Math 361

April 17, 2023

Projects

Monday

Bram: RSA encryption using lattices associated with number fields Callie: Totally real fields

Wednesday

Richard: $ax^2 + by^2 = cz^2$ Zack: Two proofs of the sum of two squares theorem

Friday

- Kellen: Polynomial factorization
- Patrick: The Pell equation

Projects: initial meetings

Wednesday

Bram:	1:40-2:05
Richard	2:05-2:30
Callie	2:30-2:55

Friday

Patrick	1:40-2:05
Zack	2:05-2:30
Kellen	2:30-2:55

For the meeting: Create a slide with a draft outline of your presentation.

There is a template beamer file at the bottom of our course homepage.

Projects: preparation

Most important point:

Practice your presentation several times with a stopwatch.

Dirichlet's unit theorem.

Let K be a number field, and let \mathfrak{O}_K^* denote the units in \mathfrak{O}_K .

Let K be a number field, and let \mathfrak{O}_{K}^{*} denote the units in \mathfrak{O}_{K} .

Example.

▶ We have
$$\pm 1 \in \mathfrak{O}_{K}^{*}$$
 for all *K*.

Let K be a number field, and let \mathfrak{O}_{K}^{*} denote the units in \mathfrak{O}_{K} .

Example.

• We have
$$\pm 1 \in \mathfrak{O}_{K}^{*}$$
 for all K.

• If
$$K = \mathbb{Q}(i)$$
, then $\mathfrak{O}_K^* = \{\pm 1, \pm i\}$.

Let K be a number field, and let \mathfrak{O}_{K}^{*} denote the units in \mathfrak{O}_{K} .

Example.

• We have $\pm 1 \in \mathfrak{O}_K^*$ for all K.

• If
$$K = \mathbb{Q}(i)$$
, then $\mathfrak{O}_{K}^{*} = \{\pm 1, \pm i\}$.

• If
$$K = \mathbb{Q}(\sqrt{2})$$
, then $1 + \sqrt{2} \in \mathfrak{O}_{K}^{*}$.

Let K be a number field, and let \mathfrak{O}_{K}^{*} denote the units in \mathfrak{O}_{K} .

Example.

• We have $\pm 1 \in \mathfrak{O}_K^*$ for all K.

• If
$$K = \mathbb{Q}(i)$$
, then $\mathfrak{O}_K^* = \{\pm 1, \pm i\}$.

If K = Q(√2), then 1 + √2 ∈ 𝔅^{*}_K. Since |1 + √2| > 1, we see {(1 + √2)^k : k ∈ ℤ_{>0}} is an infinite collection of units in 𝔅^{*}_K.

Let K be a number field, and let \mathfrak{O}_{K}^{*} denote the units in \mathfrak{O}_{K} .

Example.

• We have $\pm 1 \in \mathfrak{O}_K^*$ for all K.

• If
$$K = \mathbb{Q}(i)$$
, then $\mathfrak{O}_K^* = \{\pm 1, \pm i\}$.

▶ If $K = \mathbb{Q}(\sqrt{2})$, then $1 + \sqrt{2} \in \mathfrak{O}_{K}^{*}$. Since $|1 + \sqrt{2}| > 1$, we see $\{(1 + \sqrt{2})^{k} : k \in \mathbb{Z}_{>0}\}$ is an infinite collection of units in \mathfrak{O}_{K}^{*} .

So the group of units in $\mathbb{Q}(\sqrt{2})$ is at least as large as

 $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}.$

(a) $\mathfrak{O}_{\mathcal{K}}^*$ is a multiplicative group.

- (a) \mathfrak{O}_{K}^{*} is a multiplicative group.
- (b) An element $u \in \mathfrak{O}_K$ is a unit if and only if $N(u) = \pm 1$. (Reminder of proof on blackboard.)

- (a) \mathfrak{O}_{K}^{*} is a multiplicative group.
- (b) An element $u \in \mathfrak{O}_K$ is a unit if and only if $N(u) = \pm 1$. (Reminder of proof on blackboard.)
- (c) Elements of finite order in \mathfrak{O}_{K}^{*} are roots of unity, and every root of unity in K is in \mathfrak{O}_{K}^{*} .

