Math 361 lecture for Monday, Week 2

Algebraic numbers

Definition 1. The set of algebraic numbers is
A :={a € C: « is algebraic over Q}.

Example 2. Note that if a € Q, then a is a zero of the polynomial x — a € Q[z]. Hence,
Q c A. Other algebraic numbers in include v/2, ¥/5, and the complex n-roots of unity,
e2kmi/n for n > 1 and k = 0,...,n. These are the solutions to z™ — 1. Non-algebraic
numbers are called transcendental numbers and include e and 7, for example.

Proposition 3. A is a field.

Proof. 1t suffices to show that A is closed under addition and multiplication and that every
nonzero element of A has a multiplicative inverse.

Let a, 8 € A. Since « is algebraic over QQ, we saw in the last lecture that [Q(«): Q] is finite.
Further, since § is algebraic over Q, there is a polynomial p with coefficients in Q such
that p(8) = 0. Regarding p as an element of Q(«)[x], shows that 3 is algebraic over Q(«).
Therefore, [Q(a, ) : Q(«)] is finite. It follows that

[Q(ev, B) - Q] = [Q(ev, B) : Q()][Q(x), Q] < 0.

Since [Q(a, f) : Q] < oo, every element of Q(«, ) is in A. In particular, o + 5 and a3 are
algebraic numbers, and if a # 0, then o' is an algebraic number. 0

Definition 4. A number field is a subfield K C C such that [K : Q] < co.

Theorem 5. (Primitive element theorem) If K is a number field, then there exists an
algebraic number 0 such that K = Q(6).

Proof. See our text, Theorem 2.2. O

Our next goal is to fill in the box in the following diagram:

K—[ |
|
Q—1zZ.

In other words, we want to find a ring inside of K that plays the role of the ring of integers
inside Q. It will help to first discuss an algebraic structure called a module.

Modules. Roughly, a module is a vector space except that the scalars are elements of a
ring rather than a field.



Definition 6. Let R be a ring. An R-module or module over R is an abelian group M and
an operation

RxM—M

(r,m) — rm

such that for all r,s € R and m,n € M

(r+s)m =rm+ sm,

r(m+n) =rm+rn,

e r(sm) = (rs)m, and
e 1-m=m.
Example 7.

(a)
(b)
()

If R is a field, then R-modules are exactly vector spaces over R.
Z/nZ is a Z module (if a € Z and b € Z/nZ, then ab := ab € Z/n7Z).

Let R be a ring, and let n be a positive integer. Define
R" :={(r1,...,r) : 7 € R},
the Cartesian product of R with itself n times. Then R™ is an R-module via

r(r1y .o oymn) == (rry, ..., 1)

(riyeeoyrn) + (81,0 8n) = (r1+81,...,7n + Sn)

forallr € Rand (r1,...,7m),(S1,...,5n) € R™. Letting n = 1, we see that R is, itself,
and R-module. Finally, define R® = {0}, the trivial R-module.

If R is a ring, then the ring of polynomials R[z] is an R-module. For example, Z[z] is a
Z-module. Similarly, any polynomial ring in several variables over R is an R-module.
For example, Z[z,y, z| is a Z-module.

If G is an abelian group, then G is a Z-module as follows: If g € G and n € Zo,
define
——
n—times
It n € Zg, define ng = (—n)(—g), and finally, for 0 € Z, define Og = 0, where the
second 0 is the additive identity for G.

(Important) If R is a ring, then an R-ideal is exactly a subset I of R such that I is an
R-module with the natural operation: if r € R and ¢ € I, then ri is just multiplication
in R. We could have defined the notion of an ideal in this way if we had the language
of modules earlier.



Definition 8. An R-module M is generated by X C M if each m € M is a finite R-linear
combination of elements of X, i.e., if for all m € M, we can write

m = E T

zeX

where each r, is an element of R and r, = 0 for all but finitely many x. If M is generated

by X, we write
M=) Ra.
zeX

We say M is finitely generated if it is generated by a finite set.

