Math 361

April 14, 2023

Projects

Every element of the class group $\ensuremath{\mathcal{H}}$ is represented by an ideal with norm at most

$$\left(\frac{2}{\pi}\right)^t \sqrt{|\Delta|}.$$

▶ If \mathfrak{a} is an ideal of *K*, why is $N(\mathfrak{a}) \in \mathfrak{a}$?

- ▶ If a is an ideal of *K*, why is $N(a) \in a$?
- ▶ Why are there only finitely many ideals of a given norm?

Let K be a number field, and let $I \subseteq K$ be an \mathfrak{O}_K -module. Recall that I is a *fractional ideal* of \mathfrak{O}_K if it satisfies any of the following equivalent conditions:

1. There exists $\alpha \in K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$.

- 1. There exists $\alpha \in K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$.
- 2. There exists $\alpha \in \mathfrak{O}_{\mathcal{K}} \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_{\mathcal{K}}$.

- 1. There exists $\alpha \in K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$.
- 2. There exists $\alpha \in \mathfrak{O}_{\mathcal{K}} \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_{\mathcal{K}}$.
- 3. There exists an ordinary ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ and $\alpha \in \mathcal{K} \setminus \{0\}$ such that $I = \alpha \mathfrak{a}$.

- 1. There exists $\alpha \in K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$.
- 2. There exists $\alpha \in \mathfrak{O}_{\mathcal{K}} \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_{\mathcal{K}}$.
- 3. There exists an ordinary ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ and $\alpha \in \mathcal{K} \setminus \{0\}$ such that $I = \alpha \mathfrak{a}$.
- 4. There exists an ordinary ideal $\mathfrak{a} \subseteq \mathfrak{O}_{K}$ and $\beta \in \mathfrak{O}_{K} \setminus \{0\}$ such that $I = \frac{1}{\beta}\mathfrak{a}$.

- 1. There exists $\alpha \in K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$.
- 2. There exists $\alpha \in \mathfrak{O}_{\mathcal{K}} \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_{\mathcal{K}}$.
- 3. There exists an ordinary ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ and $\alpha \in \mathcal{K} \setminus \{0\}$ such that $I = \alpha \mathfrak{a}$.
- 4. There exists an ordinary ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ and $\beta \in \mathfrak{O}_{\mathcal{K}} \setminus \{0\}$ such that $I = \frac{1}{\beta}\mathfrak{a}$.
- 5. *I* is finitely generated as an \mathfrak{O}_K -module.

Principal fractional ideals

A principal fractional ideal is defined to be a fractional ideal generated as an \mathcal{O}_K -module by a single element.

A *principal fractional ideal* is defined to be a fractional ideal generated as an $\mathfrak{O}_{\mathcal{K}}$ -module by a single element.

Thus, a nonzero principal fractional ideal has the form $\alpha \mathcal{O}_K$ for some $\alpha \in K \setminus \{0\}$.

Definition. The *class group* of $\mathfrak{O}_{\mathcal{K}}$ is the quotient group

$$\mathcal{H} = \mathcal{F} / \mathcal{P}.$$

Definition. The *class group* of \mathfrak{O}_K is the quotient group

$$\mathcal{H} = \mathcal{F}/\mathcal{P}.$$

The *class number* of $\mathfrak{O}_{\mathcal{K}}$ is the size of this group:

$$h_K = |\mathcal{H}|.$$

Proof. Let $I = \alpha \mathfrak{a}$ where $\alpha \in K \setminus \{0\}$ and \mathfrak{a} is an ordinary ideal.

Proof. Let $I = \alpha \mathfrak{a}$ where $\alpha \in K \setminus \{0\}$ and \mathfrak{a} is an ordinary ideal.

Then $\alpha \mathfrak{O}_K$ is a principal fractional ideal.

Proof. Let $I = \alpha \mathfrak{a}$ where $\alpha \in K \setminus \{0\}$ and \mathfrak{a} is an ordinary ideal.

Then $\alpha \mathfrak{O}_K$ is a principal fractional ideal.

