
Math 361 lecture for Friday, Week 2

Quadratic fields

Lemma 1. (Gauss’s lemma.) Let f ∈ Z[x], and suppose that f = gh for g, h ∈ Q[x]. Then
there exists a nonzero λ ∈ Q such that λg and 1

λh are in Z[x]. (Thus, a polynomial in a
single variable with integer coefficients factors over Q if and only if it factors over Z.)

Proof. See our text, Lemma 1.7.

Last time, we defined the algebraic integers to be the set of complex numbers that are
integral over Z:

O := {α ∈ C : f(α) = 0 for some monic polynomial f ∈ Z[x]}.

Corollary 2. Let α be an algebraic number, i.e., a complex number that is algegraic
over Q. Then α is an algebraic integer if and only if its minimal polynomial over Q has
integer coefficients.

Proof. If the minimal polynomial of α has integer coefficients, then it follows immediately
that α is an algebraic integer. So we now consider the converse.

Recall that if L/K is a field extension, then α ∈ L, is algebraic over K if there exists a
polynomial f ∈ K[x] such that f(α) = 0. If α is algebraic, then [K(α) : K] < ∞ and, in
fact, K(α) = K[α].

Let α ∈ O ⊂ C be an algebraic integer, and let f ∈ Z[x] be a monic polynomial such that
f(α) = 0. It follows that α is algebraic over Q. Thus, it makes sense to talk about its
minimal polynomial p ∈ Q[x]. We need to show the coefficients of p are integers. Since
f(α) = 0, it must be that f = qp for some q ∈ Q[x]. (Reminder: apply the division
algorithm to write f = qp+r where q, r ∈ Q[x] and deg(r) < deg(p). Evaluating at α yields
r(α) = 0. The minimality condition in the definition of p then forces deg(r) = 0, i.e., r is a
constant polynomial. Then r(α) = 0 says that r = 0. Thus, f = qp.)

By Gauss’s lemma, there exists a nonzero λ ∈ Q such that λq and 1
λp ∈ Z[x] have integer

coefficients. Next, compare leading coefficients. Since the leading coefficients of f and p
are both 1 and f = qp, it follows that the leading coefficient of q is 1 also. Since q is monic
and λq ∈ Z[x], it follows that λ ∈ Z. Since p is monic, and 1

λp ∈ Z[x], it follows that 1
λ ∈ Z.

Therefore, λ = ±1, Then, since 1
λp ∈ Z[x], it follows that p ∈ Z[x], too, as required.

In the previous lecture, we gave an ad hoc argument that O ∩Q = Z. We now obtain that
result as a corollary of the result we just proved.

Corollary 3. O ∩Q = Z.
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Proof. Certainly, Z ⊆ O ∩ Q. For the reverse inclusion, suppose that a ∈ O ∩ Q. The
minimal polynomial for a over Q is x− a. By Corollary 2, it follows that x− a ∈ Z[x]. In
particular, this means that a ∈ Z.

Ring of integers in a number field. Let K be a number field. In other words, K is a
finite field extension of Q inside of C. Define the ring of integers in K to be the set of all
algebraic integers in K:

OK := O ∩K.

We picture the situation like this:

K OK

Q Z.

Lemma 4. With notation as above. If α ∈ K, then there exists an integer c such that
cα ∈ OK .

Proof. Homework.

Theorem 5. (Primitive element theorem (generalized).) Let K be a number field. Then
there exists θ ∈ OK such that K = Q(θ) = Q[θ].

Proof. Our text proves there exists α ∈ K such that K = Q(α) (cf. Theorem 2.2). By
the lemma, there exists c ∈ Z such that cα ∈ OK . Let θ := cα. Then it is clear that
K = Q(α) = Q(θ). However, since θ is algebraic over Q, it follows from previous work that
Q(θ) = Q[θ].

