Math 361

April 10, 2023



Quiz

For Wednesday's quiz:

v

What is a rank m lattice in R"?

What is a fundamental domain for a lattice in R"?

If Lis a rank n lattice in R", and T" = St x --- x S1 is the
n-torus, how is our standard mapping 7: R"/L — T" defined?

With the above notation, if Y C T", how is the volume of Y
defined?

State and prove Minkowski's lattice point theorem for
centrally symmetric convex sets centered at the origin.



Reminder

Please turn in idea(s) for your final project on Wednesday.



Today

» Lattice associated with a number field.

» Volume of fundamental region determined by a C .
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Lattice associated with number fields

K a number field of degree n.

An embedding o;: K — C is real if o;(K) C R. Otherwise o; is

complex.

Real embeddings of K: o1,...,0s

Complex embeddings of K: 0s41,0s41,---,0stt; Ostt
So n= s+ 2t.

Ly =L :=R°x C' ~R"

(X1y v oy Xsy Z1y e o vy Ze) > (X1, oy Xoy ULy VA, « vy Up,y Vi)
where zi = uj +vji € Cfor j =1,...,t. Then define

ok =0: K= 1Lt

a— (o1(),...,05(a),0s11(), ..., 051e()).
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Properties

ok =0: K > L%t

a— (o1(a),...,05(a),0611(0), ..., 0s1t()).

o is an injective Q-algebra homomorphism.

The norm of q = (x1,...,Xs,21,...,2t) € LS
N(q) = X1 XsZ121 ZtZy = )<1"‘Xs|zl|2 ""Zt‘z.

Is N(q) € R? Does N preserve products?
This new norm is compatible with our old one on K (the product
of the conjugates): for a € K,

N(a) = a1(a)---os(@)ost1(@)Tsii(a) - - os1(a)asia(a) = N(o(a)).
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Examples

K =Q(i)
Embeddings: o1(x + yi) = x + yi and T1(x + yi) = x — yi where

x,y € Q.
o(x +yi) =x+yi € L% = C ~ R2

N(x + yi) = (x +yi)(x —yi) = x* + y%.
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x3 =2 =(x—0)(x — wh)(x — wh)
where w = &27i/3,

Embeddings are determined by o1(6) = 6, 02(0) = wb, and
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Example

K = Q(#) where 6 is the real cube root of 2.

Minimal polynomial for 6:

x3 =2 =(x—0)(x — wh)(x — wh)
where w = &27i/3,

Embeddings are determined by o1(6) = 6, 02(0) = wb, and
72(0) = @0 = w?6.

For a = a+ bf + ch? € K where a, b, c € Q, we have
o) = (o1(), 02()) = (a+ b0 + c6?,a + bwd + cw?6?),
N(a) = o1(a)oz(a)Ta()

= (a+ b0 + c6?)(a+ bwd + cw?6?)(a + bw?d + cwh?)
= a%> 4+ 2b% + 4¢3 — 6abe.
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Main theorem

Theorem. Let a be a nonzero ideal in O.
Identifying Lt with R”, regard o(a) C R".

Then o(a) is a lattice with fundamental domain of volume
27'N(a)4/|A|

where A is the discriminant of K.



Proof

Let as,...,qa, be a Q-basis for K.



Proof

Let as,...,qa, be a Q-basis for K.

( ) Xk 0 iflgkgs
gl =
KA uk7g+ivk’g ifs+1< k<s-+t

where the xi ¢, ux ¢ and v ¢ are real numbers.



Proof

Let as,...,qa, be a Q-basis for K.

( ) Xk 0 iflgkgs
gl =
KA uk7g+ivk’g ifs+1< k<s-+t

where the xi ¢, ux ¢ and vy ¢ are real numbers. So

. . st
U(af) — (Xl,fu “e 7XS,€) uS—i—l,é + IVS-}-LZ) ey US-‘rt,f + IVS+t,£) € L>*.



Proof

Let as,...,qa, be a Q-basis for K.

( ) Xk 0 iflgkgs
gl =
KA uk7g+ivk’g ifs+1< k<s-+t

where the xi ¢, ux ¢ and vy ¢ are real numbers. So

. . Jt
o(ag) = (X160, s Xs 0, Ust1,0 + Voi10y -y Usrp + iVeyey) € L™

Identifying L = R® x C* with R", we see the o(a) becomes

n
Wy = (Xl,fa e 7XS,E? uS—I—l,Z» VS-‘rl,Za sy Us+t,€a VS-‘rt,f) S R".



