of the embedding of K into C has a beautiful solution,
which we now describe.

By the primitive element theorem there exists an algebraic number θ ∈ K such that K =
Q(θ) = Q[θ] (we could even take θ to be an algebraic integer, but that is not important
here). Let p ∈ Q[x] be the minimal polynomial for θ over Q, and say deg(p) = n. We have
seen that [K :Q] = n. Then we have the following characterization of all of the embeddings
of K into C (whose proofs appear in a course in algebra):

1. The number of embeddings of K into C is n = [K : Q] = deg(p).

2. Let σ1, . . . σn be the embeddings of K into C and define θi := σi(θ) for i = 1, . . . , n.
Then the θi are distinct, and they are precisely the roots of p. So

p =
n∏
i=1

(x− θi) =
n∏
i=1

(x− σi(θ)).

3. If θi is any root of p, then θ 7→ θi determines the embedding σi. (To see this, recall that
{1, θ, . . . , θn−1} is a basis for K over Q. Then, any homomorphism sending θ 7→ θi
will send

∑n
j=1 αjθ

j to
∑n

j=1 αjθ
j
i . So the value of the homomorphism is determined

for all elements of K.)
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Example 5. 1. What are the embeddings of Q(
√

5) into C? The minimal polynomial
for
√

5 is
p = x2 − 5 = (x−

√
5)(x+

√
5).

The roots of p are
√

5 and −
√

5. So we get two embeddings:

σ1(r + s
√
d) := id(r + s

√
5) = r + s

√
5

σ2(r + s
√
d) := r − s

√
5.

Note that in this case, the images of both embeddings σi : Q(
√

5) → C actually lie in
Q(
√

5). So each embedding is an isomorphism of Q(
√

5) with itself.

2. What are the embeddings of Q( 3
√

5)? Let

ω = e2πi/3 = cos(2π/3) + i sin(2π/3) =
−1 + i

√
3

2
,

a cube root of unity. Then the minimal polynomial for 3
√

5 is

p = x3 − 5 = (x− 3
√

5)(x− ω 3
√

5)(x− ω2 3
√

5).

The three embeddings of Q( 3
√

5) are given by

σ1(1 + a
3
√

5 + b(
3
√

5)2) := id(1 + a
3
√

5 + b(
3
√

5)2) = 1 + a
3
√

5 + b(
3
√

5)2

σ2(1 + a
3
√

5 + b(
3
√

5)2) := 1 + aω
3
√

5 + b(ω
3
√

5)2 = 1 + aω
3
√

5 + bω2(
3
√

5)2

σ3(1 + a
3
√

5 + b(
3
√

5)2) := 1 + aω2 3
√

5 + b(ω2 3
√

5)2 = 1 + aω2 3
√

5 + bω(
3
√

5)2.

Unlike the previous example, note that neither im(σ2) nor im(σ3) are contained in Q( 3
√

5).

The discriminant. Let K = Q(θ) be a number field with [K : Q] = n. Let p ∈ Q[x] be
the minimal polynomial of θ. Then p has n distinct complex roots θ1, . . . , θn, and p factors
as follows:

p =
n∏
i=1

(x− θi).

Let σi be the embedding of K defined by letting θ 7→ θi.

Definition 6. The discriminant for a basis α1, . . . , αn for K over Q is the square of the
determinant of the n× n matrix with i, j-th entry σi(αj):

∆[α1, . . . , αn] := (det(σi(αj)))
2 .

Example 7. Let K = Q(
√
d) where d is a square-free integer 6= 0, 1. Then

∆[1,
√
d] =

(
det

(
1

√
d

1 −
√
d

))2

= (−2
√
d)2 = 4d.

3



Proposition 8. Let α1, . . . , αn and β1, . . . , βn be bases for the number field K over Q. Let
C be the change of basis matrix from the αi to the βi. Then

∆[β1, . . . , βn] = (detC)2∆[α1, . . . , αn].

Proof. We have βj =
∑n

k=1 ckjαk with ckj ∈ Q. Let A = (σi(αj)) and B = (σi(βj)). The
i, j-th element of AC is

n∑
k=1

aikckj =
n∑
k=1

σi(αk)ckj =
n∑
k=1

σi(ckjαk) = σi(
∑n

k=1 ckjαk) = σi(βj).

(We have used the fact that σi is the identity when restricted to Q in order to bring ckj
inside σi, above.) Therefore

det(σi(βj)) = det(AC) = detAdet(C) = det(σi(αj)) detC.

Squaring both sides yields the result.

Theorem 9. Let K = Q(θ) be a number field, with embeddings σi and with θi = σi(θ) for
i = 1, . . . , n. Let α1, . . . , αn be a basis for K over Q. Then the discriminant ∆[α1, . . . , αn]
is a nonzero rational number. It is positive if all of the θi are real. It is a rational integer if
the αi are algebraic integers.

Sketch of proof. We have seen that 1, θ, . . . , θn−1 is a basis for K over Q, and we have
σi(θ

j) = θji . Therefore,

∆[1, θ, . . . , θn−1] = det(θji ) =
∏

1≤i<j≤n
(θi − θj)2.

(For the final step, see, for example, Vandermonde matrix in Wikipedia This may appear as
homework, too.) Letting C be the change of basis matrix from 1, θ, . . . , θn−1 to α1, . . . , αn,
we have

∆[α1, . . . , αn] = (detC)2∆[1, θ, . . . , θn−1] = (detC)2
∏

1≤i<j≤n
(θi − θj)2.

Since the θi are distinct, the discriminant is nonzero, and if the θi are real, the discriminant
is positive.
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