Math 361 lecture for Monday, Week 2

Algebraic numbers

Definition 1. The set of *algebraic numbers* is

 $\mathbb{A} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$

Example 2. Note that if $a \in \mathbb{Q}$, then a is a zero of the polynomial $x - a \in \mathbb{Q}[x]$. Hence, $\mathbb{Q} \subset \mathbb{A}$. Other algebraic numbers in include $\sqrt{2}$, $\sqrt[3]{5}$, and the complex *n*-roots of unity, $e^{2k\pi i/n}$ for $n \geq 1$ and $k = 0, \ldots, n$. These are the solutions to $x^n - 1$. Non-algebraic numbers are called *transcendental* numbers and include e and π , for example.

Proposition 3. A is a field.

Proof. It suffices to show that A is closed under addition and multiplication and that every nonzero element of A has a multiplicative inverse.

Let $\alpha, \beta \in \mathbb{A}$. Since α is algebraic over \mathbb{Q} , we saw in the last lecture that $[\mathbb{Q}(\alpha) : \mathbb{Q}]$ is finite. Further, since β is algebraic over \mathbb{Q} , there is a polynomial p with coefficients in \mathbb{Q} such that $p(\beta) = 0$. Regarding p as an element of $\mathbb{Q}(\alpha)[x]$, shows that β is algebraic over $\mathbb{Q}(\alpha)$. Therefore, $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)]$ is finite. It follows that

$$[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha),\mathbb{Q}] < \infty.$$

Since $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] < \infty$, every element of $\mathbb{Q}(\alpha,\beta)$ is in A. In particular, $\alpha + \beta$ and $\alpha\beta$ are algebraic numbers, and if $\alpha \neq 0$, then α^{-1} is an algebraic number.

Definition 4. A number field is a subfield $K \subseteq \mathbb{C}$ such that $[K : \mathbb{Q}] < \infty$.

Theorem 5. (Primitive element theorem) If K is a number field, then there exists an algebraic number θ such that $K = \mathbb{Q}(\theta)$.

Proof. See our text, Theorem 2.2.

Our next goal is to fill in the box in the following diagram:

$$\begin{array}{c|c} K & - & \\ | & | \\ \mathbb{Q} & - \mathbb{Z} \end{array}.$$

In other words, we want to find a ring inside of K that plays the role of the ring of integers inside \mathbb{Q} . It will help to first discuss an algebraic structure called a *module*.

Modules. Roughly, a module is a vector space except that the scalars are elements of a ring rather than a field.

Definition 6. Let R be a ring. An R-module or module over R is an abelian group M and an operation

$$\begin{aligned} R \times M \to M \\ (r,m) \mapsto rm \end{aligned}$$

such that for all $r, s \in R$ and $m, n \in M$

- (r+s)m = rm + sm,
- r(m+n) = rm + rn,
- r(sm) = (rs)m, and
- $1 \cdot m = m$.

Example 7.

- (a) If R is a field, then R-modules are exactly vector spaces over R.
- (b) $\mathbb{Z}/n\mathbb{Z}$ is a \mathbb{Z} module (if $a \in \mathbb{Z}$ and $\overline{b} \in \mathbb{Z}/n\mathbb{Z}$, then $a\overline{b} := \overline{ab} \in \mathbb{Z}/n\mathbb{Z}$).
- (c) Let R be a ring, and let n be a positive integer. Define

$$R^n := \{(r_1, \ldots, r_n) : r_i \in R\},\$$

the Cartesian product of R with itself n times. Then R^n is an R-module via

$$r(r_1, \dots, r_n) := (rr_1, \dots, rr_n)$$
$$(r_1, \dots, r_n) + (s_1, \dots, s_n) := (r_1 + s_1, \dots, r_n + s_n)$$

for all $r \in R$ and $(r_1, \ldots, r_n), (s_1, \ldots, s_n) \in R^n$. Letting n = 1, we see that R is, itself, and R-module. Finally, define $R^0 = \{0\}$, the trivial R-module.

- (d) If R is a ring, then the ring of polynomials R[x] is an R-module. For example, Z[x] is a Z-module. Similarly, any polynomial ring in several variables over R is an R-module. For example, Z[x, y, z] is a Z-module.
- (e) If G is an abelian group, then G is a \mathbb{Z} -module as follows: If $g \in G$ and $n \in \mathbb{Z}_{>0}$, define

$$ng = \underbrace{g + \dots + g}_{n-\text{times}}.$$

It $n \in \mathbb{Z}_{\leq 0}$, define ng = (-n)(-g), and finally, for $0 \in \mathbb{Z}$, define 0g = 0, where the second 0 is the additive identity for G.

(f) (**Important**) If R is a ring, then an R-ideal is exactly a subset I of R such that I is an R-module with the natural operation: if $r \in R$ and $i \in I$, then ri is just multiplication in R. We could have defined the notion of an ideal in this way if we had the language of modules earlier.

Definition 8. An *R*-module *M* is generated by $X \subseteq M$ if each $m \in M$ is a finite *R*-linear combination of elements of *X*, i.e., if for all $m \in M$, we can write

$$m = \sum_{x \in X} r_x x$$

where each r_x is an element of R and $r_x = 0$ for all but finitely many x. If M is generated by X, we write

$$M = \sum_{x \in X} Rx.$$

We say M is *finitely generated* if it is generated by a finite set.