Proof

Let as,...,qa, be a Q-basis for K.

( ) Xk 0 iflgkgs
gl =
KA uk7g+ivk’g ifs+1< k<s-+t

where the xi ¢, ux ¢ and vy ¢ are real numbers. So
o(p) = (X105« Xs 05 Us 1.0 + iVsi1,05- -y Use o + iVsiee) € L5
Identifying L = R® x C* with R", we see the o(a) becomes

wy = (X17g, ey Xs 0y Ust1. 6y Vs1,05 - - - Ustt0, V5+t7g) e R".

We will show these wy are R-linearly independent.



Proof

Let as,...,qa, be a Q-basis for K.

( ) Xk 0 iflgkgs
gl =
KA uk7g+ivk’g ifs+1< k<s-+t

where the xi ¢, ux ¢ and vy ¢ are real numbers. So
o(p) = (X105« Xs 05 Us 1.0 + iVsi1,05- -y Use o + iVsiee) € L5
Identifying L = R® x C* with R", we see the o(a) becomes

wy = (X17g, ey Xs 0y Ust1. 6y Vs1,05 - - - Ustt0, V5+t7g) e R".

We will show these wy are R-linearly independent. Hence,
their Z-span is a lattice.



Proof

Let as,...,qa, be a Q-basis for K.

( ) Xk 0 iflgkgs
gl =
KA uk7g+ivk’g ifs+1< k<s-+t

where the xi ¢, ux ¢ and vy ¢ are real numbers. So
o(p) = (X105« Xs 05 Us 1.0 + iVsi1,05- -y Use o + iVsiee) € L5
Identifying L = R® x C* with R", we see the o(a) becomes

wy = (X17g, ey Xs 0y Ust1. 6y Vs1,05 - - - Ustt0, V5+t7g) e R".

We will show these wy are R-linearly independent. Hence,
their Z-span is a lattice. We will show the volume of a
fundamental region is 27%/|Aaq, . . ., an]|.
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det

X1,1

Xs,1

Usi1,1
Vs+1,1

Ustt1
Vs+t,1

X1,n

Xs.n

Ust1,n
Vs+1,n

Ustt.n
Vs+t,n
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= det

o1(aq)

oo(on)

ost1(1)+7si1(a1)

ost1(a1)—0st1(0a)

2i

oste(a1)+0ste(o)

Ostt(a1)—0syt(ar)

2

o1(an)

05(.04,)

ost1(on)+Ts+1(an)

ost1(on)—Tsy1(an)

2i
Us+t(an)+Es+l (CM,—,)

Ostt(an)—0sie(an)
2i
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_(2) <) W oi1(01) ~ Fera(@) .. osia(an) — Tesalan)
Osse(01) + Tane(01) o Osse(0n) + Tapr(a)

Ostt(on) = Tste(a) ... Osqe(an) = Tspe(on)
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1
2

)

/

t
) det
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‘75(-001)
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o1(1) ... oi(an)

1Nt/ 1\¢ 013(1?34)1) Ui%i)
=(5) (7)o | Zoen 0 onen
oore(@1) .. osie(an)

Ostt(01) ... Tspe(an)

= £(-2)""/|Aaa,...,an]| #0.
So the volume is 275 /|Afa, . .., ay]|.
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Let K = Q(\/7), and let a = (3,1 + +/7) (this is one of the prime
factors of (3) C Ok).

Let's check the formula for the area of the fundamental domain of
the lattice o(a).

First task: Find a Z-basis for a. An arbitrary element of a has the
form

(a4 bV7)-3+ (c+dVT)VT = (a+3c+7d)+(3b+c+d)V7,

for some a, b, c,d € Z.
017
3 11)°

So this set is the Z-image of the matrix ( 0
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Performing integer column operations,

3017 . 1000
0 3 11 1300/
So a Z-basis for a is {1+ v/7,3V7}.

The lattice o(a) is spanned by o(1 +v7) = (1 + V7,1 — v/7) and
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|det< 37 _3ﬁ>|:6\ﬁ.
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We now check that this area equals 27t N(a)+/|A].

We have Z/3Z — Ok/a, and 1 & a. Hence, Z/3Z ~ Ok /a. So
N(a) = 3.

Since Dk = Span {1, \ﬁ} the discriminant of K is
2

Azdet(i {%) = (—2V7)%

So
27 IN(a)\/|A] =20 -3 (2V7) = 67
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