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Today

Every element of the class group H is represented by an ideal with
norm at most ( 2

π

)t √
|∆|.
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I If a is an ideal of K , why is N(a) ∈ a?

I Why are there only finitely many ideals of a given norm?
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Fractional ideals

Let K be a number field, and let I ⊆ K be an OK -module. Recall
that I is a fractional ideal of OK if it satisfies any of the following
equivalent conditions:

1. There exists α ∈ K \ {0} such that αI ⊆ OK .
2. There exists α ∈ OK \ {0} such that αI ⊆ OK .
3. There exists an ordinary ideal a ⊆ OK and α ∈ K \ {0} such

that I = αa.
4. There exists an ordinary ideal a ⊆ OK and β ∈ OK \ {0} such

that I = 1
βa.

5. I is finitely generated as an OK -module.
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Principal fractional ideals

A principal fractional ideal is defined to be a fractional ideal
generated as an OK -module by a single element.

Thus, a nonzero principal fractional ideal has the form αOK for
some α ∈ K \ {0}.
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H = F/P.

The class number of OK is the size of this group:

hK = |H|.
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First observations

Proposition. Every element of H is represented by an ordinary
ideal of OK .

Proof. Let I = αa where α ∈ K \ {0} and a is an ordinary ideal.

Then αOK is a principal fractional ideal.

Therefore,
I = αa = (αOK )a = a mod P.
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h = 1 if and only if OK is a UFD

Proposition. OK is a UFD if and only if hK = 1, i.e., if and only
if the class group is trivial.



The class group is finite

Theorem. Every element of H is represented by an ideal with
norm at most ( 2

π

)t √
|∆|

where 2t is the number of complex embeddings of K and ∆ is the
discriminant of K .

Proof. Main goal for today.
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The class group is finite.

Corollary. The class group H is finite.

Proof. Recall that there are finitely many ideals with a given
norm.

By the previous theorem, each element of H is represented by an
ideal of norm at most (2/π)t√|∆|.
There are only finitely many positive integers less than this bound.
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Corollary

Corollary. Let a be an ideal of OK , and let h = |H| be the class
number of K . Then

1. ah is principal, and
2. If u ∈ N is relatively prime to h, and au is principal, then a is

principal.

Example. We saw that the class number of Q(
√
−5) is 2.

Therefore, for example, (2, 1 +
√
−5)2 is principal.
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Review

Let K be a number field of degree n with real embeddings
σ1, . . . , σs , and complex embeddings σs+1, σs+1, . . . , σs+t , σs+t .

Q-algebra embedding:

σK = σ : K → Ls,t := Rs × Ct

α 7→ (σ1(α), . . . , σs(α), σs+1(α), . . . , σs+t(α)),

and our identification

Rs × Ct ' Rn

(x1, . . . , xs , z1, . . . , zt) 7→ (x1, . . . , xs , u1, v1, . . . , ut , vt)
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Review

Define the norm of q = (x1, . . . , xs , z1, . . . , zt) ∈ Rs × Ct to be

N(q) = x1 · · · xsz1z1 · · · ztzt = x1 · · · xs |z1|2 · · · |zt |2

It is consistent with our earlier definition: for α ∈ K ,

N(α) = σ1(α) · · ·σs(α)σs+1(α)σs+1(α) · · ·σs+1(α)σs+t(α) = N(σ(α)).
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Review

Main result from last Monday’s lecture:

Let a be a nonzero ideal in OK . Identifying Ls,t with Rn,
regard σ(a) ⊂ Rn. Then σ(a) is a lattice with fundamental domain
of volume

2−tN(a)
√
|∆|

where ∆ is the discriminant of K .

(Store this information on the blackboard.)
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Theorem 1

Theorem. If a is a nonzero ideal of OK , then there
exists 0 6= α ∈ OK such that

|N(α)| ≤
( 2
π

)t
N(a)

√
|∆|.

Proof.
Fix a real number ε > 0, and select positive real numbers
c1, . . . , cs+t such that

c1 · · · cs+t =
( 2
π

)t
N(a)

√
|∆|.

(Store this information on the blackboard.)
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Theorem 1

Define Xε ∈ Rn as

x = (x1, . . . , xs , xs+1, ys+1, . . . , xs+t , ys+t) ∈ Rn such that

I |x1| < c1 + ε,
I |x2| < c2, . . . , |xs | < cs ,
I |x2

s+1 + y2
s+1| < cs+1, . . . , |x2

s+t + y2
s+t | < cs+t .

