
Math 361 lecture for Monday, Week 2

Algebraic numbers

Definition 1. The set of algebraic numbers is

A := {α ∈ C : α is algebraic over Q}.

Example 2. Note that if a ∈ Q, then a is a zero of the polynomial x − a ∈ Q[x]. Hence,
Q ⊂ A. Other algebraic numbers in include

√
2, 3
√

5, and the complex n-roots of unity,
e2kπi/n for n ≥ 1 and k = 0, . . . , n. These are the solutions to xn − 1. Non-algebraic
numbers are called transcendental numbers and include e and π, for example.

Proposition 3. A is a field.

Proof. It suffices to show that A is closed under addition and multiplication and that every
nonzero element of A has a multiplicative inverse.

Let α, β ∈ A. Since α is algebraic over Q, we saw in the last lecture that [Q(α) :Q] is finite.
Further, since β is algebraic over Q, there is a polynomial p with coefficients in Q such
that p(β) = 0. Regarding p as an element of Q(α)[x], shows that β is algebraic over Q(α).
Therefore, [Q(α, β) : Q(α)] is finite. It follows that

[Q(α, β) : Q] = [Q(α, β) : Q(α)][Q(α),Q] <∞.

Since [Q(α, β) : Q] <∞, every element of Q(α, β) is in A. In particular, α+ β and αβ are
algebraic numbers, and if α 6= 0, then α−1 is an algebraic number.

Definition 4. A number field is a subfield K ⊆ C such that [K : Q] <∞.

Theorem 5. (Primitive element theorem) If K is a number field, then there exists an
algebraic number θ such that K = Q(θ).

Proof. See our text, Theorem 2.2.

Our next goal is to fill in the box in the following diagram:

Q Z

K

.

In other words, we want to find a ring inside of K that plays the role of the ring of integers
inside Q. It will help to first discuss an algebraic structure called a module.

Modules. Roughly, a module is a vector space except that the scalars are elements of a
ring rather than a field.
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Definition 6. Let R be a ring. An R-module or module over R is an abelian group M and
an operation

R×M →M

(r,m) 7→ rm

such that for all r, s ∈ R and m,n ∈M

• (r + s)m = rm+ sm,

• r(m+ n) = rm+ rn,

• r(sm) = (rs)m, and

• 1 ·m = m.

Example 7.

(a) If R is a field, then R-modules are exactly vector spaces over R.

(b) Z/nZ is a Z module (if a ∈ Z and b ∈ Z/nZ, then ab := ab ∈ Z/nZ).

(c) Let R be a ring, and let n be a positive integer. Define

Rn := {(r1, . . . , rn) : ri ∈ R},

the Cartesian product of R with itself n times. Then Rn is an R-module via

r(r1, . . . , rn) := (rr1, . . . , rrn)

(r1, . . . , rn) + (s1, . . . , sn) := (r1 + s1, . . . , rn + sn)

for all r ∈ R and (r1, . . . , rn), (s1, . . . , sn) ∈ Rn. Letting n = 1, we see that R is, itself,
and R-module. Finally, define R0 = {0}, the trivial R-module.

(d) If R is a ring, then the ring of polynomials R[x] is an R-module. For example, Z[x] is a
Z-module. Similarly, any polynomial ring in several variables over R is an R-module.
For example, Z[x, y, z] is a Z-module.

(e) If G is an abelian group, then G is a Z-module as follows: If g ∈ G and n ∈ Z>0,
define

ng = g + · · ·+ g︸ ︷︷ ︸
n−times

.

It n ∈ Z<0, define ng = (−n)(−g), and finally, for 0 ∈ Z, define 0g = 0, where the
second 0 is the additive identity for G.

(f) (Important) If R is a ring, then an R-ideal is exactly a subset I of R such that I is an
R-module with the natural operation: if r ∈ R and i ∈ I, then ri is just multiplication
in R. We could have defined the notion of an ideal in this way if we had the language
of modules earlier.
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Definition 8. An R-module M is generated by X ⊆M if each m ∈M is a finite R-linear
combination of elements of X, i.e., if for all m ∈M , we can write

m =
∑
x∈X

rxx

where each rx is an element of R and rx = 0 for all but finitely many x. If M is generated
by X, we write

M =
∑
x∈X

Rx.

We say M is finitely generated if it is generated by a finite set.