Therefore,

$$I = \alpha \mathfrak{a} = (\alpha \mathfrak{O}_K)\mathfrak{a} = \mathfrak{a} \mod \mathcal{P}.$$

 \square

h=1 if and only if $\mathfrak{O}_{\mathcal{K}}$ is a UFD

Proposition. \mathfrak{O}_K is a UFD if and only if $h_K = 1$, i.e., if and only if the class group is trivial.

Theorem. Every element of \mathcal{H} is represented by an ideal with norm at most

$$\left(\frac{2}{\pi}\right)^t \sqrt{|\Delta|}$$

where 2t is the number of complex embeddings of K and Δ is the discriminant of K.

Theorem. Every element of \mathcal{H} is represented by an ideal with norm at most

$$\left(\frac{2}{\pi}\right)^t \sqrt{|\Delta|}$$

where 2t is the number of complex embeddings of K and Δ is the discriminant of K.

Proof. Main goal for today.

Corollary. The class group \mathcal{H} is finite.

Corollary. The class group $\mathcal H$ is finite.

Proof. Recall that there are finitely many ideals with a given norm.

Corollary. The class group $\mathcal H$ is finite.

Proof. Recall that there are finitely many ideals with a given norm.

By the previous theorem, each element of ${\cal H}$ is represented by an ideal of norm at most $(2/\pi)^t \sqrt{|\Delta|}.$

Corollary. The class group ${\mathcal H}$ is finite.

Proof. Recall that there are finitely many ideals with a given norm.

By the previous theorem, each element of \mathcal{H} is represented by an ideal of norm at most $(2/\pi)^t \sqrt{|\Delta|}$.

There are only finitely many positive integers less than this bound. $\hfill\square$

Corollary

Corollary. Let a be an ideal of \mathfrak{O}_{K} , and let $h = |\mathcal{H}|$ be the class number of K. Then

- 1. \mathfrak{a}^h is principal, and
- 2. If $u \in \mathbb{N}$ is relatively prime to h, and \mathfrak{a}^u is principal, then \mathfrak{a} is principal.

Corollary

Corollary. Let a be an ideal of \mathfrak{O}_{K} , and let $h = |\mathcal{H}|$ be the class number of K. Then

- 1. \mathfrak{a}^h is principal, and
- 2. If $u \in \mathbb{N}$ is relatively prime to h, and \mathfrak{a}^u is principal, then \mathfrak{a} is principal.

Example. We saw that the class number of $\mathbb{Q}(\sqrt{-5})$ is 2.

Corollary

Corollary. Let a be an ideal of \mathfrak{O}_{K} , and let $h = |\mathcal{H}|$ be the class number of K. Then

- 1. \mathfrak{a}^h is principal, and
- 2. If $u \in \mathbb{N}$ is relatively prime to h, and \mathfrak{a}^u is principal, then \mathfrak{a} is principal.

Example. We saw that the class number of $\mathbb{Q}(\sqrt{-5})$ is 2. Therefore, for example, $(2, 1 + \sqrt{-5})^2$ is principal.

Let *K* be a number field of degree *n* with real embeddings $\sigma_1, \ldots, \sigma_s$, and complex embeddings $\sigma_{s+1}, \overline{\sigma}_{s+1}, \ldots, \sigma_{s+t}, \overline{\sigma}_{s+t}$.

Let *K* be a number field of degree *n* with real embeddings $\sigma_1, \ldots, \sigma_s$, and complex embeddings $\sigma_{s+1}, \overline{\sigma}_{s+1}, \ldots, \sigma_{s+t}, \overline{\sigma}_{s+t}$. Q-algebra embedding:

$$\sigma_{\mathcal{K}} = \sigma \colon \mathcal{K} \to \mathbb{L}^{s,t} := \mathbb{R}^{s} \times \mathbb{C}^{t}$$
$$\alpha \mapsto (\sigma_{1}(\alpha), \dots, \sigma_{s}(\alpha), \sigma_{s+1}(\alpha), \dots, \sigma_{s+t}(\alpha)),$$

