Problem 1.

- (a) Let $K = \mathbb{Q}(\sqrt{-d})$ where $d \ge 1$ is a square-free integer and $-d \ne 1 \mod 4$. Use norms to compute the units in \mathfrak{O}_K . (The case d = 1 will turn out to be an exception to the rule.)
- (b) Now consider the number field $K = \mathbb{Q}(\sqrt{2})$. Find an infinite number of units in \mathfrak{O}_K . (Note that when α is a unit, so it α^k for all k.

PROBLEM 2. Let M be an R-module. A submodule of M is a subset $N \subseteq M$ that is an R-module with the operations inherited from M. To prove $N \subseteq M$ is a submodule, show the following: (i) N is nonempty (usually done by showing that $0 \in N$, (ii) if $x, y \in N$, then $x + y \in N$, and (iii) if $r \in R$ and $x \in N$, then $rx \in N$.

- (a) Let $N_1 \subseteq N_2 \subseteq \ldots$ be an ascending chain of submodules of an *R*-module *M*. Show that $\cup_i N_i$ is an *R*-submodule of *M*.
- (b) Let N and N' be submodules of an R-module M. Show that $N \cap N'$ is a submodule.

PROBLEM 3. Find an ascending chain of maximal length of ideals in \mathbb{Z} starting with the principal ideal (120).

PROBLEM 4. Let K be a number field of degree n, and let $(\alpha_1, \ldots, \alpha_n)$ be a Q-basis for K. Let β be a nonzero element of K. Prove that

$$\Delta[\beta\alpha_1, \beta\alpha_2, \dots, \beta\alpha_n] = N(\beta)^2 \Delta[\alpha_1, \dots, \alpha_n].$$

PROBLEM 5. Let $\alpha \in \mathbb{C}$ be a root of $p(x) = x^3 - x - 1$, and consider the number field $K = \mathbb{Q}(\alpha)$. We would like to show that $\{1, \alpha, \alpha^2\}$ is an integral basis for \mathfrak{O}_K .

- (a) Prove that p is irreducible.
- (b) We have the formula

$$\Delta[1, \alpha, \alpha^2] = (-1)^{\binom{3}{2}} N(p'(\alpha)) = -N(p'(\alpha))$$

where p' is the derivative of p. Let $\beta := p'(\alpha)$. Our problem it to compute $N(\beta)$.

- (i) Show that $\alpha = \frac{3}{\beta-2}$. (Hint: we have $0 = p(\alpha) = \alpha^3 \alpha 1$. Multiply through by α^{-1} .) (Note that it follows that $\mathbb{Q}(\alpha) = \mathbb{Q}(\beta)$, so $\mathbb{Q}(\beta)$ has degree 3, too. You will need this in the next part of this problem).
- (ii) Write

$$p\left(\frac{3}{x-2}\right) = \frac{r(x)}{s(x)}$$

where deg r = deg s = 3 and r is monic. Argue that one of r(x) is the minimal polynomial for β .

- (iii) Use r to find the norm of β .
- (iv) What is $\Delta[1, \alpha, \alpha^2]$. (Be careful with signs.)
- (v) Why can we conclude that $\{1, \alpha, \alpha^2\}$ is an integral basis for \mathfrak{O}_K ?