Math 316 Homework for Wednesday, Week 2

PROBLEM 1. Prove that $p = x^3 + 2x^2 + 3x + 4$ is irreducible over \mathbb{Z} . In other words, if p = fg with $f, g \in \mathbb{Z}[x]$, then one of f or g must be a unit (and the only units in $\mathbb{Z}[x]$ are ± 1). [Hint: a non-trivial factorization of p will have the form $(x - a)(x^2 + bx + c)$ with $a, b, c \in \mathbb{Z}$. Therefore, p(a) = 0. So p must have an integer root. Next, if p(m) = 0 for some integer m, then $p(m) = 0 \mod n$ for every integer n. So to show p is irreducible it suffices to find a particular n such that $p(m) = 0 \mod n$ has no integer solution m—and there are only finitely many values for $m \mod n$.]

PROBLEM 2. Prove that 1 + i is a prime element of $\mathbb{Z}[i]$ by completing the following steps. Let $\alpha = a + bi$ and $\beta = c + di$, and suppose that $(1 + i)|(\alpha\beta)$. We must show that 1 + i divides α or β .

- (a) Prove that $2|(a^2+b^2)$ or $2|(c^2+d^2)$ in \mathbb{Z} . (Hint: conjugates.)
- (b) Without loss of generality, assume $2|(a^2+b^2)$. Prove that a and b have the same parity.
- (c) Case 1: suppose a and b are both even. Show that 1 + i divides a + bi.
- (d) Case 2: suppose a and b are both odd. Then a = 2a' + 1 and b = 2b' + 1 for some integers a' and b'. Write a + bi in terms of a' and b' and use this expression to show that 1 + i divides a + bi.

It turns out that there is a Euclidean algorithm for Guassian integers, which implies—just as it does for \mathbb{Z} and for K[x] when K is a field—that $\mathbb{Z}[i]$ is a PID. Recall that in a PID, primes and irreducibles are the same thing, and it is easy to show 1 + i is irreducible. So this would be a more principled way to prove that 1 + i is prime in $\mathbb{Z}[i]$. By the way, we have the following interesting fact: for an integer d < 0, one may show that $\mathbb{Z}[\sqrt{d}]$ is a PID exactly when d is one of the following:

$$-1, -2, -3, -7, -11, -19, -43, -67, -163.$$

PROBLEM 3. Find the minimal polynomial over \mathbb{Q} for each of the following:

- (a) $(1+i)/\sqrt{2}$
- (b) $i + \sqrt{2}$
- (c) $e^{2\pi i/3} + 2$.

No proof is necessary, but show your work.

PROBLEM 4. Suppose $H \subseteq K \subseteq L$ are fields.

- (a) Citing standard results from linear algebra, prove that [L:H] is finite if and only if [L:K] and [K:H] are finite.
- (b) Suppose [L:K] is finite. Let $a_1, \dots, a_s \in L$ be a basis for L/K, and let $b_1, \dots, b_t \in K$ be a basis for K/H. Prove that $\{a_ib_j\}_{1 \leq i \leq s, 1 \leq j \leq t}$ is a basis for L/H and thus show that

$$[L:H] = [L:K][K:H].$$

(Note that both the a_i and the b_j , in addition to being elements of vector spaces, are field elements, and hence can be multiplied together.)

PROBLEM 5. In the following, you may use that fact that if $d \in \mathbb{Z}$, then \sqrt{d} is rational if and only if d is a perfect square. Our main goal is to find, with proof, a Q-basis for $\mathbb{Q}(\sqrt{2},\sqrt{5})$.

(a) Let d be an integer that is not a perfect square. The field $\mathbb{Q}(\sqrt{d})$ is the smallest field that contains both \mathbb{Q} and \sqrt{d} . Its elements have the form

$$\frac{a+b\sqrt{d}}{u+v\sqrt{d}}$$

where $a, b, u, v \in \mathbb{Q}$ and $u + v\sqrt{d} \neq 0$. Prove, without citing results from class, that every such element can be written as $s + t\sqrt{d}$ for some $s, t \in \mathbb{Q}$.

- (b) Show that $\{1, \sqrt{d}\}$ is a basis for $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$ by giving a direct proof that 1 and \sqrt{d} are linearly independent (they span $\mathbb{Q}(\sqrt{d})$ by the first part of this problem). In other words, if $a + b\sqrt{d} = 0$ for some $a, b \in \mathbb{Q}$, show that a = b = 0.
- (c) Give a direct proof that 1 and $\sqrt{5}$ are linearly independent over $Q(\sqrt{2})$.
- (d) By the previous part of this problem, we have $[\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}(\sqrt{2}))] \geq 2$. Use Theorem 1.11 to find, with proof, the minimal polynomial for $\mathbb{Q}(\sqrt{2},\sqrt{5})/\mathbb{Q}(\sqrt{2})$ and conclude that $[\mathbb{Q}(\sqrt{2},\sqrt{5}:\mathbb{Q}(\sqrt{2}))] = 2$.
- (e) Find a basis for $\mathbb{Q}(\sqrt{2},\sqrt{5})/\mathbb{Q}$, i.e., for $\mathbb{Q}(\sqrt{2},\sqrt{5})$ as a vector space over \mathbb{Q} .
- (f) Write

$$\frac{1}{1+\sqrt{2}+\sqrt{5}}$$

as a linear combination of your basis elements. Show your work.

PROBLEM 6. Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{5}) = \mathbb{Q}(\sqrt{2}, \sqrt{5}).$