Let *K* be a number field of degree *n* with real embeddings $\sigma_1, \ldots, \sigma_s$, and complex embeddings $\sigma_{s+1}, \overline{\sigma}_{s+1}, \ldots, \sigma_{s+t}, \overline{\sigma}_{s+t}$. Q-algebra embedding:

$$\sigma_{\mathcal{K}} = \sigma \colon \mathcal{K} \to \mathbb{L}^{s,t} := \mathbb{R}^{s} \times \mathbb{C}^{t}$$
$$\alpha \mapsto (\sigma_{1}(\alpha), \dots, \sigma_{s}(\alpha), \sigma_{s+1}(\alpha), \dots, \sigma_{s+t}(\alpha)),$$

and our identification

$$\mathbb{R}^{s} \times \mathbb{C}^{t} \simeq \mathbb{R}^{n}$$
$$(x_{1}, \ldots, x_{s}, z_{1}, \ldots, z_{t}) \mapsto (x_{1}, \ldots, x_{s}, u_{1}, v_{1}, \ldots, u_{t}, v_{t})$$

Define the *norm* of $q = (x_1, \dots, x_s, z_1, \dots, z_t) \in \mathbb{R}^s \times \mathbb{C}^t$ to be $N(q) = x_1 \cdots x_s z_1 \overline{z_1} \cdots z_t \overline{z_t} = x_1 \cdots x_s |z_1|^2 \cdots |z_t|^2$

Define the *norm* of
$$q = (x_1, \dots, x_s, z_1, \dots, z_t) \in \mathbb{R}^s \times \mathbb{C}^t$$
 to be
 $N(q) = x_1 \cdots x_s z_1 \overline{z_1} \cdots z_t \overline{z_t} = x_1 \cdots x_s |z_1|^2 \cdots |z_t|^2$

It is consistent with our earlier definition: for $\alpha \in K$,

$$N(\alpha) = \sigma_1(\alpha) \cdots \sigma_s(\alpha) \sigma_{s+1}(\alpha) \overline{\sigma}_{s+1}(\alpha) \cdots \sigma_{s+1}(\alpha) \overline{\sigma}_{s+t}(\alpha) = N(\sigma(\alpha)).$$

Main result from last Monday's lecture:

Let \mathfrak{a} be a nonzero ideal in \mathfrak{O}_K . Identifying $\mathbb{L}^{s,t}$ with \mathbb{R}^n , regard $\sigma(\mathfrak{a}) \subset \mathbb{R}^n$. Then $\sigma(\mathfrak{a})$ is a lattice with fundamental domain of volume

$$2^{-t}N(\mathfrak{a})\sqrt{|\Delta|}$$

where Δ is the discriminant of K.

Main result from last Monday's lecture:

Let \mathfrak{a} be a nonzero ideal in \mathfrak{O}_K . Identifying $\mathbb{L}^{s,t}$ with \mathbb{R}^n , regard $\sigma(\mathfrak{a}) \subset \mathbb{R}^n$. Then $\sigma(\mathfrak{a})$ is a lattice with fundamental domain of volume

$$2^{-t}N(\mathfrak{a})\sqrt{|\Delta|}$$

where Δ is the discriminant of K.

(Store this information on the blackboard.)

Theorem. If a is a nonzero ideal of \mathfrak{O}_K , then there exists $0 \neq \alpha \in \mathfrak{O}_K$ such that

$$|\mathcal{N}(\alpha)| \leq \left(\frac{2}{\pi}\right)^t \mathcal{N}(\mathfrak{a})\sqrt{|\Delta|}.$$

Theorem. If a is a nonzero ideal of \mathfrak{O}_K , then there exists $0 \neq \alpha \in \mathfrak{O}_K$ such that

$$|N(\alpha)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{a}) \sqrt{|\Delta|}.$$

Proof.

Fix a real number $\varepsilon > 0$, and select positive real numbers c_1, \ldots, c_{s+t} such that

$$c_1\cdots c_{s+t}=\left(rac{2}{\pi}
ight)^t N(\mathfrak{a})\sqrt{|\Delta|}.$$

Theorem. If a is a nonzero ideal of $\mathcal{D}_{\mathcal{K}}$, then there exists $0 \neq \alpha \in \mathcal{D}_{\mathcal{K}}$ such that

$$|N(\alpha)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{a})\sqrt{|\Delta|}.$$

Proof.

