Math 361

April 17, 2023



Projects

Monday
Bram:
Callie:  Totally real fields

RSA encryption using lattices associated with number fields

Wednesday

Richard: ax? + by? = cz?

Zack: Two proofs of the sum of two squares theorem
Friday

Kellen:  Polynomial factorization
Patrick: The Pell equation



Projects: initial meetings

Wednesday
Bram: 1:40-2:05
Richard 2:05-2:30
Callie 2:30-2:55
Friday
Patrick  1:40-2:05
Zack 2:05-2:30
Kellen  2:30-2:55

For the meeting: Create a slide with a draft outline of your

presentation.

There is a template beamer file at the bottom of our course

homepage.



Projects: preparation

Most important point:

Practice your presentation several times with a stopwatch.



Today

Dirichlet's unit theorem.



Units in a number field

Let K be a number field, and let O} denote the units in Og.



Units in a number field

Let K be a number field, and let O} denote the units in Og.

Example.
» We have £1 € O, for all K.



Units in a number field

Let K be a number field, and let O} denote the units in Og.

Example.
» We have £1 € O, for all K.

» If K=Q(i), then O = {£1,+i}.



Units in a number field

Let K be a number field, and let O} denote the units in Og.

Example.
» We have £1 € O, for all K.

» If K=Q(i), then O = {£1,+i}.
> If K =Q(v2), then 1+ /2 € OF.



Units in a number field

Let K be a number field, and let O} denote the units in Og.
Example.

» We have £1 € O, for all K.

» If K=Q(i), then O = {£1,+i}.

> If K= Q(\@) then 1+ 2 € 0. Since |1+ \@| > 1, we
see {(1+ v2)K: k € Z~o} is an infinite collection of units in
O



Units in a number field

Let K be a number field, and let O} denote the units in Og.
Example.

» We have £1 € O, for all K.

» If K=Q(i), then O = {£1,+i}.

> If K= Q(\@) then 1+ 2 € 0. Since |1+ \@| > 1, we
see {(1+ v2)K: k € Z~o} is an infinite collection of units in

Ok.
So the group of units in Q(v/2) is at least as large as

7.)27 x T.
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First properties

(a) Oy is a multiplicative group.

(b) An element u € Ok is a unit if and only if N(u) = +1.

(c)

(d)

(Reminder of proof on blackboard.)

Elements of finite order in O} are roots of unity, and every
root of unity in K is in O%. (If ( € K and ("™ =1, them ¢
satisfies x™ — 1, and hence is an algebraic integer in K.)

The elements of Dy with finite order form a finite cyclic
subgroup of Ok of even order.

Proof. These elements clearly form a subgroup. For
finiteness, note that the mapping o : K — L*! ~ R" maps
Ok to a lattice in R”, and the image of {( € K : |(| =1}
maps to a compact set. Since —1 € Ok and has order 2, it
follows that 2 divides the order of the subgroup. A finite
subgroup of K* must be cyclic (see the notes for Friday, Week
10). O
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Dirichlet's unit theorem

Theorem. Let K have s real embeddings and 2t complex
embeddings. Then, we have a group isomorphism

o~ Wox zsTEl

where W is the finite cyclic group of roots of unity in K (the
subgroup of Dk of elements of finite order).

Proof. See our textbook, Appendix B.
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Dirichlet’'s unit theorem: ideal of proof

Consider the mapping
095 LR x Ct — RHt
2 2
(X5 Xsy 21y -y 2e) = (In|xa], ..o In|xs|, In ]z |5, ..oy In | z¢]9).
¢ takes a multiplicative group to an additive subgroup of R*¢.

It turns out that the image of £ is a lattice of rank s+t — 1, and
that ker(¢) = W, the roots of unity in K. The result follows.

On the blackboard: It's easy to show W C ker(¢), and that the
image of ¢ has rank at most s + t — 1.
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Examples

W is the finite cyclic group of roots of unity in K.

The only roots of unity that are real are +1.

A field embedding preserves roots of unity and their orders.

Therefore, if K has any real embedding, W = {—1,1}.

Question: For arbitrary K, when is the group of units finite?
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Example

Consider K = Q(+/2). Since K is real, W = {~1,1}.

We have s =2 and t = 1. Therefore, the unit group in K has the
form
7.)27 x 7.

We have seen that 1 + /2 is a unit of infinite order. However, we
did not prove it corresponds to a generator the factor of Z.

In other words, we have not shown that the full set of units in Ok

is £(1 + v/2).