Quadratic fields. Suppose that K is a extension of Q of degree 2, i.e., [K : Q] = 2. By
the primitive element theorem, there exists θ ∈ OK such that K = Q(θ) = Q[θ]. Since
[K : Q] = 2, it follows that the minimal polynomial for θ has the form p = x2 +mx+ n for
some m,n ∈ Z. Therefore,

θ =
−m±

√
m2 − 4n

2
.

Write
m2 − 4n = r2d

where r, d ∈ Z and d is square-free. Since θ 6∈ Q, we have d 6= 0, 1. Then

θ =
−m± r

√
d

2
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and
K = Q(θ) = Q(

√
d) = Q[

√
d] = SpanQ{1,

√
d}.

Our goal is to find OK . Let α ∈ Q[
√
d]. Then α = s + t

√
d for some s, t ∈ Q, from which

we can see

α =
a+ b

√
d

c

for some a, b, c ∈ Z sharing no common prime factors. If b = 0, then α = a
c ∈ Q. So if α is

also in OK , we have α ∈ Q ∩OK = Z, and c = 1. Now suppose that b 6= 0. The minimal
polynomial for α over Q is

p(x) =

(
x− a+ b

√
d

c

)(
x− a− b

√
d

c

)
= x2 − 2a

c
+
a2 − b2d

c2
∈ Q[x].

Then α ∈ OK if and only if

2a

c
∈ Z and

a2 − b2d
c2

∈ Z. (1)

Suppose α ∈ OK . If q 6= 2 is a prime integer and q|c, then q|(2a) implies that q|a and
q2|a2. Since q|c and c2|(a2 − b2d), it follows that q2|(a2 − b2d), and hence q2|(b2d). Since d
is square-free, q|b. We have shown that q is a common factor of a, b and c, However, a, b
and c share no prime factors. So at this point, we can conclude that c must be a power of 2.
If 4|c, then c|(2a) would imply that 2|a, and repeating the above argument, we would get
that a, b and c all share a factor of 2, which is not the case. It follows that c = 1 or c = 2.

If c = 1, then
α = a+ b

√
d ∈ Z[

√
d].

Now consider the case where c = 2. In that case, we need that 4|(a2−b2d). From this, if a or
b is even, then we may conclude that both a and b are even (since d is square-free). Since a, b
and c share no factors, it must be that both a and b are odd. Hence, a2 = b2 = 1 mod 4.
We have

a2 − b2d = 1− d = 0 mod 4.

So if c = 2, then d = 1 mod 4.

Therefore, if d 6= 1 mod 4, we must have c = 1, in which case (1) says that α ∈ OK . So
if d 6= 1 mod 4, then OK = Z[

√
d]. If d = 1 mod 4, then (1) holds if and only if c = 1

or if c = 2 and both a and b are odd. We then claim that OK = Z[1+
√
d

2 ]. We know

that 1+
√
d

2 ∈ OK and that OK is a ring. Hence, Z[1+
√
d

2 ] ⊆ OK . For the reverse inclusion,

suppose that α ∈ Z[
√
d]. We have seen that either α = a+ b

√
d for some a, b ∈ Z, in which

case

α = a+ b
√
d = (a− b) + 2b

(
1 +
√
d

2

)
∈ Z[1+

√
d

2 ],
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or α = a+b
√
d

2 where a and b are both odd, in which case,

α =
a+ b

√
d

2
=

(
a− b

2

)
+ b

(
1 +
√
d

2

)
∈ Z[1+

√
d

2 ].

We sum up our discussion with the theorem below.

Theorem 6. Let K be a field extension of Q with [K : Q] = 2. Then K = Q(
√
d) where

d 6= 0, 1 is a square-free integer. Its ring of integers is

OK =

Z[
√
d] if d 6= 1 mod 4

Z[1+
√
d

2 ] if d = 1 mod 4.

We have Z[
√
d] = SpanZ{1,

√
d}, and Z[1+

√
d

2 ] = SpanZ{1, 1+
√
d

2 }.
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