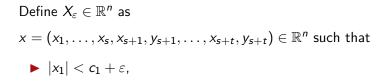
Fix a real number $\varepsilon > 0$, and select positive real numbers c_1, \ldots, c_{s+t} such that

$$c_1\cdots c_{s+t}=\left(\frac{2}{\pi}\right)^t N(\mathfrak{a})\sqrt{|\Delta|}.$$

(Store this information on the blackboard.)

Define $X_{\varepsilon} \in \mathbb{R}^n$ as

Define $X_{\varepsilon} \in \mathbb{R}^n$ as $x = (x_1, \dots, x_s, x_{s+1}, y_{s+1}, \dots, x_{s+t}, y_{s+t}) \in \mathbb{R}^n$ such that



Define $X_{\varepsilon} \in \mathbb{R}^n$ as $x = (x_1, \dots, x_s, x_{s+1}, y_{s+1}, \dots, x_{s+t}, y_{s+t}) \in \mathbb{R}^n$ such that $|x_1| < c_1 + \varepsilon,$ $|x_2| < c_2, \dots, |x_s| < c_s,$

Define $X_{\varepsilon} \in \mathbb{R}^{n}$ as $x = (x_{1}, \dots, x_{s}, x_{s+1}, y_{s+1}, \dots, x_{s+t}, y_{s+t}) \in \mathbb{R}^{n}$ such that $|x_{1}| < c_{1} + \varepsilon,$ $|x_{2}| < c_{2}, \dots, |x_{s}| < c_{s},$ $|x_{s+1}^{2} + y_{s+1}^{2}| < c_{s+1}, \dots, |x_{s+t}^{2} + y_{s+t}^{2}| < c_{s+t}.$

Define
$$X_{\varepsilon} \in \mathbb{R}^{n}$$
 as
 $x = (x_{1}, \dots, x_{s}, x_{s+1}, y_{s+1}, \dots, x_{s+t}, y_{s+t}) \in \mathbb{R}^{n}$ such that
 $|x_{1}| < c_{1} + \varepsilon,$
 $|x_{2}| < c_{2}, \dots, |x_{s}| < c_{s},$
 $|x_{s+1}^{2} + y_{s+1}^{2}| < c_{s+1}, \dots, |x_{s+t}^{2} + y_{s+t}^{2}| < c_{s+t}.$

Then X_{ε} is centrally symmetric about the origin and convex (exercise).

Define
$$X_{\varepsilon} \in \mathbb{R}^{n}$$
 as
 $x = (x_{1}, \dots, x_{s}, x_{s+1}, y_{s+1}, \dots, x_{s+t}, y_{s+t}) \in \mathbb{R}^{n}$ such that
 $|x_{1}| < c_{1} + \varepsilon,$
 $|x_{2}| < c_{2}, \dots, |x_{s}| < c_{s},$
 $|x_{s+1}^{2} + y_{s+1}^{2}| < c_{s+1}, \dots, |x_{s+t}^{2} + y_{s+t}^{2}| < c_{s+t}.$

Then X_{ε} is centrally symmetric about the origin and convex (exercise).

▶ If
$$\alpha \in X_{\varepsilon}$$
, we have $|N(\alpha)| \leq$

Define
$$X_{\varepsilon} \in \mathbb{R}^{n}$$
 as
 $x = (x_{1}, \dots, x_{s}, x_{s+1}, y_{s+1}, \dots, x_{s+t}, y_{s+t}) \in \mathbb{R}^{n}$ such that
 $|x_{1}| < c_{1} + \varepsilon,$
 $|x_{2}| < c_{2}, \dots, |x_{s}| < c_{s},$
 $|x_{s+1}^{2} + y_{s+1}^{2}| < c_{s+1}, \dots, |x_{s+t}^{2} + y_{s+t}^{2}| < c_{s+t}.$

Then X_{ε} is centrally symmetric about the origin and convex (exercise).