Definition 9. A basis for an R-module M is a subset B C M such that every element
of M can be written uniquely as a finite R-linear combination of B. (Equivalently, B is
R-linearly independent and spans M.) A free R-module is an R-module with a basis.

Example 10. Unlike vector spaces, modules do not necessarily have bases. For example,
Z-module Z /57 has no basis. To see this, let B be any subset of Z/5Z. If B = or B = {0},
then Spany B = {0}, and hence B does not span. Otherwise, let x € B with x # 0. Since 5
is a nonzero element of Z, we have the nontrivial Z-linear relation 5-z = 0. So B is not
linearly independent.

Definition 11. A homomorphism of R-modules M and N is a mapping ¢: M — N that
preserves addition and scalar multiplication, i.e., for all u,v € M and r € R:

d(u+v) = d(u) + ¢(v)
p(ru) = ro(u).

A homomorphism is an isomorphism if it is bijective (in which case, the inverse is a homo-
morphism (exercise!)). The kernel of a homomorphism ¢ is

ker(¢) := ¢~ 1(0) := {m € M : ¢(m) = 0},

and the image is

im(6) = $(M) = {#(m) : m € M}.

Exercise 12. Show that an R-module homomorphism ¢: M — N is injective if and only
if ker(¢) = 0.

Definition 13. A submodule of an R-module M is a subset N C M that is itself an R-
module (under the operations inherited from M). (Exercise: N is a submodule if and only
if it is nonempty and closed under addition and scalar multiplication).

Definition 14. Let M be an R-module with submodule N. The quotient module M /N is
the set of cosets
m+N:={m+n:neN}



with addition and scalar multiplication defined by
(m+N)+(m +N):=(m+m')+N and r(m+N):=(rm)+N

for all m,m’ € M and r € R. (Exercise: these operations are well-defined and under them,
M/N is an R-module.)

Remark 15. As usual, we can think of the quotient module M /N as the module M except
that elements of N are set equal to 0. Also, as usual, we could have defined M/N as the
set of equivalence classes under the equivalence m ~ m’ if m and m/ differ be an element
of N,ie.,m—m' € N.

Example 16. Some examples of Z-modules (all but the first are finitely-generated):
Z|x

Zli

Z generating set:{1}

generating set:{1,z,z?%,...}

generating set:{1,}

Zlz,y)/(2?,y?) generating set:{1,z,y, zy}.
In the final example, (22, %?) is the ideal (Z-submodule) of Z[x,y] generated by x? and y?:
(2%,y%) = {az® + by* : a,b € Zz,y]}.

Modding out by this ideal sets 22 = y*> = 0 in Z[z,y]. So, for instance, in Z[z,y]/(z?,y?),
we have

1+ 22 + 3y + 422 + by + 6y + 72° + 8zy® = 1 + 2z + 3y + bay.
since x2,%2, 23 and zy? are in the ideal (22,4?).

Proposition 17. A finitely-generated R-module M is free if and only if it is isomorphic to
R"™ for some n > 0.

Proof. Suppose M has basis B = {b1,...,b,}. Then we get an isomorphism ¢: M — R"
determined by letting ¢(b;) = e; and extending linearly, i.e.,

d(D iy ribi) i= D i rigp(bi) = Yo riei = (r1,...,7n) € R

Here, e; is the ¢-th standard basis vector of R", i.e., e; is the vector whose components are
all 0 except its ¢-th component, which is 1.

Since B spans M, we have thus defined ¢(m) for every element m € M. Not that ¢(m), as
defined, depends upon how we express m as a linear combination of B. However, since B
is a basis, this linear combination is unique. So ¢ is well-defined.

Conversely, suppose that ¢: M — R™ is an isomorphism. For ¢ = 1,...,n, define b;

®»1(e;). Then it is straightforward to check that {by,...,b,} is a basis for M, and hence, M
is free. O



Example 18. We have the Z-module isomorphism

Zi] — 72
a+ bi— (a,b),

determined by 1+ (1,0) and i — (0, 1).