- (a) \mathfrak{O}_{K}^{*} is a multiplicative group.
- (b) An element $u \in \mathfrak{O}_K$ is a unit if and only if $N(u) = \pm 1$. (Reminder of proof on blackboard.)
- (c) Elements of finite order in \mathfrak{O}_{K}^{*} are roots of unity, and every root of unity in K is in \mathfrak{O}_{K}^{*} . (If $\zeta \in K$ and $\zeta^{m} = 1$, them ζ satisfies $x^{m} 1$, and hence is an algebraic integer in K.)

- (a) \mathfrak{O}_{K}^{*} is a multiplicative group.
- (b) An element $u \in \mathfrak{O}_K$ is a unit if and only if $N(u) = \pm 1$. (Reminder of proof on blackboard.)
- (c) Elements of finite order in \mathfrak{O}_{K}^{*} are roots of unity, and every root of unity in K is in \mathfrak{O}_{K}^{*} . (If $\zeta \in K$ and $\zeta^{m} = 1$, them ζ satisfies $x^{m} 1$, and hence is an algebraic integer in K.)
- (d) The elements of $\mathfrak{O}_{\mathcal{K}}$ with finite order form a finite cyclic subgroup of $\mathfrak{O}_{\mathcal{K}}$ of even order.

- (a) \mathfrak{O}_{K}^{*} is a multiplicative group.
- (b) An element $u \in \mathfrak{O}_K$ is a unit if and only if $N(u) = \pm 1$. (Reminder of proof on blackboard.)
- (c) Elements of finite order in \mathfrak{O}_{K}^{*} are roots of unity, and every root of unity in K is in \mathfrak{O}_{K}^{*} . (If $\zeta \in K$ and $\zeta^{m} = 1$, them ζ satisfies $x^{m} 1$, and hence is an algebraic integer in K.)
- (d) The elements of \mathfrak{O}_K with finite order form a finite cyclic subgroup of \mathfrak{O}_K of even order.

Proof. These elements clearly form a subgroup.

- (a) \mathfrak{O}_{K}^{*} is a multiplicative group.
- (b) An element $u \in \mathfrak{O}_K$ is a unit if and only if $N(u) = \pm 1$. (Reminder of proof on blackboard.)
- (c) Elements of finite order in \mathfrak{O}_{K}^{*} are roots of unity, and every root of unity in K is in \mathfrak{O}_{K}^{*} . (If $\zeta \in K$ and $\zeta^{m} = 1$, them ζ satisfies $x^{m} 1$, and hence is an algebraic integer in K.)
- (d) The elements of \mathfrak{O}_K with finite order form a finite cyclic subgroup of \mathfrak{O}_K of even order.

Proof. These elements clearly form a subgroup. For finiteness, note that the mapping $\sigma : \mathcal{K} \to \mathbb{L}^{s,t} \simeq \mathbb{R}^n$ maps $\mathcal{O}_{\mathcal{K}}$ to a lattice in \mathbb{R}^n , and the image of $\{\zeta \in \mathcal{K} : |\zeta| = 1\}$ maps to a compact set.

- (a) \mathfrak{O}_{K}^{*} is a multiplicative group.
- (b) An element $u \in \mathfrak{O}_K$ is a unit if and only if $N(u) = \pm 1$. (Reminder of proof on blackboard.)
- (c) Elements of finite order in \mathfrak{O}_{K}^{*} are roots of unity, and every root of unity in K is in \mathfrak{O}_{K}^{*} . (If $\zeta \in K$ and $\zeta^{m} = 1$, them ζ satisfies $x^{m} 1$, and hence is an algebraic integer in K.)
- (d) The elements of \mathfrak{O}_K with finite order form a finite cyclic subgroup of \mathfrak{O}_K of even order.

Proof. These elements clearly form a subgroup. For finiteness, note that the mapping $\sigma : K \to \mathbb{L}^{s,t} \simeq \mathbb{R}^n$ maps \mathcal{D}_K to a lattice in \mathbb{R}^n , and the image of $\{\zeta \in K : |\zeta| = 1\}$ maps to a compact set. Since $-1 \in \mathcal{D}_K$ and has order 2, it follows that 2 divides the order of the subgroup.

