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Quiz

State and prove Minkowski's lattice point theorem for centrally
symmetric convex sets centered at the origin. (You may assume |

am familiar with all of the background results needed for the
proof.)
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1. Discriminants. Let K = Q(6), and let f be the minimal
polynomial for 8. The discriminant of f is the discriminant
of Z[1,6,...,0" 1] where n = deg(f) = [K : Q]. Show how to
compute the discriminant of f from the coefficients of f and
its derivative using resultants.
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efficiently factor a polynomial modulo p? (There is a wiki
page on the subject. Berlekamp's algorithm is the most basic.)



Project ideas

Ideas? Some of my ideas:

1.

Discriminants. Let K = Q(0), and let f be the minimal
polynomial for 8. The discriminant of f is the discriminant

of Z[1,6,...,0" 1] where n = deg(f) = [K : Q]. Show how to
compute the discriminant of f from the coefficients of f and
its derivative using resultants.

. Ramification. Prove that a rational prime p ramifies in a

number field K if and only if p|A.

. Stickelberger’s criterion. Prove that the discriminant of a

number field is 0 or 1 modulo 4.

Polynomial factorization modulo p. How does one
efficiently factor a polynomial modulo p? (There is a wiki
page on the subject. Berlekamp's algorithm is the most basic.)

Sage. What calculations related to our class can Sage do?



Today

» Definition and first properties of the class group.

» Proof that the class group is finite.
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Fractional ideals

Let K be a number field, and let /| C K be an O x-module. Recall
that / is a fractional ideal of O if it satisfies any of the following
equivalent conditions:

1. There exists & € K \ {0} such that a/ C O.
2. There exists a € Ok \ {0} such that al C O.
3. There exists an ordinary ideal a C Ok and o € K\ {0} such

that / = aa.
4. There exists an ordinary ideal a C Oy and § € Ok \ {0} such
that / = %a.

5. Iis finitely generated as an O k-module.
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Principal fractional ideals

A principal fractional ideal is defined to be a fractional ideal
generated as an 9 k-module by a single element.

Thus, a nonzero principal fractional ideal has the form a g for
some o € K\ {0}.
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The class group

Definition. The class group of Ok is the quotient group
H=F/P.
The class number of O is the size of this group:

h = [H].
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Proposition. Every element of H is represented by an ordinary
ideal of Ok.

Proof. Let / = aa where a € K\ {0} and a is an ordinary ideal.
Then ak is a principal fractional ideal.

Therefore,
| =aa=(aODk)a=amod P.
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First observations

Proposition. Two ordinary ideals a and b represent the same
element in H if and only if there exist a, f € Ok \ {0} such
aa = (b.

Proof. We have a = b mod P if and only if there exists

v € K\ {0} such that (yOk)a = b.

Write v = a/3 to get the result.
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First observations

Another way of thinking of H:
Write a ~ b for ideals a and b if there exist o, 8 € Ok if aa = Sb.

Then # is the set of equivalence classes of (ordinary) ideals [a]
with multiplication
[a][b] := [ab].
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h = 1if and only if Ok is a UFD

Proposition. Dy is a UFD if and only if hx =1, i.e., if and only
if the class group is trivial.

Proof. (=) Ok a UFD = Ok a PID.

Let / be a fractional ideal. So [ = %a for some nonzero 8 € Ok
and some nonzero ordinary ideal a.

Since O is a PID, we have a = («) for some a € O.

Hence, | = (a/B)Ok is principal.

(<) Suppose that H is trivial, and let a be a nonzero ideal of O.
We may regard a as a fractional ideal, and since H is trivial, it
follows that a is a principal fractional ideal.

Thus, a = aOk for some nonzero element o € K. Since a C Ok,
it follows that o € Ok, and thus, a is the principal
ideal (o) C O. O



The class group is finite

Theorem. Every element of H is represented by an ideal with

norm at most
2 t
() N
T

where 2t is the number of complex embeddings of K and A is the
discriminant of K.
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Theorem. Every element of H is represented by an ideal with

norm at most
2 t
() N
T

where 2t is the number of complex embeddings of K and A is the
discriminant of K.

Proof. We will prove this in an upcoming lecture.
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The class group is finite.

Corollary. The class group H is finite.

Proof. Recall that there are finitely many ideals with a given
norm.

By the previous theorem, each element of H is represented by an
ideal of norm at most (2/7)t/|A].

There are only finitely many positive integers less than this bound.
OJ
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) = (—2v/-5)* = —-20.
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Example

Let K = Q(v/—5). Then Ok = Span;{1,+/—5}. The discriminant
of K is
1 —v/-=5

Then K has 2 complex embeddings. So each element of H is
represented by an ideal with norm at most

(i) V1A < 2.9,

2
A:det< 1 ﬁ) = (—2v/=5)? = —20.

So each element of # is represented by an ideal with norm either 1
or 2.
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Example

What are the ideals of Ok with norm 1 or 27

Norm 1: Oy = (1).

Norm 2: If N(a) =2, then 2 € a = (2) C a = a|(2).
We have the factorization (2) = (2,1 + v/—5)2.

Take norms: (2) = (2,1 ++1/=5)? = 4 = N(2,1+/-5)2.
Soa=(2,1++-5).

Is (2,1 + +/—5) principal?

Answer: No. To prove this, suppose not, and take norms.
Thus, H is minimally generated by (1) and (2,1 + v/=5),
and h=2.



Corollary

Corollary. Let a be an ideal of Ok, and let h = |H| be the class
number of K. Then



