
Math 361 lecture for Friday, Week 3

Bases for algebraic integers

Recall that if M is a module over a ring R, it may or may not be the case that M has a
basis, i.e., an R-linearly independent spanning set. If M does have a basis, we say M is a
free R-module. Its rank is then defined to be the cardinality of any basis. (It is a fact that
the notion of rank is well-defined.)

Theorem 1. Let K be a number field of degree n over Q, i.e., [K : Q] = n. Then its ring
of integers OK is a free Z-module of rank n.

Proof. Recall that we have already shown that K has a Q-basis consisting of algebraic
integers. (Use the primitive element theorem to write K = Q(θ) = Q[θ] where θ is an
algebraic integer. Then 1, θ, θ2, . . . , θn−1 is a Q-basis.

We have shown that the discriminant of a Q-basis for K consisting of algebraic integers is
a nonzero rational integer. Among all Q-bases consisting of algebraic integers, for K, let
α1, . . . , αn be one such that |∆[α1, . . . , αn]| is minimal. For sake of contradiction, suppose
that α1, . . . , αn is not a Z-basis for OK . Then there exists α ∈ OK such that

α = c1α1 + · · ·+ cnαn

with ci ∈ Q but with not all ci ∈ Z. Without loss of generality, suppose c1 ∈ Q \ Z. Write
c1 = c+ r where c = bc1c and 0 < r < 1. Then

α = (c+ r)α1 + c2α2 + · · ·+ cnαn.

Next, define
ψ1 := α− cα1 = rα1 + c2α2 + · · ·+ cnαn.

and for i = 2, . . . , n, let ψi := αi. Then ψ1, . . . , ψn is a Q-basis for K consisting of algebraic
integers (check: explain why ψ1 an algebraic integer). To get a contradiction, we compare
the discriminants of our two bases. Let C denote the change of basis matrix:

ψ1

ψ2

ψ3
...
ψn

 =


r c2 c3 . . . cn
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


︸ ︷︷ ︸

C


α1

α2

α3
...
αn

 .

We have
|∆[ψ1, . . . , ψn]| = |(detC)2∆[α1, . . . , αn]| = r2|∆[α1, . . . , αn]|

contradicting the minimality of |∆[α1, . . . , αn]|. The result follows.
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We now show that all integral bases for OK have the same discriminant. Suppose that
α1, . . . , αn and β1, . . . , βn are two Z-bases for OK . Let C be the change of basis matrix
from the αi to the βi, and let D be the change of basis matrix from the βi to the αi. Then
both C and D have integer entries (since we are talking about Z-bases), and CD = In. So,
in fact, D = C−1. We have 1− det(I) = det(C) det(D) with det(C), det(D) ∈ Z. It follows
that det(C) = ±1. Hence,

∆[βi, . . . , βn] = det(C)2∆[α1, . . . , αn] = ∆[α1, . . . , αn].

Definition 2. The discriminant of a number field K, denoted ∆(K) is the discriminant of
any integral basis for OK .

Example 3. Let K = Q(
√
d) where d ∈ Z and d 6= 0, 1. We have seen that 1,

√
d is an

integral basis for OK if d 6= 1 mod 4, and 1, 1+
√
5

2 is an integral basis if d = 1 mod 4. We
have

det

(
1

√
d

1 −
√
d

)
= −2

√
d and

(
1 1+

√
5

2

1 1−
√
5

2

)
= −
√
d.

Therefore,

∆(K) =

{
4d if d 6= 1 mod 4

d if d = 1 mod 4.

Proposition 4. Suppose that α1, . . . , αn is a Q-basis for K consisting of algebraic integers.
If ∆[α1, . . . , αn] is square-free, then α1, . . . , αn is a Z-basis for OK .

Proof. Let β1,, . . . , βn be an integral basis for OK . Then since the αi are algebraic integers,
there exists an n× n matrix C with integer entries such that α1

...
αn

 = C

 β1
...
βn

 .

It follows that
∆[α1, . . . , αn] = det(C)2∆[β1, . . . , βn].

Since the αi and βi are algebraic integers, these discriminants are rational integers, i.e.,
elements of Z. Since ∆[α1, . . . , αn] is square-free, det(C) = ±1. Since C is an integer
matrix, it follows that C is invertible over the integers, and hence, the βi are integer linear
combinations of that αi. It follows that the αi form a Z-basis for OK .

We will see an example later demonstrating that the converse of this proposition is not true.
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