
Math 361 lecture for Friday, Week 1

Field extensions

In the first lecture, in order to think about Pythagorean triples, we extended the field of
rational numbers by adding i to get the field Q(i) = {a+ bi : a, b ∈ Q}. We then considered
the Gaussian integers sitting inside of that field,

Z[i] = {m+ ni : m,n ∈ Z} ⊂ Q(i).

We picture the situation as follows, with lines representing the superset/subset relation:

Q(i) Z[i]

Q Z.

To understand Pythagorean triples, we then considered factorization of elements in Z[i].
Our goal is to generalize this construction: extend a field by adding some elements not in
the field, and then consider a subset that plays the role of the integers inside that field. Of
special interest with be factorization properties of these new integers.

Extension fields

A field extension is a pair of fields K ⊆ L. In that case, L is automatically a vector space
over K. It’s dimension is denoted

[L :K] := dimK L,

and we might display this like so:

L

K.

[L:K]

If [L :K] <∞, we say that L is a finite field extension of K. For example, a basis for Q(i)
over Q is {1, i}, and we have

Q(i)

Q.

2

We usually denote a field extension K ⊆ L by L/K.
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Proposition 1. Suppose K,H and L are fields with K ⊆ H ⊆ L, and suppose that
[L :K] <∞. Then [L :H] <∞ and [H :K] <∞, and

[L :K] = [L :H][H :K].

Proof. Homework.

Algebraic elements of a field extension

Definition 2. Let L/K be a field extension. Then α ∈ L is algebraic over K if there exists
a nonzero polynomial f ∈ K[x] such that f(α) = 0.

Example 3. The numbers
√

2, i ∈ C are algebraic over Q since they are zeros of x2 − 2
and x2 − 1, respectively. The numbers e, π ∈ R are not algebraic over Q (although this is
not easy to prove). If Q(t) denotes the field of rational functions in t (whose elements have
the form f/g with f, g ∈ Q[t] and g 6= 0), then t is not algebraic over Q. However, t is
algebraic over Q(t) since is it satisfies the polynomial x− t having coefficients in Q(t). It is
also algebraic over Q(t2) (the field of rational functions in t with coefficients in Q) since it
satisfies the polynomial x2 − t ∈ Q(t2)[x].

Proposition 4. If L/K is a field extension and α ∈ L is algebraic over K, then there exists
a unique monic polynomial p ∈ K[x] of minimal positive degree such that p(α) = 0. (A
polynomial is monic if its leading coefficient is 1, i.e., if the coefficient of its term of highest
degree is 1.)

Proof. Let I be the set of f ∈ K[x] such that f(α) = 0. Then I is an ideal, and since K[x]
is a PID, there exists p ∈ K[x] such that I = (p). By dividing through by the leading
coefficient of p, we may assume that p is monic. If f is any nonzero element of I, we may
write

f = pq

for some nonzero q ∈ K[x]. We have

deg(f) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f) = deg(p), then deg(q) = 0. So q is a nonzero element of K. Two polynomials are,
by definition, equal if and only if their coefficients are equal. So if deg(f) = deg(p) and f
is monic, it follows that f = p.

Definition 5. The polynomial p in the above proposition is called the minimal polynomial
for α over K.

Proposition 6. Let L/K be a field extension, and let α ∈ L be algebraic over K. Let p
be a monic polynomial such that p(α) = 0. Then p is the minimal polynomial for α over K
if and only if p is irreducible.
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Proof. First, suppose that p is the minimal polynomial for α. Suppose p = fg with f, g ∈
K[x]. Then 0 = p(α) = f(α)g(α) implies that f(α) = 0 or g(α) = 0. Without loss of
generality, say f(α) = 0. Further, since p has positive degree, p 6= 0, and hence, f 6= 0. So
since f(α) = 0, it follows that deg(f) > 0.1 We have

deg(p) = deg(f) + deg(g).

By minimality of p, we have deg(f) = deg(p) and deg(g) = 0. So g is a (nonzero) element
of K, and nonzero elements of K are invertible in K[x], i.e., units. We have shown that if
f factors, then one of those factors is a unit. Thus, f is irreducible.

Conversely, suppose that p is irreducible and that f ∈ K[x] is the minimal polynomial for α
over K. By definition of the minimal polynomial, we have deg f ≤ deg p and f(α) = 0. Use
the division algorithm to write

p = qf + r

for some q, r ∈ K[x] with deg r < deg f . Then,

0 = p(α) = q(α)f(α) + r(α) = r(α).