Definition 9. A *basis* for an *R*-module *M* is a subset $B \subseteq M$ such that every element of *M* can be written *uniquely* as a finite *R*-linear combination of *B*. (Equivalently, *B* is *R*-linearly independent and spans *M*.) A *free R*-module is an *R*-module with a basis.

Example 10. Unlike vector spaces, modules do not necessarily have bases. For example, \mathbb{Z} -module $\mathbb{Z}/5\mathbb{Z}$ has no basis. To see this, let *B* be any subset of $\mathbb{Z}/5\mathbb{Z}$. If $B = \emptyset$ or $B = \{0\}$, then $\operatorname{Span}_{\mathbb{Z}} B = \{\overline{0}\}$, and hence *B* does not span. Otherwise, let $x \in B$ with $x \neq 0$. Since 5 is a nonzero element of \mathbb{Z} , we have the nontrivial \mathbb{Z} -linear relation $5 \cdot x = \overline{0}$. So *B* is not linearly independent.

Definition 11. A homomorphism of R-modules M and N is a mapping $\phi: M \to N$ that preserves addition and scalar multiplication, i.e., for all $u, v \in M$ and $r \in R$:

$$\phi(u+v) = \phi(u) + \phi(v)$$

$$\phi(ru) = r\phi(u).$$

A homomorphism is an *isomorphism* if it is bijective (in which case, the inverse is a homomorphism (exercise!)). The *kernel* of a homomorphism ϕ is

$$\ker(\phi) := \phi^{-1}(0) := \{ m \in M : \phi(m) = 0 \},\$$

and the *image* is

$$\operatorname{im}(\phi) := \phi(M) := \{\phi(m) : m \in M\}.$$

Exercise 12. Show that an *R*-module homomorphism $\phi: M \to N$ is injective if and only if $\ker(\phi) = 0$.

Definition 13. A submodule of an *R*-module *M* is a subset $N \subseteq M$ that is itself an *R*-module (under the operations inherited from *M*). (Exercise: *N* is a submodule if and only if it is nonempty and closed under addition and scalar multiplication).

Definition 14. Let M be an R-module with submodule N. The quotient module M/N is the set of cosets

$$m+N := \{m+n : n \in N\}$$

with addition and scalar multiplication defined by

$$(m+N) + (m'+N) := (m+m') + N$$
 and $r(m+N) := (rm) + N$

for all $m, m' \in M$ and $r \in R$. (Exercise: these operations are well-defined and under them, M/N is an R-module.)

Remark 15. As usual, we can think of the quotient module M/N as the module M except that elements of N are set equal to 0. Also, as usual, we could have defined M/N as the set of equivalence classes under the equivalence $m \sim m'$ if m and m' differ be an element of N, i.e., $m - m' \in N$.

Example 16. Some examples of \mathbb{Z} -modules (all but the first are finitely-generated):

$$\begin{split} \mathbb{Z}[x] & \text{generating set:}\{1,x,x^2,\ldots\} \\ \mathbb{Z}[i] & \text{generating set:}\{1,i\} \\ \mathbb{Z} & \text{generating set:}\{1\} \\ \mathbb{Z}[x,y]/(x^2,y^2) & \text{generating set:}\{1,x,y,xy\}. \end{split}$$

In the final example, (x^2, y^2) is the ideal (Z-submodule) of $\mathbb{Z}[x, y]$ generated by x^2 and y^2 :

$$(x^2, y^2) = \{ax^2 + by^2 : a, b \in \mathbb{Z}[x, y]\}.$$

Modding out by this ideal sets $x^2 = y^2 = 0$ in $\mathbb{Z}[x, y]$. So, for instance, in $\mathbb{Z}[x, y]/(x^2, y^2)$, we have

$$1 + 2x + 3y + 4x^{2} + 5xy + 6y^{2} + 7x^{3} + 8xy^{3} = 1 + 2x + 3y + 5xy.$$

since x^2, y^2, x^3 and xy^3 are in the ideal (x^2, y^2) .

Proposition 17. A finitely-generated *R*-module *M* is free if and only if it is isomorphic to R^n for some $n \ge 0$.

Proof. Suppose M has basis $B = \{b_1, \ldots, b_n\}$. Then we get an isomorphism $\phi: M \to \mathbb{R}^n$ determined by letting $\phi(b_i) = e_i$ and extending linearly, i.e.,

$$\phi(\sum_{i=1}^{n} r_i b_i) := \sum_{i=1}^{n} r_i \phi(b_i) = \sum_{i=1}^{n} r_i e_i = (r_1, \dots, r_n) \in \mathbb{R}^n.$$

Here, e_i is the *i*-th standard basis vector of \mathbb{R}^n , i.e., e_i is the vector whose components are all 0 except its *i*-th component, which is 1.

Since B spans M, we have thus defined $\phi(m)$ for every element $m \in M$. Not that $\phi(m)$, as defined, depends upon how we express m as a linear combination of B. However, since B is a basis, this linear combination is unique. So ϕ is well-defined.

Conversely, suppose that $\phi: M \to \mathbb{R}^n$ is an isomorphism. For $i = 1, \ldots, n$, define $b_i = \phi^{-1}(e_i)$. Then it is straightforward to check that $\{b_1, \ldots, b_n\}$ is a basis for M, and hence, M is free.

Example 18. We have the \mathbb{Z} -module isomorphism

$$\mathbb{Z}[i] \to \mathbb{Z}^2$$
$$a + bi \mapsto (a, b),$$

determined by $1 \mapsto (1,0)$ and $i \mapsto (0,1)$.