Math 361 lecture for Wednesday, Week 2

Algebraic integers

Definition 1. Let A and B be integral domains (rings with no zero divisors) with A C B.
An element of « € B is integral over A if there exists a monic polynomial p € A[x]| such
that p(a) = 0.

Note that if A in the definition is a field, then a € B is integral over A if and only if a is
algebraic over A.

Our main interest will be in elements of C that are integral over Z. These are integer
solutions in C to monic polynomials with coefficients in Z. For example (1 + v/5)/2 is
integral over Z since it is a root of 22 — x — 1. Similarly, 4 is integral over Z since it is a
root of £2 + 1. The word “monic” in the definition of integrality is crucial. For instance,
consider the case B = Q and A = Z. Every rational number is a root of a polynomial with
integer coefficients, e.g., a/b satisfies bx — a € Z[z]. However, as the following proposition
shows, a rational solution to a monic polynomial over the integers must be an integer.

Proposition 2. A rational number is integral over Z if and only if it is an integer.

Proof. One direction is immediate: if @ € Z, then a is integral over Z since it satisfies
x —a € Z[z]. For the other direction, suppose a/b is a rational number that is integral
over Z. Without loss of generality, assume a/b is in lowest terms and that b > 0. Since a/b
is integral over Z, there exists a polynomial p = z" + Cn1" V- 4z 4o withe; € Z
such that p(a/b) = 0. So
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b =17 13 0o=70.
Clear denominators by multiplying through by b™:
A"+ cp1a" o+ -+ crab™ !t pb™ = 0.
We see that
a”™ =0 mod b.

If b # 1, then some prime in the factorization of b must divide a, However, that cannot
happen since a/b is in lowest terms. It follows that b =1 and a/b=a € Z. O

Exercise 3. The number v/2 is integral over Z since it is a zero of the monic polynomial z2 —
2 € Z[x]. Show that 1/+/2 is not integral over Z by imitating the method used in the proof
of Proposition 2 (clearing denominators and getting a contradiction).

Theorem 4. Let A and B be domains with A C B, and let &« € B. Then the following are
equivalent.



1. « is integral over A.
2. Ala] :={f(«a) : f € Alx]} is a finitely generated A-module.
3. There exists a finitely generated A-module M in B such that aM C M. (Here,
aM ={am:m e M}).
Proof. (1 = 2) Since « is integral over A, it is the root of a monic polynomial p € Afz].
Say p=a" + ap_ 12" ' + -+ + a1 + ag with a; € A. Then since p(a) = 0, we have

Q" =—ap—aj — - — ap_1a" L.

It follows that {1,a,...,a" '} generates Ala] as an A-module.
(2 = 3) Let M = Ala]. Then aM C M.

(3 = 1) Here is the most interesting part of the proof. Suppose M is a finitely generated
A-module in B and aM C M. Say M is generated by b1,...,b, € B as an A-module. Since
aM C M, there exist a;; € A such that

aby = a1by + - - + anbn
abg = a21b1 + -+ (Ignbn

aby, = ap1by + -+ - + appby.

Letting T = (aij) and b = (by ... by)" (where the superscript of ¢ denotes the transpose)
we can write these equations more succinctly as

ab="Tb.

Hence, (al, — T)b = 0, which implies det(al, —T) = 0. Let p(z) := det(xl, — T'). Then
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p(x) = det ) ) ) ) = 2" + lower order terms .
—anl —Aan2 0 X Qpn

So p is a monic polynomial with coefficients in A and having « as a root. Therefore, « is
integral over A. O

Lemma 5. Let A C B C C be rings. If B is finitely generated as an A-module and C' is
finitely generated as a B-module, then C' is finitely generated as an A-module.

Proof. 1f {b;} is a finite generating set for B as an A-module and {c;} is a finite generating
set for C' as a B-module, it is straightforward to check that {a;b;} is a finite generating set
for C' as an A-module. O



Corollary 6. Let A C B be domains. The set of elements of B that are integral over A
forms a subring of B.

Proof. It suffices to show that the set of elements of B that are integral over A is closed
under addition and multiplication. Let «, 8 € B be integral over A. Consider the tower of
rings

AC Ala] € Ala, 8]

(To be clear, Ale, f] == {f(a, ) : f(z,y) € Alz,y]}, all polynomials in « and 8 with
coefficients in A. It is the subring of B generated by « and .) By Theorem 4, we have
that Ala] and A[f] are finitely generated as A-modules. It is straightforward to check that
since A[S] is finitely generated as an A-module, say by b1, ..., by, it follows that Al«, 5] is
finitely generated as a A[a]-module by by,...,b,. By Lemma 5, it follows that Al«, 5] is a
finitely generated A-module.

Next, let M := Ala, 5]. Apply Theorem 4, part 3, noting that since Ala, ] is a ring,
(a+pB)M CM and (af)M C M.
It follows that o 4+ 8 and o3 are integral over A. ]

Exercise 7. Is there a converse to Lemma 57

Next time, we will start to focus on an object of central interest in this course—the algebraic
integers:

Definition 8. The algebraic integers are the elements of C that are integral over Z:
O :={a € C: p(a) =0 for some monic p € Z[z]}.
Corollary 9. The algebraic integers, £, are a ring.

For example, this corollary tells us that since v/2 and i are algebraic integers (roots of 3 —2
and 2 + 1, respectively), there must be a monic polynomial p with integer coefficients such
that p(v/2 + i) = 0. The proof of Theorem 4 shows how to calculate p.