If r 6= 0, let r̃ be r divided by its leading coefficient. It follows that r̃ is a monic polynomial
with r̃(α) = 0 and deg(r̃) < deg(f), contradicting the definition of f . So r = 0 and p = qf .
Since p is irreducible f 6∈ K, it must be that q is a unit (i.e., and nonzero element of K).
Since p and f are monic, p = f .

Let L/K be a field extension, and let α ∈ L be algebraic over K. Let K[α] be the smallest
subring of L containing α, and let K(α) be the smallest subfield of L containing α. Then

K[α] := {f(α) : f ∈ K[x]},

and

K(α) :=

{
f(α)

g(α)
: f, g ∈ K[x], g(α) 6= 0

}
.

Theorem 7. Let L/K be a field extension. Then α ∈ L is algebraic over K if and only
if [K(α) : K] < ∞. In this case, K[α] = K(α) and [K(α) : K] = deg(p) where p is the
minimal polynomial for α over K.

Proof. First suppose that [K(α):K] = n <∞. Then 1, α, α2, . . . , αn are n+1 (not necessar-
ily distinct) elements in a vector space of dimension n, so they are linearly dependent. This
means

∑n
i=0 ciα

i = 0 for some ci ∈ K, not all zero. Define the polynomial f(x) =
∑n

i=0 cix
i.

Then f ∈ K[x] and f(α) = 0. So α is algebraic over K.

Conversely, suppose that α is algebraic over K, and let p =
∑n

i=0 aix
i be its minimal

polynomial. We first claim that 1, α, α2, . . . , αn−1 are linearly independent. If not, then

1If deg(f) = 0, then f is a constant. In that case, the only way we could have f(α) = 0 is for that
constant to be 0. However, f 6= 0.
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there is a nontrivial linear relation
∑n−1

i=0 biα
i. Defining f =

∑n−1
i=0 bix

i, we have f ∈ K[x]
and f(α) = 0. However, deg(f) < deg(p) = n, which contradicts the minimality of p.

Next, consider the vector space V = SpanK{1, α, α2, . . . , αn−1}. We claim that V is a field.
To see this, first note that rearranging p(α) = 0, we have

αn = −
n−1∑
i=0

aiα
i.

It follows that V is closed under multiplication. Most of the field properties then follow
trivially from the fact that V ⊆ L and L is a field. What remains is to show that nonzero
elements have inverses. So let v ∈ V \{0} and write v =

∑n−1
i=0 biα

i for some bi ∈ K. Define
h =

∑n−1
i=0 bix

i ∈ K[x]. So v = h(α). Now p is irreducible, hence, prime. So the only prime
factor h and p could share is p, itself, but deg(h) < deg(p). Hence, h and p are relatively
prime, i.e., they share no prime factors. It follows that there are f, g ∈ K[x] such that

fh+ gp = 1.

Therefore,
1 = f(α)h(α) + g(α)p(α) = g(α)h(α) = f(α)v.

Hence v has the multiplicative inverse f(α) ∈ V .

Since V is a field in L containing α and K(α) is the smallest field in L containing α, it
follows that K(α) ⊆ V . On the other hand, V ⊆ K[α]. In sum,

K(α) ⊆ V ⊆ K[α] ⊆ K(α).

We have shown that K(α) = K[α] of dimension deg(p).

Here is another perspective. Suppose that α ∈ L is algebraic over the subfield K. Define a
mapping

φ : K[x]→ K[α]

f 7→ f(α).

We have
ker(φ) = {f ∈ K[x] : f(α) = 0}.

Since K[x] is a PID, we can write ker(φ) = (p) for some monic polynomial p ∈ K[x]. In
fact, p must be the minimal polynomial for α. By the standard isomorphism theorem, we
have

K[x]/(p) ≈ K[α].

Since p is irreducible and K[x] is a PID, it follows that (p) is a maximal ideal. Hence,
K[x]/(p) is a field. Therefore, K[α] is a field, and it follows that K[α] = K(α).

Corollary 8. If [L :K] <∞ and α ∈ L, then α is algebraic over K.

Proof. Suppose [L : K] < ∞ and α ∈ L. Then since K(α) is a K-subvector space of L, it
follows that [K(α) :K] <∞, and the result follows from Theorem 7.
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