▶ If $\alpha \in X_{\varepsilon}$, we have $|N(\alpha)| \leq (c_1 + \varepsilon)c_2 \dots c_{s+t}$.

Define
$$X_{\varepsilon} \in \mathbb{R}^{n}$$
 as
 $x = (x_{1}, \dots, x_{s}, x_{s+1}, y_{s+1}, \dots, x_{s+t}, y_{s+t}) \in \mathbb{R}^{n}$ such that
 $|x_{1}| < c_{1} + \varepsilon,$
 $|x_{2}| < c_{2}, \dots, |x_{s}| < c_{s},$
 $|x_{s+1}^{2} + y_{s+1}^{2}| < c_{s+1}, \dots, |x_{s+t}^{2} + y_{s+t}^{2}| < c_{s+t}.$

Then X_{ε} is centrally symmetric about the origin and convex (exercise).

▶ If $\alpha \in X_{\varepsilon}$, we have $|N(\alpha)| \leq (c_1 + \varepsilon)c_2 \dots c_{s+t}$.

▶ $\operatorname{vol}(X_{\varepsilon}) >$

Define
$$X_{\varepsilon} \in \mathbb{R}^{n}$$
 as
 $x = (x_{1}, \dots, x_{s}, x_{s+1}, y_{s+1}, \dots, x_{s+t}, y_{s+t}) \in \mathbb{R}^{n}$ such that
 $|x_{1}| < c_{1} + \varepsilon,$
 $|x_{2}| < c_{2}, \dots, |x_{s}| < c_{s},$
 $|x_{s+1}^{2} + y_{s+1}^{2}| < c_{s+1}, \dots, |x_{s+t}^{2} + y_{s+t}^{2}| < c_{s+t}.$

Then X_{ε} is centrally symmetric about the origin and convex (exercise).

- ▶ If $\alpha \in X_{\varepsilon}$, we have $|N(\alpha)| \leq (c_1 + \varepsilon)c_2 \dots c_{s+t}$.
- $\triangleright \operatorname{vol}(X_{\varepsilon}) > [(2c_1)\cdots 2c_s][(\pi c_{s+1})\cdots (\pi c_{s+t})].$

$\operatorname{vol}(X_{\varepsilon}) > [(2c_1)\cdots 2c_s][(\pi c_{s+1})\cdots (\pi c_{s+t})]$

$\begin{aligned} \operatorname{vol}(X_{\varepsilon}) > [(2c_1)\cdots 2c_s][(\pi c_{s+1})\cdots (\pi c_{s+t})] \\ &= 2^s \pi^t (c_1\cdots c_{s+t}) \end{aligned}$

$$\operatorname{vol}(X_{\varepsilon}) > [(2c_1)\cdots 2c_s][(\pi c_{s+1})\cdots (\pi c_{s+t})]$$
$$= 2^s \pi^t (c_1 \cdots c_{s+t})$$
$$= 2^s \pi^t \left(\frac{2}{\pi}\right)^t N(\mathfrak{a}) \sqrt{|\Delta|}$$

$$\operatorname{vol}(X_{\varepsilon}) > [(2c_1) \cdots 2c_s][(\pi c_{s+1}) \cdots (\pi c_{s+t})]$$
$$= 2^s \pi^t (c_1 \cdots c_{s+t})$$
$$= 2^s \pi^t \left(\frac{2}{\pi}\right)^t N(\mathfrak{a}) \sqrt{|\Delta|}$$
$$= 2^{s+t} N(\mathfrak{a}) \sqrt{|\Delta|}$$

$$\operatorname{vol}(X_{\varepsilon}) > [(2c_1) \cdots 2c_s][(\pi c_{s+1}) \cdots (\pi c_{s+t})]$$
$$= 2^s \pi^t (c_1 \cdots c_{s+t})$$
$$= 2^s \pi^t \left(\frac{2}{\pi}\right)^t \mathcal{N}(\mathfrak{a}) \sqrt{|\Delta|}$$
$$= 2^{s+t} \mathcal{N}(\mathfrak{a}) \sqrt{|\Delta|}$$
$$= 2^{s+2t} \cdot 2^{-t} \mathcal{N}(\mathfrak{a}) \sqrt{|\Delta|}$$

