Math 361 lecture for Friday, Week 1

Field extensions

In the first lecture, in order to think about Pythagorean triples, we extended the field of
rational numbers by adding i to get the field Q(i) = {a+bi : a,b € Q}. We then considered
the Gaussian integers sitting inside of that field,

Zli) = {m+ni:m,n € Z} C Q(>3).

We picture the situation as follows, with lines representing the superset/subset relation:

Qi) —— Zli]

To understand Pythagorean triples, we then considered factorization of elements in Z[i].
Our goal is to generalize this construction: extend a field by adding some elements not in
the field, and then consider a subset that plays the role of the integers inside that field. Of
special interest with be factorization properties of these new integers.

EXTENSION FIELDS

A field extension is a pair of fields K C L. In that case, L is automatically a vector space
over K. It’s dimension is denoted

[L: K] :=dimg L,

and we might display this like so:

[L:K]

K.

If [L: K] < oo, we say that L is a finite field extension of K. For example, a basis for Q(z)
over Q is {1,i}, and we have

Q(i)
2

Q.

We usually denote a field extension K C L by L/K.



Proposition 1. Suppose K, H and L are fields with K C H C L, and suppose that
[L:K] <oo. Then [L: H|] < oo and [H : K] < oo, and

[L:K]=[L:H|H:K].

Proof. Homework. O

ALGEBRAIC ELEMENTS OF A FIELD EXTENSION

Definition 2. Let L/K be a field extension. Then « € L is algebraic over K if there exists
a nonzero polynomial f € K|x] such that f(a)=0.

Example 3. The numbers v/2,i € C are algebraic over Q since they are zeros of z2 — 2
and 2 — 1, respectively. The numbers e, 7 € R are not algebraic over Q (although this is
not easy to prove). If Q(t) denotes the field of rational functions in ¢ (whose elements have
the form f/g with f,¢g € Q[t] and g # 0), then ¢ is not algebraic over Q. However, t is
algebraic over Q(t) since is it satisfies the polynomial x — ¢ having coefficients in Q(#). It is
also algebraic over Q(#?) (the field of rational functions in ¢ with coefficients in Q) since it
satisfies the polynomial 22 — t € Q(t?)[x].

Proposition 4. If L/K is a field extension and « € L is algebraic over K, then there exists
a unique monic polynomial p € K[z] of minimal positive degree such that p(a) = 0. (A
polynomial is monic if its leading coefficient is 1, i.e., if the coefficient of its term of highest
degree is 1.)

Proof. Let I be the set of f € K[z] such that f(a) =0. Then I is an ideal, and since K|[z]
is a PID, there exists p € K[x] such that I = (p). By dividing through by the leading
coefficient of p, we may assume that p is monic. If f is any nonzero element of I, we may
write

f=rq

for some nonzero ¢ € K[z]. We have

deg(f) = deg(pq) = deg(p) + deg(q) > deg(p).

If deg(f) = deg(p), then deg(q) = 0. So ¢ is a nonzero element of K. Two polynomials are,
by definition, equal if and only if their coefficients are equal. So if deg(f) = deg(p) and f
is monic, it follows that f = p. O

Definition 5. The polynomial p in the above proposition is called the minimal polynomial
for a over K.

Proposition 6. Let L/K be a field extension, and let o € L be algebraic over K. Let p
be a monic polynomial such that p(a) = 0. Then p is the minimal polynomial for o over K
if and only if p is irreducible.



Proof. First, suppose that p is the minimal polynomial for a. Suppose p = fg with f,g €
K[z]. Then 0 = p(a) = f(a)g() implies that f(a) = 0 or g(or) = 0. Without loss of
generality, say f(a) = 0. Further, since p has positive degree, p # 0, and hence, f # 0. So
since f(a) = 0, it follows that deg(f) > 0.! We have

deg(p) = deg(f) + deg(g).

By minimality of p, we have deg(f) = deg(p) and deg(g) = 0. So g is a (nonzero) element
of K, and nonzero elements of K are invertible in K[z], i.e., units. We have shown that if
f factors, then one of those factors is a unit. Thus, f is irreducible.

