Math 361 lecture for Friday, Week 2

Quadratic fields

Lemma 1. (Gauss’s lemma.) Let f € Z[x], and suppose that f = gh for g, h € Q[z]. Then
there exists a nonzero A € Q such that Ag and $h are in Z[z]. (Thus, a polynomial in a
single variable with integer coefficients factors over Q if and only if it factors over Z.)

Proof. See our text, Lemma 1.7. O

Last time, we defined the algebraic integers to be the set of complex numbers that are
integral over Z:

O :={aeC: f(a) =0 for some monic polynomial f € Z[x]}.

Corollary 2. Let o be an algebraic number, i.e., a complex number that is algegraic
over Q. Then « is an algebraic integer if and only if its minimal polynomial over Q has
integer coefficients.

Proof. If the minimal polynomial of « has integer coefficients, then it follows immediately
that « is an algebraic integer. So we now consider the converse.

Recall that if L/K is a field extension, then o € L, is algebraic over K if there exists a
polynomial f € K|[z] such that f(a) = 0. If « is algebraic, then [K(«): K] < oo and, in
fact, K(a) = K[a].

Let a € © C C be an algebraic integer, and let f € Z[x] be a monic polynomial such that
f(a) = 0. It follows that « is algebraic over Q. Thus, it makes sense to talk about its
minimal polynomial p € Q[z]. We need to show the coefficients of p are integers. Since
f(a) = 0, it must be that f = gp for some ¢ € Q[z]. (Reminder: apply the division
algorithm to write f = gp+r where ¢, € Q[z] and deg(r) < deg(p). Evaluating at « yields
r(a) = 0. The minimality condition in the definition of p then forces deg(r) = 0, i.e., r is a
constant polynomial. Then r(«a) = 0 says that » = 0. Thus, f = ¢p.)

By Gauss’s lemma, there exists a nonzero A € Q such that Ag and %p € Zlz] have integer
coefficients. Next, compare leading coefficients. Since the leading coefficients of f and p
are both 1 and f = gp, it follows that the leading coefficient of ¢ is 1 also. Since ¢ is monic
and A\g € Z[z], it follows that A € Z. Since p is monic, and %p € Z[z], it follows that % e Z.
Therefore, A = +1, Then, since %p € Z[x], it follows that p € Z[z], too, as required. O

In the previous lecture, we gave an ad hoc argument that O NQ = Z. We now obtain that
result as a corollary of the result we just proved.

Corollary 3. O NQ =7Z.



Proof. Certainly, Z C O N Q. For the reverse inclusion, suppose that a € 9 N Q. The
minimal polynomial for a over Q is # — a. By Corollary 2, it follows that z — a € Z[z]. In
particular, this means that a € Z. O

Ring of integers in a number field. Let K be a number field. In other words, K is a
finite field extension of Q inside of C. Define the ring of integers in K to be the set of all
algebraic integers in K:

O =9ONK.
We picture the situation like this:

K — Ok

Q ——7Z.

Lemma 4. With notation as above. If o € K, then there exists an integer ¢ such that
ca € Ok.

Proof. Homework. O

Theorem 5. (Primitive element theorem (generalized).) Let K be a number field. Then
there exists § € O such that K = Q(6) = Q[6].

Proof. Our text proves there exists a € K such that K = Q(«) (cf. Theorem 2.2). By
the lemma, there exists ¢ € Z such that cae € Og. Let § := ca. Then it is clear that
K = Q(a) = Q(#). However, since 0 is algebraic over Q, it follows from previous work that

Q(0) = Q[]. O

Quadratic fields. Suppose that K is a extension of Q of degree 2, i.e., [K : Q] = 2. By
the primitive element theorem, there exists § € O such that K = Q(f) = Q[f]. Since
[K : Q] = 2, it follows that the minimal polynomial for  has the form p = x? + mx + n for

some m,n € Z. Therefore,
—mE£vVm? —4n

0= 5

Write
m? — 4n = r?d

where r,d € Z and d is square-free. Since 6 € Q, we have d # 0,1. Then

fm:i:r\/g

0 =
2



and

K = Q(0) = Q(Vd) = Q[Vd] = Spang{1, Vd}.

Our goal is to find Of. Let a € Q[v/d]. Then a = s + tv/d for some s,t € Q, from which
we can see

a+bvd

Cc

o=

for some a, b, c € Z sharing no common prime factors. If b = 0, then a = ¢ € Q. So if « is
also in Dk, we have « € QN O = 7Z, and ¢ = 1. Now suppose that b # 0. The minimal
polynomial for o over Q is

p(z) = (x_aer\/E> (x_a—b\/ﬁ> :x2—2:+a2_b2deQ[x].

C

Then « € Ok if and only if
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Suppose o € Og. If ¢ # 2 is a prime integer and ¢|c, then ¢|(2a) implies that ¢la and
¢?|a®. Since g|c and ¢2|(a® — b2d), it follows that ¢%|(a? — b%d), and hence ¢?|(b?d). Since d
is square-free, q|b. We have shown that ¢ is a common factor of a,b and ¢, However, a,b
and c share no prime factors. So at this point, we can conclude that ¢ must be a power of 2.
If 4|c, then ¢|(2a) would imply that 2|a, and repeating the above argument, we would get
that a,b and c all share a factor of 2, which is not the case. It follows that ¢ =1 or ¢ = 2.

If c =1, then
a=a+bVdeZ[Vd.

Now consider the case where ¢ = 2. In that case, we need that 4|(a?—bd). From this, if a or
b is even, then we may conclude that both a and b are even (since d is square-free). Since a, b
and ¢ share no factors, it must be that both a and b are odd. Hence, a? = b?> = 1 mod 4.
We have

a*—b’d=1-d=0mod 4.

So if ¢ =2, then d = 1 mod 4.

Therefore, if d # 1 mod 4, we must have ¢ = 1, in which case (1) says that « € O. So
if d # 1mod 4, then O = Z[Vd]. If d = 1 mod 4, then (1) holds if and only if ¢ = 1
or if ¢ = 2 and both a and b are odd. We then claim that O = Z[H—Q‘/‘?]. We know
that HT‘/E € D and that O is a ring. Hence, Z[HT‘/&] C 9. For the reverse inclusion,

suppose that « € Z[\/ﬁ] We have seen that either o = a + bv/d for some a,b € Z, in which
case

a:a+w@=m—m+%<L?ﬂ)eﬂ%ﬁL



a+bVd

or a = “=3¥% where a and b are both odd, in which case,
bvd —-b 1 d
o= “*2‘[ - (a . ) +b< +2‘[> A

We sum up our discussion with the theorem below.

Theorem 6. Let K be a field extension of Q with [K : Q] = 2. Then K = Q(+/d) where
d # 0,1 is a square-free integer. Its ring of integers is

Z[Vd]  if d # 1 mod 4
O =
Z

[LYd]if d = 1 mod 4.

We have Z[v/d] = Spany{1,/d}, and Z[HQ*/E] = Spang{1, 1+2*/E}.