$$\operatorname{vol}(X_{\varepsilon}) > [(2c_{1})\cdots 2c_{s}][(\pi c_{s+1})\cdots (\pi c_{s+t})]$$
$$= 2^{s}\pi^{t}(c_{1}\cdots c_{s+t})$$
$$= 2^{s}\pi^{t}\left(\frac{2}{\pi}\right)^{t}N(\mathfrak{a})\sqrt{|\Delta|}$$
$$= 2^{s+t}N(\mathfrak{a})\sqrt{|\Delta|}$$
$$= 2^{s+2t}\cdot 2^{-t}N(\mathfrak{a})\sqrt{|\Delta|}$$
$$= 2^{n}\operatorname{vol}(F)$$

where *F* is a fundamental domain for $\sigma(\mathfrak{a})$.

By Minkowski's theorem, X_{ε} contains a nonzero point in the lattice $\sigma(\mathfrak{a})$.

By Minkowski's theorem, X_{ε} contains a nonzero point in the lattice $\sigma(\mathfrak{a})$.

There exists $0 \neq \beta \in \mathfrak{a}$ such that $\sigma(\beta) \in X_{\varepsilon}$.

For each $\varepsilon > 0$, define $A_{\varepsilon} = \{\beta \in \mathfrak{a} : \beta \neq 0, \sigma(\beta) \in X_{\varepsilon}\}$

For each $\varepsilon > 0$, define $A_{\varepsilon} = \{\beta \in \mathfrak{a} : \beta \neq 0, \sigma(\beta) \in X_{\varepsilon}\} \neq \emptyset$.

For each $\varepsilon > 0$, define $A_{\varepsilon} = \{\beta \in \mathfrak{a} : \beta \neq 0, \sigma(\beta) \in X_{\varepsilon}\} \neq \emptyset$.

$$A_1 \supseteq A_{1/2} \supseteq A_{1/3} \supseteq \cdots \supseteq A_{1/k} \supseteq \cdots$$
.
Take $\alpha \in \bigcap_{k \ge 1} A_{1/k}$.

For each $\varepsilon > 0$, define $A_{\varepsilon} = \{\beta \in \mathfrak{a} : \beta \neq 0, \sigma(\beta) \in X_{\varepsilon}\} \neq \emptyset$.

$$A_1 \supseteq A_{1/2} \supseteq A_{1/3} \supseteq \cdots \supseteq A_{1/k} \supseteq \cdots$$
.
Take $\alpha \in \bigcap_{k \ge 1} A_{1/k}$. since $\alpha \in A_{1/k}$ for all $k \ge 1$, we have
 $|N(\alpha)| < (c_1 + 1/k)c_2 \cdots c_{s+t}$.

Hence,

$$|N(\alpha)| \leq c_1 \cdots c_{s+t} =$$

For each $\varepsilon > 0$, define $A_{\varepsilon} = \{\beta \in \mathfrak{a} : \beta \neq 0, \sigma(\beta) \in X_{\varepsilon}\} \neq \emptyset$.

$$\begin{array}{l} A_1 \supseteq A_{1/2} \supseteq A_{1/3} \supseteq \cdots \supseteq A_{1/k} \supseteq \cdots .\\ \\ \mathsf{Take} \ \alpha \in \bigcap_{k \ge 1} A_{1/k}. \ \mathsf{since} \ \alpha \in A_{1/k} \ \mathsf{for \ all} \ k \ge 1, \ \mathsf{we} \ \mathsf{have} \\ \\ |\mathsf{N}(\alpha)| < (c_1 + 1/k)c_2 \cdots c_{s+t}. \end{array}$$

Hence,

$$|N(\alpha)| \leq c_1 \cdots c_{s+t} = \left(\frac{2}{\pi}\right)^t N(\mathfrak{a}) \sqrt{|\Delta|}.$$

| |

Theorem. Every element of the class group $\mathcal H$ is represented by an ideal with norm at most

$$\left(\frac{2}{\pi}\right)^t \sqrt{|\Delta|}.$$

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal.

