
Math 316 Homework for Wednesday, Week 2

Problem 1. Prove that p = x3 + 2x2 + 3x + 4 is irreducible over Z. In other words,
if p = fg with f, g ∈ Z[x], then one of f or g must be a unit (and the only units in Z[x]
are ±1). [Hint: a non-trivial factorization of p will have the form (x− a)(x2 + bx+ c) with
a, b, c ∈ Z. Therefore, p(a) = 0. So p must have an integer root. Next, if p(m) = 0 for some
integer m, then p(m) = 0 mod n for every integer n. So to show p is irreducible it suffices
to find a particular n such that p(m) = 0 mod n has no integer solution m—and there are
only finitely many values for m mod n.]

Problem 2. Prove that 1 + i is a prime element of Z[i] by completing the following steps.
Let α = a + bi and β = c + di, and suppose that (1 + i)|(αβ). We must show that 1 + i
divides α or β.

(a) Prove that 2|(a2 + b2) or 2|(c2 + d2) in Z. (Hint: conjugates.)

(b) Without loss of generality, assume 2|(a2+b2). Prove that a and b have the same parity.

(c) Case 1: suppose a and b are both even. Show that 1 + i divides a+ bi.

(d) Case 2: suppose a and b are both odd. Then a = 2a′ + 1 and b = 2b′ + 1 for some
integers a′ and b′. Write a + bi in terms of a′ and b′ and use this expression to show
that 1 + i divides a+ bi.

It turns out that there is a Euclidean algorithm for Guassian integers, which implies—just
as it does for Z and for K[x] when K is a field—that Z[i] is a PID. Recall that in a PID,
primes and irreducibles are the same thing, and it is easy to show 1 + i is irreducible. So
this would be a more principled way to prove that 1 + i is prime in Z[i]. By the way, we
have the following interesting fact: for an integer d < 0, one may show that Z[

√
d] is a PID

exactly when d is one of the following:

−1,−2,−3,−7,−11,−19,−43,−67,−163.

Problem 3. Find the minimal polynomial over Q for each of the following:

(a) (1 + i)/
√

2

(b) i+
√

2

(c) e2πi/3 + 2.

No proof is necessary, but show your work.
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Problem 4. Suppose H ⊆ K ⊆ L are fields.

(a) Citing standard results from linear algebra, prove that [L : H] is finite if and only if
[L :K] and [K :H] are finite.

(b) Suppose [L :K] is finite. Let a1, · · · , as ∈ L be a basis for L/K, and let b1, · · · , bt ∈ K
be a basis for K/H. Prove that {aibj}1≤i≤s,1≤j≤t is a basis for L/H and thus show
that

[L :H] = [L :K][K :H].

(Note that both the ai and the bj , in addition to being elements of vector spaces, are
field elements, and hence can be multiplied together.)

Problem 5. In the following, you may use that fact that if d ∈ Z, then
√
d is rational if and

only if d is a perfect square. Our main goal is to find, with proof, a Q-basis for Q(
√

2,
√

5).

(a) Let d be an integer that is not a perfect square. The field Q(
√
d) is the smallest field

that contains both Q and
√
d. Its elements have the form

a+ b
√
d

u+ v
√
d

where a, b, u, v ∈ Q and u + v
√
d 6= 0. Prove, without citing results from class, that

every such element can be written as s+ t
√
d for some s, t ∈ Q.

(b) Show that {1,
√
d} is a basis for Q(

√
d)/Q by giving a direct proof that 1 and

√
d are

linearly independent (they span Q(
√
d) by the first part of this problem). In other

words, if a+ b
√
d = 0 for some a, b ∈ Q, show that a = b = 0.

(c) Give a direct proof that 1 and
√

5 are linearly independent over Q(
√

2).

(d) By the previous part of this problem, we have [Q(
√

2,
√

5) : Q(
√

2))] ≥ 2. Use The-
orem 1.11 to find, with proof, the minimal polynomial for Q(

√
2,
√

5)/Q(
√

2) and
conclude that [Q(

√
2,
√

5 : Q(
√

2))] = 2.

(e) Find a basis for Q(
√

2,
√

5)/Q, i.e., for Q(
√

2,
√

5) as a vector space over Q.

(f) Write
1

1 +
√

2 +
√

5

as a linear combination of your basis elements. Show your work.

Problem 6. Prove that Q(
√

2 +
√

5) = Q(
√

2,
√

5).
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