Definition 9. A basis for an R-module M is a subset B ⊆ M such that every element
of M can be written uniquely as a finite R-linear combination of B. (Equivalently, B is
R-linearly independent and spans M .) A free R-module is an R-module with a basis.

Example 10. Unlike vector spaces, modules do not necessarily have bases. For example,
Z-module Z/5Z has no basis. To see this, let B be any subset of Z/5Z. If B = ∅ or B = {0},
then SpanZB = {0}, and hence B does not span. Otherwise, let x ∈ B with x 6= 0. Since 5
is a nonzero element of Z, we have the nontrivial Z-linear relation 5 · x = 0. So B is not
linearly independent.

Definition 11. A homomorphism of R-modules M and N is a mapping φ : M → N that
preserves addition and scalar multiplication, i.e., for all u, v ∈M and r ∈ R:

φ(u+ v) = φ(u) + φ(v)

φ(ru) = rφ(u).

A homomorphism is an isomorphism if it is bijective (in which case, the inverse is a homo-
morphism (exercise!)). The kernel of a homomorphism φ is

ker(φ) := φ−1(0) := {m ∈M : φ(m) = 0},

and the image is
im(φ) := φ(M) := {φ(m) : m ∈M}.

Exercise 12. Show that an R-module homomorphism φ : M → N is injective if and only
if ker(φ) = 0.

Definition 13. A submodule of an R-module M is a subset N ⊆ M that is itself an R-
module (under the operations inherited from M). (Exercise: N is a submodule if and only
if it is nonempty and closed under addition and scalar multiplication).

Definition 14. Let M be an R-module with submodule N . The quotient module M/N is
the set of cosets

m+N := {m+ n : n ∈ N}
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with addition and scalar multiplication defined by

(m+N) + (m′ +N) := (m+m′) +N and r(m+N) := (rm) +N

for all m,m′ ∈M and r ∈ R. (Exercise: these operations are well-defined and under them,
M/N is an R-module.)

Remark 15. As usual, we can think of the quotient module M/N as the module M except
that elements of N are set equal to 0. Also, as usual, we could have defined M/N as the
set of equivalence classes under the equivalence m ∼ m′ if m and m′ differ be an element
of N , i.e., m−m′ ∈ N .

Example 16. Some examples of Z-modules (all but the first are finitely-generated):

Z[x] generating set:{1, x, x2, . . .}
Z[i] generating set:{1, i}
Z generating set:{1}

Z[x, y]/(x2, y2) generating set:{1, x, y, xy}.

In the final example, (x2, y2) is the ideal (Z-submodule) of Z[x, y] generated by x2 and y2:

(x2, y2) = {ax2 + by2 : a, b ∈ Z[x, y]}.

Modding out by this ideal sets x2 = y2 = 0 in Z[x, y]. So, for instance, in Z[x, y]/(x2, y2),
we have

1 + 2x+ 3y + 4x2 + 5xy + 6y2 + 7x3 + 8xy3 = 1 + 2x+ 3y + 5xy.

since x2, y2, x3 and xy3 are in the ideal (x2, y2).

Proposition 17. A finitely-generated R-module M is free if and only if it is isomorphic to
Rn for some n ≥ 0.

Proof. Suppose M has basis B = {b1, . . . , bn}. Then we get an isomorphism φ : M → Rn

determined by letting φ(bi) = ei and extending linearly, i.e.,

φ(
∑n

i=1 ribi) :=
∑n

i=1 riφ(bi) =
∑n

i=1 riei = (r1, . . . , rn) ∈ Rn.

Here, ei is the i-th standard basis vector of Rn, i.e., ei is the vector whose components are
all 0 except its i-th component, which is 1.

Since B spans M , we have thus defined φ(m) for every element m ∈M . Not that φ(m), as
defined, depends upon how we express m as a linear combination of B. However, since B
is a basis, this linear combination is unique. So φ is well-defined.

Conversely, suppose that φ : M → Rn is an isomorphism. For i = 1, . . . , n, define bi =
φ−1(ei). Then it is straightforward to check that {b1, . . . , bn} is a basis for M , and hence, M
is free.
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Example 18. We have the Z-module isomorphism

Z[i]→ Z2

a+ bi 7→ (a, b),

determined by 1 7→ (1, 0) and i 7→ (0, 1).
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