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$.

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$.

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b}$

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b} \Rightarrow (\beta)\mathfrak{b}^{-1} \subseteq \mathfrak{O}_K$.

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b} \Rightarrow (\beta)\mathfrak{b}^{-1} \subseteq \mathfrak{O}_K$. Define $\mathfrak{a} = (\beta)\mathfrak{b}^{-1}$.

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b} \Rightarrow (\beta)\mathfrak{b}^{-1} \subseteq \mathfrak{O}_K$. Define $\mathfrak{a} = (\beta)\mathfrak{b}^{-1}$. Then \mathfrak{a} is an ideal representing \mathfrak{c} :

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b} \Rightarrow (\beta)\mathfrak{b}^{-1} \subseteq \mathfrak{O}_K$. Define $\mathfrak{a} = (\beta)\mathfrak{b}^{-1}$. Then \mathfrak{a} is an ideal representing \mathfrak{c} : $[\mathfrak{a}] = [\mathfrak{b}^{-1}]$

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b} \Rightarrow (\beta)\mathfrak{b}^{-1} \subseteq \mathfrak{O}_K$. Define $\mathfrak{a} = (\beta)\mathfrak{b}^{-1}$. Then \mathfrak{a} is an ideal representing \mathfrak{c} : $[\mathfrak{a}] = [\mathfrak{b}^{-1}] = [\mathfrak{c}]$,

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b} \Rightarrow (\beta)\mathfrak{b}^{-1} \subseteq \mathfrak{O}_K$. Define $\mathfrak{a} = (\beta)\mathfrak{b}^{-1}$. Then \mathfrak{a} is an ideal representing \mathfrak{c} : $[\mathfrak{a}] = [\mathfrak{b}^{-1}] = [\mathfrak{c}]$, Finally,

$$N(\mathfrak{a}) =$$

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b} \Rightarrow (\beta)\mathfrak{b}^{-1} \subseteq \mathfrak{O}_K$. Define $\mathfrak{a} = (\beta)\mathfrak{b}^{-1}$. Then \mathfrak{a} is an ideal representing \mathfrak{c} : $[\mathfrak{a}] = [\mathfrak{b}^{-1}] = [\mathfrak{c}]$, Finally,

 $N(\mathfrak{a}) = N((\beta))N(\mathfrak{b}^{-1})$

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b} \Rightarrow (\beta)\mathfrak{b}^{-1} \subseteq \mathfrak{O}_K$. Define $\mathfrak{a} = (\beta)\mathfrak{b}^{-1}$. Then \mathfrak{a} is an ideal representing \mathfrak{c} : $[\mathfrak{a}] = [\mathfrak{b}^{-1}] = [\mathfrak{c}]$, Finally,

$$N(\mathfrak{a}) = N((\beta))N(\mathfrak{b}^{-1}) = \frac{|N(\beta)|}{N(\mathfrak{b})}$$

Proof. Take $[\mathfrak{c}] \in \mathcal{H}$ with \mathfrak{c} an ideal. Let \mathfrak{b} be an ideal representing $[\mathfrak{c}^{-1}]$. Take $0 \neq \beta \in \mathfrak{b}$ with $|N(\beta)| \leq \left(\frac{2}{\pi}\right)^t N(\mathfrak{b})\sqrt{|\Delta|}$. $(\beta) \subseteq \mathfrak{b} \Rightarrow (\beta)\mathfrak{b}^{-1} \subseteq \mathfrak{O}_K$. Define $\mathfrak{a} = (\beta)\mathfrak{b}^{-1}$. Then \mathfrak{a} is an ideal representing \mathfrak{c} : $[\mathfrak{a}] = [\mathfrak{b}^{-1}] = [\mathfrak{c}]$, Finally,

$$N(\mathfrak{a}) = N((\beta))N(\mathfrak{b}^{-1}) = \frac{|N(\beta)|}{N(\mathfrak{b})} \leq \left(\frac{2}{\pi}\right)^t \sqrt{|\Delta|}.$$