
Math 361

April 17, 2023



Projects

Monday
Bram: RSA encryption using lattices associated with number fields
Callie: Totally real fields

Wednesday
Richard: ax2 + by2 = cz2

Zack: Two proofs of the sum of two squares theorem
Friday

Kellen: Polynomial factorization
Patrick: The Pell equation



Projects: initial meetings

Wednesday
Bram: 1:40–2:05
Richard 2:05–2:30
Callie 2:30–2:55

Friday
Patrick 1:40–2:05
Zack 2:05–2:30
Kellen 2:30–2:55

For the meeting: Create a slide with a draft outline of your
presentation.

There is a template beamer file at the bottom of our course
homepage.



Projects: preparation

Most important point:

Practice your presentation several times with a stopwatch.



Today

Dirichlet’s unit theorem.



Units in a number field

Let K be a number field, and let O∗
K denote the units in OK .

Example.
I We have ±1 ∈ O∗

K for all K .

I If K = Q(i), then O∗
K = {±1,±i}.

I If K = Q(
√

2), then 1 +
√

2 ∈ O∗
K . Since |1 +

√
2| > 1, we

see {(1 +
√

2)k : k ∈ Z>0} is an infinite collection of units in
O∗

K .

So the group of units in Q(
√

2) is at least as large as

Z/2Z× Z.
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First properties

(a) O∗
K is a multiplicative group.

(b) An element u ∈ OK is a unit if and only if N(u) = ±1.
(Reminder of proof on blackboard.)

(c) Elements of finite order in O∗
K are roots of unity, and every

root of unity in K is in O∗
K . (If ζ ∈ K and ζm = 1, them ζ

satisfies xm − 1, and hence is an algebraic integer in K .)

(d) The elements of OK with finite order form a finite cyclic
subgroup of OK of even order.
Proof. These elements clearly form a subgroup. For
finiteness, note that the mapping σ : K → Ls,t ' Rn maps
OK to a lattice in Rn, and the image of {ζ ∈ K : |ζ| = 1}
maps to a compact set. Since −1 ∈ OK and has order 2, it
follows that 2 divides the order of the subgroup. A finite
subgroup of K ∗ must be cyclic (see the notes for Friday, Week
10). �
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Dirichlet’s unit theorem

Theorem. Let K have s real embeddings and 2t complex
embeddings.

Then, we have a group isomorphism

O∗
K 'W × Zs+t−1

where W is the finite cyclic group of roots of unity in K (the
subgroup of OK of elements of finite order).

Proof. See our textbook, Appendix B.
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Dirichlet’s unit theorem: ideal of proof

Consider the mapping

` : O∗
K

σ−→ Rs × Ct → Rs+t

(x1, . . . , xs , z1, . . . , zt) 7→ (ln |x1|, . . . , ln |xs |, ln |z1|2, . . . , ln |zt |2).

` takes a multiplicative group to an additive subgroup of Rs+t .

It turns out that the image of ` is a lattice of rank s + t − 1, and
that ker(`) = W , the roots of unity in K . The result follows.

On the blackboard: It’s easy to show W ⊆ ker(`), and that the
image of ` has rank at most s + t − 1.
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Examples

W is the finite cyclic group of roots of unity in K .

The only roots of unity that are real are ±1.

A field embedding preserves roots of unity and their orders.

Therefore, if K has any real embedding, W = {−1, 1}.

Question: For arbitrary K , when is the group of units finite?
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Example

Consider K = Q(
√

2). Since K is real, W = {−1, 1}.

We have s = 2 and t = 1. Therefore, the unit group in K has the
form

Z/2Z× Z.

We have seen that 1 +
√

2 is a unit of infinite order. However, we
did not prove it corresponds to a generator the factor of Z.

In other words, we have not shown that the full set of units in OK
is ±(1 +

√
2).
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