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Quiz

State and prove Minkowski’s lattice point theorem for centrally
symmetric convex sets centered at the origin. (You may assume I
am familiar with all of the background results needed for the
proof.)



Project ideas

Ideas?

Some of my ideas:
1. Discriminants. Let K = Q(θ), and let f be the minimal

polynomial for θ. The discriminant of f is the discriminant
of Z[1, θ, . . . , θn−1] where n = deg(f ) = [K : Q]. Show how to
compute the discriminant of f from the coefficients of f and
its derivative using resultants.

2. Ramification. Prove that a rational prime p ramifies in a
number field K if and only if p|∆.

3. Stickelberger’s criterion. Prove that the discriminant of a
number field is 0 or 1 modulo 4.

4. Polynomial factorization modulo p. How does one
efficiently factor a polynomial modulo p? (There is a wiki
page on the subject. Berlekamp’s algorithm is the most basic.)

5. Sage. What calculations related to our class can Sage do?
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Today

I Definition and first properties of the class group.
I Proof that the class group is finite.



Fractional ideals

Let K be a number field, and let I ⊆ K be an OK -module. Recall
that I is a fractional ideal of OK if it satisfies any of the following
equivalent conditions:

1. There exists α ∈ K \ {0} such that αI ⊆ OK .
2. There exists α ∈ OK \ {0} such that αI ⊆ OK .
3. There exists an ordinary ideal a ⊆ OK and α ∈ K \ {0} such

that I = αa.
4. There exists an ordinary ideal a ⊆ OK and β ∈ OK \ {0} such

that I = 1
βa.

5. I is finitely generated as an OK -module.
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Principal fractional ideals

A principal fractional ideal is defined to be a fractional ideal
generated as an OK -module by a single element.

Thus, a nonzero principal fractional ideal has the form αOK for
some α ∈ K \ {0}.
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First observations

Proposition. Every element of H is represented by an ordinary
ideal of OK .

Proof. Let I = αa where α ∈ K \ {0} and a is an ordinary ideal.

Then αOK is a principal fractional ideal.

Therefore,
I = αa = (αOK )a = a mod P.
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First observations

Proposition. Two ordinary ideals a and b represent the same
element in H if and only if there exist α, β ∈ OK \ {0} such
αa = βb.

Proof. We have a = b mod P if and only if there exists
γ ∈ K \ {0} such that (γOK )a = b.

Write γ = α/β to get the result. �
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First observations

Another way of thinking of H:

Write a ∼ b for ideals a and b if there exist α, β ∈ OK if αa = βb.

Then H is the set of equivalence classes of (ordinary) ideals [a]
with multiplication

[a][b] := [ab].
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h = 1 if and only if OK is a UFD

Proposition. OK is a UFD if and only if hK = 1, i.e., if and only
if the class group is trivial.

Proof. (⇒) OK a UFD ⇒ OK a PID.

Let I be a fractional ideal. So I = 1
βa for some nonzero β ∈ OK

and some nonzero ordinary ideal a.
Since OK is a PID, we have a = (α) for some α ∈ OK .
Hence, I = (α/β)OK is principal.

(⇐) Suppose that H is trivial, and let a be a nonzero ideal of OK .
We may regard a as a fractional ideal, and since H is trivial, it
follows that a is a principal fractional ideal.

Thus, a = αOK for some nonzero element α ∈ K . Since a ⊆ OK ,
it follows that α ∈ OK , and thus, a is the principal
ideal (α) ⊆ OK . �
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The class group is finite

Theorem. Every element of H is represented by an ideal with
norm at most ( 2

π

)t √
|∆|

where 2t is the number of complex embeddings of K and ∆ is the
discriminant of K .

Proof. We will prove this in an upcoming lecture.
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The class group is finite.

Corollary. The class group H is finite.

Proof. Recall that there are finitely many ideals with a given
norm.

By the previous theorem, each element of H is represented by an
ideal of norm at most (2/π)t√|∆|.
There are only finitely many positive integers less than this bound.
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Example

Let K = Q(
√
−5). Then OK = SpanZ{1,

√
−5}. The discriminant

of K is

∆ = det
(

1
√
−5

1 −
√
−5

)2

= (−2
√
−5)2 = −20.

Then K has 2 complex embeddings. So each element of H is
represented by an ideal with norm at most( 2

π

)√
|∆| < 2.9.

So each element of H is represented by an ideal with norm either 1
or 2.
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Example

What are the ideals of OK with norm 1 or 2?

Norm 1: OK = (1).

Norm 2: If N(a) = 2, then 2 ∈ a ⇒ (2) ⊆ a ⇒ a|(2).

We have the factorization (2) = (2, 1 +
√
−5)2.

Take norms: (2) = (2, 1 +
√
−5)2 ⇒ 4 = N(2, 1 +

√
−5)2.

So a = (2, 1 +
√
−5).

Is (2, 1 +
√
−5) principal?

Answer: No. To prove this, suppose not, and take norms.

Thus, H is minimally generated by (1) and (2, 1 +
√
−5),

and h = 2.
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Corollary

Corollary. Let a be an ideal of OK , and let h = |H| be the class
number of K . Then