- (a) \mathfrak{O}_{K}^{*} is a multiplicative group.
- (b) An element $u \in \mathfrak{O}_K$ is a unit if and only if $N(u) = \pm 1$. (Reminder of proof on blackboard.)
- (c) Elements of finite order in \mathfrak{O}_{K}^{*} are roots of unity, and every root of unity in K is in \mathfrak{O}_{K}^{*} . (If $\zeta \in K$ and $\zeta^{m} = 1$, them ζ satisfies $x^{m} 1$, and hence is an algebraic integer in K.)
- (d) The elements of \mathfrak{O}_K with finite order form a finite cyclic subgroup of \mathfrak{O}_K of even order.

Proof. These elements clearly form a subgroup. For finiteness, note that the mapping $\sigma : K \to \mathbb{L}^{s,t} \simeq \mathbb{R}^n$ maps \mathcal{D}_K to a lattice in \mathbb{R}^n , and the image of $\{\zeta \in K : |\zeta| = 1\}$ maps to a compact set. Since $-1 \in \mathcal{D}_K$ and has order 2, it follows that 2 divides the order of the subgroup. A finite subgroup of K^* must be cyclic (see the notes for Friday, Week 10).

Theorem. Let K have s real embeddings and 2t complex embeddings.

Theorem. Let K have s real embeddings and 2t complex embeddings. Then, we have a group isomorphism

$$\mathfrak{O}_K^* \simeq W imes \mathbb{Z}^{s+t-1}$$

where W is the finite cyclic group of roots of unity in K (the subgroup of \mathfrak{O}_K of elements of finite order).

Theorem. Let K have s real embeddings and 2t complex embeddings. Then, we have a group isomorphism

 $\mathfrak{O}_K^* \simeq W \times \mathbb{Z}^{s+t-1}$

where W is the finite cyclic group of roots of unity in K (the subgroup of \mathcal{O}_K of elements of finite order).

Proof. See our textbook, Appendix B.

Consider the mapping

Consider the mapping

$$\ell \colon \mathfrak{O}_{\mathcal{K}}^* \xrightarrow{\sigma} \mathbb{R}^s \times \mathbb{C}^t \to \mathbb{R}^{s+t}$$

(x₁,..., x_s, z₁,..., z_t) \mapsto (ln |x₁|,..., ln |x_s|, ln |z₁|²,..., ln |z_t|²).

Consider the mapping

$$\ell \colon \mathfrak{O}_{\mathcal{K}}^* \xrightarrow{\sigma} \mathbb{R}^s \times \mathbb{C}^t \to \mathbb{R}^{s+t}$$

(x₁,...,x_s, z₁,..., z_t) \mapsto (ln |x₁|,..., ln |x_s|, ln |z₁|²,..., ln |z_t|²).

 ℓ takes a multiplicative group to an additive subgroup of \mathbb{R}^{s+t} .

Consider the mapping

 $\ell \colon \mathfrak{O}_{K}^{*} \xrightarrow{\sigma} \mathbb{R}^{s} \times \mathbb{C}^{t} \to \mathbb{R}^{s+t}$ (x₁,..., x_s, z₁,..., z_t) \mapsto (ln |x₁|,..., ln |x_s|, ln |z₁|²,..., ln |z_t|²).

 ℓ takes a multiplicative group to an additive subgroup of \mathbb{R}^{s+t} . It turns out that the image of ℓ is a lattice of rank s + t - 1,

Consider the mapping

 $\ell \colon \mathfrak{O}_{K}^{*} \xrightarrow{\sigma} \mathbb{R}^{s} \times \mathbb{C}^{t} \to \mathbb{R}^{s+t}$ (x₁,..., x_s, z₁,..., z_t) \mapsto (ln |x₁|,..., ln |x_s|, ln |z₁|²,..., ln |z_t|²).

 ℓ takes a multiplicative group to an additive subgroup of \mathbb{R}^{s+t} . It turns out that the image of ℓ is a lattice of rank s + t - 1, and that ker $(\ell) = W$, the roots of unity in K.