Then Xε is centrally symmetric about the origin and convex
(exercise).
I If α ∈ Xε, we have |N(α)| ≤ (c1 + ε)c2 . . . cs+t .

I vol(Xε) > [(2c1) · · · 2cs ][(πcs+1) · · · (πcs+t)].
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vol(Xε) > [(2c1) · · · 2cs ][(πcs+1) · · · (πcs+t)]

= 2sπt(c1 · · · cs+t)

= 2sπt
( 2
π

)t
N(a)

√
|∆|

= 2s+tN(a)
√
|∆|

= 2s+2t · 2−tN(a)
√
|∆|

= 2n vol(F )

where F is a fundamental domain for σ(a).



Theorem 1

vol(Xε) > [(2c1) · · · 2cs ][(πcs+1) · · · (πcs+t)]
= 2sπt(c1 · · · cs+t)

= 2sπt
( 2
π

)t
N(a)

√
|∆|

= 2s+tN(a)
√
|∆|

= 2s+2t · 2−tN(a)
√
|∆|

= 2n vol(F )

where F is a fundamental domain for σ(a).



Theorem 1

vol(Xε) > [(2c1) · · · 2cs ][(πcs+1) · · · (πcs+t)]
= 2sπt(c1 · · · cs+t)

= 2sπt
( 2
π

)t
N(a)

√
|∆|

= 2s+tN(a)
√
|∆|

= 2s+2t · 2−tN(a)
√
|∆|

= 2n vol(F )

where F is a fundamental domain for σ(a).



Theorem 1

vol(Xε) > [(2c1) · · · 2cs ][(πcs+1) · · · (πcs+t)]
= 2sπt(c1 · · · cs+t)

= 2sπt
( 2
π

)t
N(a)

√
|∆|

= 2s+tN(a)
√
|∆|

= 2s+2t · 2−tN(a)
√
|∆|

= 2n vol(F )

where F is a fundamental domain for σ(a).



Theorem 1

vol(Xε) > [(2c1) · · · 2cs ][(πcs+1) · · · (πcs+t)]
= 2sπt(c1 · · · cs+t)

= 2sπt
( 2
π

)t
N(a)

√
|∆|

= 2s+tN(a)
√
|∆|

= 2s+2t · 2−tN(a)
√
|∆|

= 2n vol(F )

where F is a fundamental domain for σ(a).



Theorem 1

vol(Xε) > [(2c1) · · · 2cs ][(πcs+1) · · · (πcs+t)]
= 2sπt(c1 · · · cs+t)

= 2sπt
( 2
π

)t
N(a)

√
|∆|

= 2s+tN(a)
√
|∆|

= 2s+2t · 2−tN(a)
√
|∆|

= 2n vol(F )

where F is a fundamental domain for σ(a).



Theorem 1

By Minkowski’s theorem, Xε contains a nonzero point in the lattice
σ(a).

There exists 0 6= β ∈ a such that σ(β) ∈ Xε.
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For each ε > 0, define Aε = {β ∈ a : β 6= 0, σ(β) ∈ Xε}

6= ∅.

A1 ⊇ A1/2 ⊇ A1/3 ⊇ · · · ⊇ A1/k ⊇ · · · .

Take α ∈
⋂

k≥1 A1/k . since α ∈ A1/k for all k ≥ 1, we have

|N(α)| < (c1 + 1/k)c2 · · · cs+t .

Hence,
|N(α)| ≤ c1 · · · cs+t =
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√
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Theorem 2

Theorem. Every element of the class group H is represented by
an ideal with norm at most( 2

π

)t √
|∆|.



Theorem 2

Proof. Take [c] ∈ H with c an ideal.

Let b be an ideal representing [c−1].

Take 0 6= β ∈ b with |N(β)| ≤
(

2
π

)t
N(b)

√
|∆|.

(β) ⊆ b⇒ (β)b−1 ⊆ OK . Define a = (β)b−1.

Then a is an ideal representing c: [a] = [b−1] = [c],

Finally,

N(a) = N((β))N(b−1) = |N(β)|
N(b) ≤

( 2
π

)t √
|∆|.
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