Conversely, suppose that p is irreducible and that f € K|z] is the minimal polynomial for «
over K. By definition of the minimal polynomial, we have deg f < degp and f(a) = 0. Use
the division algorithm to write

p=qf+r

for some ¢,r € K[z] with degr < deg f. Then,

0=pla) =q(a)f(a) +r(a) =r(a).

If r #£ 0, let 7 be r divided by its leading coefficient. It follows that 7 is a monic polynomial
with 7(«) = 0 and deg(7) < deg(f), contradicting the definition of f. So r =0 and p = ¢f.
Since p is irreducible f ¢ K, it must be that ¢ is a unit (i.e., and nonzero element of K).
Since p and f are monic, p = f. O

Let L/K be a field extension, and let o € L be algebraic over K. Let K|[a] be the smallest
subring of L containing «, and let K («) be the smallest subfield of L containing «. Then

Klo] :=={f(a) : f € K[z},

and fa)
o
K(a):=<¢—=:f,g€ Klz],9(x 7&0}.
@ ={ 2 ), g(a)
Theorem 7. Let L/K be a field extension. Then o € L is algebraic over K if and only
if [K(a): K] < oo. In this case, K[a] = K(a) and [K(«) : K] = deg(p) where p is the
minimal polynomial for a over K.

Proof. First suppose that [K(a): K] =n < oo. Then 1,a,a?,...,a" are n+1 (not necessar-
ily distinct) elements in a vector space of dimension n, so they are linearly dependent. This
means Y ., c;a’ = 0 for some ¢; € K, not all zero. Define the polynomial f(z) = Y7, c;z’.
Then f € K[z] and f(«) = 0. So « is algebraic over K.

Conversely, suppose that « is algebraic over K, and let p = > a;x* be its minimal
polynomial. We first claim that 1,a,a?,...,a" ! are linearly independent. If not, then

'Tf deg(f) = 0, then f is a constant. In that case, the only way we could have f(a) = 0 is for that
constant to be 0. However, f # 0.



there is a nontrivial linear relation Z?;Ol b;a’. Defining f = Z?;()l bizt, we have f € K|x]
and f(a) = 0. However, deg(f) < deg(p) = n, which contradicts the minimality of p.

Next, consider the vector space V = Spang{1,a,a?,...,a" 1}. We claim that V is a field.
To see this, first note that rearranging p(«) = 0, we have

n—1
a = — E a;o’.
i=0

It follows that V is closed under multiplication. Most of the field properties then follow
trivially from the fact that V' C L and L is a field. What remains is to show that nonzero
elements have inverses. So let v € V'\ {0} and write v = Z:‘L;ol bia! for some b; € K. Define
h = Z?:_Ol bzt € K[z]. So v = h(a). Now p is irreducible, hence, prime. So the only prime
factor h and p could share is p, itself, but deg(h) < deg(p). Hence, h and p are relatively
prime, i.e., they share no prime factors. It follows that there are f, g € K[z]| such that

fh+gp=1.
Therefore,
1 = f(a)ha) + g(a)p(a) = gla)h(a) = f(a)v.
Hence v has the multiplicative inverse f(«a) € V.
Since V is a field in L containing o and K(«) is the smallest field in L containing «, it
follows that K(«) C V. On the other hand, V' C K[a]. In sum,
K(a) CV C Klo] C K(a).
We have shown that K(a) = KJ[a] of dimension deg(p). O

Here is another perspective. Suppose that a € L is algebraic over the subfield K. Define a
mapping

¢: Klz] = Kla]

[ fla).
We have
ker(¢) = {f € K[z]: f(a) = 0}.

Since K[z] is a PID, we can write ker(¢) = (p) for some monic polynomial p € K[z]. In
fact, p must be the minimal polynomial for «. By the standard isomorphism theorem, we
have

K[z]/(p) = K[a].
Since p is irreducible and K|[z] is a PID, it follows that (p) is a maximal ideal. Hence,
K[z]/(p) is a field. Therefore, K[a] is a field, and it follows that K[a] = K(«).

Corollary 8. If [L: K] < oo and « € L, then « is algebraic over K.

Proof. Suppose [L: K] < oo and a € L. Then since K(«) is a K-subvector space of L, it
follows that [K(«) : K| < oo, and the result follows from Theorem 7. O