Consider the mapping

 $\ell \colon \mathfrak{O}_{\mathcal{K}}^* \xrightarrow{\sigma} \mathbb{R}^s \times \mathbb{C}^t \to \mathbb{R}^{s+t}$ (x₁,..., x_s, z₁,..., z_t) \mapsto (ln |x₁|,..., ln |x_s|, ln |z₁|²,..., ln |z_t|²).

 ℓ takes a multiplicative group to an additive subgroup of \mathbb{R}^{s+t} . It turns out that the image of ℓ is a lattice of rank s + t - 1, and that ker $(\ell) = W$, the roots of unity in K. The result follows.

Consider the mapping

 $\ell \colon \mathfrak{O}_{\mathcal{K}}^* \xrightarrow{\sigma} \mathbb{R}^s \times \mathbb{C}^t \to \mathbb{R}^{s+t}$ (x₁,..., x_s, z₁,..., z_t) \mapsto (ln |x₁|,..., ln |x_s|, ln |z₁|²,..., ln |z_t|²).

 ℓ takes a multiplicative group to an additive subgroup of \mathbb{R}^{s+t} . It turns out that the image of ℓ is a lattice of rank s + t - 1, and that ker(ℓ) = W, the roots of unity in K. The result follows.

On the blackboard: It's easy to show $W \subseteq \ker(\ell)$,

Consider the mapping

 $\ell \colon \mathfrak{O}_{\mathcal{K}}^* \xrightarrow{\sigma} \mathbb{R}^s \times \mathbb{C}^t \to \mathbb{R}^{s+t}$ (x₁,..., x_s, z₁,..., z_t) \mapsto (ln |x₁|,..., ln |x_s|, ln |z₁|²,..., ln |z_t|²).

 ℓ takes a multiplicative group to an additive subgroup of \mathbb{R}^{s+t} .

It turns out that the image of ℓ is a lattice of rank s + t - 1, and that ker $(\ell) = W$, the roots of unity in K. The result follows.

On the blackboard: It's easy to show $W \subseteq \text{ker}(\ell)$, and that the image of ℓ has rank at most s + t - 1.

W is the finite cyclic group of roots of unity in K.

W is the finite cyclic group of roots of unity in K. The only roots of unity that are real are ± 1 .

- W is the finite cyclic group of roots of unity in K.
- The only roots of unity that are real are $\pm 1.$
- A field embedding preserves roots of unity and their orders.

- W is the finite cyclic group of roots of unity in K.
- The only roots of unity that are real are ± 1 .
- A field embedding preserves roots of unity and their orders.
- Therefore, if K has any real embedding, $W = \{-1, 1\}$.

W is the finite cyclic group of roots of unity in K.

The only roots of unity that are real are ± 1 .

A field embedding preserves roots of unity and their orders.

Therefore, if K has any real embedding, $W = \{-1, 1\}$.

Question: For arbitrary *K*, when is the group of units finite?

Consider $K = \mathbb{Q}(\sqrt{2})$. Since K is real, $W = \{-1, 1\}$.

Consider $K = \mathbb{Q}(\sqrt{2})$. Since K is real, $W = \{-1, 1\}$. We have s = 2 and t = 1. Therefore, the unit group in K has the form

 $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}.$

Consider $K = \mathbb{Q}(\sqrt{2})$. Since K is real, $W = \{-1, 1\}$. We have s = 2 and t = 1. Therefore, the unit group in K has the form

 $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}.$

We have seen that $1+\sqrt{2}$ is a unit of infinite order.

Consider $K = \mathbb{Q}(\sqrt{2})$. Since K is real, $W = \{-1, 1\}$. We have s = 2 and t = 1. Therefore, the unit group in K has the form

 $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}.$

We have seen that $1 + \sqrt{2}$ is a unit of infinite order. However, we did not prove it corresponds to a generator the factor of \mathbb{Z} .

Consider $K = \mathbb{Q}(\sqrt{2})$. Since K is real, $W = \{-1, 1\}$. We have s = 2 and t = 1. Therefore, the unit group in K has the form

 $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}.$

We have seen that $1 + \sqrt{2}$ is a unit of infinite order. However, we did not prove it corresponds to a generator the factor of \mathbb{Z} .

In other words, we have not shown that the full set of units in \mathfrak{O}_K is $\pm(1+\sqrt{2})$.