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Today

Every element of the class group H is represented by an ideal with

norm at most
2 t
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» If ais an ideal of K, why is N(a) € a?

» Why are there only finitely many ideals of a given norm?
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Fractional ideals

Let K be a number field, and let /| C K be an O x-module. Recall
that / is a fractional ideal of O if it satisfies any of the following
equivalent conditions:

1. There exists & € K \ {0} such that a/ C O.
2. There exists a € Ok \ {0} such that al C O.
3. There exists an ordinary ideal a C Ok and o € K\ {0} such

that / = aa.
4. There exists an ordinary ideal a C Oy and § € Ok \ {0} such
that / = %a.

5. Iis finitely generated as an O k-module.
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Principal fractional ideals

A principal fractional ideal is defined to be a fractional ideal
generated as an 9 k-module by a single element.

Thus, a nonzero principal fractional ideal has the form a g for
some o € K\ {0}.
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The class group

Definition. The class group of Ok is the quotient group
H=F/P.
The class number of O is the size of this group:

h = [H].
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First observations

Proposition. Every element of H is represented by an ordinary
ideal of Ok.

Proof. Let / = aa where a € K\ {0} and a is an ordinary ideal.
Then ak is a principal fractional ideal.

Therefore,
| =aa=(aODk)a=amod P.



h = 1if and only if Ok is a UFD

Proposition. Ok is a UFD if and only if hx =1, i.e., if and only
if the class group is trivial.
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Theorem. Every element of H is represented by an ideal with

norm at most
2 t
() N
T

where 2t is the number of complex embeddings of K and A is the
discriminant of K.

Proof. Main goal for today.



The class group is finite.

Corollary. The class group H is finite.



The class group is finite.

Corollary. The class group H is finite.

Proof. Recall that there are finitely many ideals with a given
norm.



The class group is finite.

Corollary. The class group H is finite.

Proof. Recall that there are finitely many ideals with a given
norm.

By the previous theorem, each element of H is represented by an
ideal of norm at most (2/7)t/|A].



The class group is finite.

Corollary. The class group H is finite.

Proof. Recall that there are finitely many ideals with a given
norm.

By the previous theorem, each element of H is represented by an
ideal of norm at most (2/7)t/|A].

There are only finitely many positive integers less than this bound.
OJ
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Corollary. Let a be an ideal of Ok, and let h = || be the class
number of K. Then

1. alis principal, and
2. If u € N is relatively prime to h, and a" is principal, then a is

principal.

Example. We saw that the class number of Q(v/—5) is 2.



Corollary

Corollary. Let a be an ideal of Ok, and let h = |H| be the class
number of K. Then

1. alis principal, and
2. If u € N is relatively prime to h, and a" is principal, then a is
principal.

Example. We saw that the class number of Q(v/—5) is 2.
Therefore, for example, (2,14 v/—5)? is principal.
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Review

Let K be a number field of degree n with real embeddings
01,...,0s, and complex embeddings 0sy1,Ts+1,---,0s+t, Ostt-
Q-algebra embedding:

ok =0: K > L% :=R° x C!
a— (o1(),...,05(a),0s11(), ..., 051t()),
and our identification
RS x Ct ~ R"

(X1 e vy Xsy Z1y e v oy Zt) > (X014 ooy Xey ULy VI ooy Upy Vi)
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Review

Define the norm of q = (x1,...,Xs,21,...,2:t) € R® x C* to be

N(q) :Xl'"XSZIZ"'ZtZ:XI”'Xs‘zl‘z"’|Zt’2

It is consistent with our earlier definition: for o € K,

N(a) = o1(a) - - o5(@)osi1(@)Tsi1(@) - - 0s41(@)Ts14 () = N(o(a)).



Review

Main result from last Monday's lecture:

Let a be a nonzero ideal in Ok. Identifying LSt with R”,
regard o(a) C R". Then o(a) is a lattice with fundamental domain

of volume
27 N(a)\/ |4

where A is the discriminant of K.



Review

Main result from last Monday's lecture:

Let a be a nonzero ideal in Ok. Identifying LSt with R”,
regard o(a) C R". Then o(a) is a lattice with fundamental domain

of volume
27 N(a)\/ |4

where A is the discriminant of K.

(Store this information on the blackboard.)
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Theorem 1

Theorem. If a is a nonzero ideal of Ok, then there
exists 0 # a € Ok such that

W)l < () nayal

Proof.
Fix a real number ¢ > 0, and select positive real numbers
Cl,-..,Cs+¢ such that

2 t
€1+ Csrt = (W) N(a)\/|A].

(Store this information on the blackboard.)
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> |X1’ < +eg,
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Theorem 1

Define X; € R" as

X = (X1, .-y Xsy Xst1s Yst1y - - - s Xstts Ys+t) € R™ such that
> |xi| <c+e,
> x| < eyl Xxs| < G,
> ‘XsZ-s-l + y52+1| < Cotlyevns ’Xs2+t +y52+t‘ < Cs+t-

Then X is centrally symmetric about the origin and convex
(exercise).

> If a € X., we have [N(a)| < (c1 +¢€)ca. .. Copt-

> vol(X:) > [(2c1) - - 2¢s][(mCst1) - - - (TCspe)]-
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Theorem 1

vol(X:) > [(2c1) - - - 2¢s][(mest1) - - - (MCsyt)]
= 257l't(C1 s Cs+t)

_psnt (i)t N(a) /|4

— QS—HN(CL)\/E
_ 2s+2t . 2—tN(a)\/m

= 2" vol(F)

where F is a fundamental domain for o(a).
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Theorem 1

By Minkowski's theorem, X. contains a nonzero point in the lattice
o(a).
There exists 0 # 5 € a such that o(5) € X-.
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For each € > 0, define A. = {8 €a:8+#0,0(8) € X} #0.

AL DA QA3 2 DA 2

Take a € (y>1 A1/k- since a € Ay for all k > 1, we have

IN(a)| < (c1+1/k)ca- - Cspe.
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Theorem 2

Proof. Take [¢] € H with ¢ an ideal.

Let b be an ideal representing [c¢1].

Take 0 # 5 € b with [N(3)| < (2)" N(b) /TAT.
(B) Cb= (B)b~! C Ok. Define a=(B)b~L.
Then a is an ideal representing ¢: [a] = [b7] = [¢],

Finally,

N(a) = N((B)N(bH) = —5
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Proof. Take [¢] € H with ¢ an ideal.

Let b be an ideal representing [c¢1].

Take 0 # 5 € b with [N(3)| < (2)" N(b) /TAT.
(B) Cb= (B)b~! C Ok. Define a=(B)b~L.
Then a is an ideal representing ¢: [a] = [b7] = [¢],

Finally,




