Math 361

April 5, 2023



Quiz

Prove that if p is a prime ideal in a number ring K of degree n,
then

1. p contains a wunique rational prime p, and

2. N(p) = p™ for where 1 < m < n.
You may use the fact that the number of an ideal is an element of
the ideal.
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» When will the presentations occur? How long?



Today

» Lattices in R".

» Minkowski's lattice point theorem.
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Lattices

K a number field of degree n.

Motivation:
» F = multiplicative group of nonzero fractional ideals.
» P = nonzero principal fractional ideals.
» Class group of K (or Ok): H = F/P.
» Class number h = |H]|.
» We will see h =1 if and only if Ok is a PID.
>

Next goal: Prove h is finite.
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Lattices

Definition. A subset L C R" is a rank m lattice in R" if

L = Spang{vi,...,Vm}
for some set {vi,..., vy} of linearly independent vectors in R”".

A subset of R" is discrete if its intersection with each compact
subset of R" is finite. Equivalently, the subset has no accumulation
points.

Theorem. An additive subgroup L C R” is a lattice if and only if
it is discrete.

Proof. Theorem 6.1. O
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Lattices

Definition. A fundamental domain for a rank n lattice L in R" is a
set of the form

F={",av;:0<a <lfori=1,...n}.
where L = Spang{vi, ..., vp}.

» vol(F) = |det(vi,...,vn)|

» For each x € R”, there exists a unique ¢ such that x € £ + F.
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L=7ZCR.
Fundamental domain F = [0, 1).
Homeomorphism:

R/Z — St

x — XX,
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Example

K = Q(v/2) with number ring Z[1,v/2].

Embeddings of K into C: o1(a+ bv/2) = a+ by/2 and
o2(a++2) =a— bv2.

Consider the homomorphism
K — R?
x = (a1(x), o2(x))-

Image of Z[v/2] in R? is a lattice with generators
(01(1),02(1)) = (1,1) and (01(V2), 02(V2)) = (V2,~V/2).
Fundamental domain corresponding to these generators has volume

1 V2
|det<1 _\/§>|:2\[2.
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Tori

Definition. The n-torus is the topological space

Th=6'x...x§!
—_————
n times
with the product topology.
Proposition. Let L be a rank m lattice in R” with generators

Vi,...,Vm. Complete vq,..., vy to a basis vy,...,v, for R”.
Homeomorphism

¢:R"/L— T™ x R"™™™

n

2Tia 2Tia
Za;v,-»—>(e Lo...,e ’",am+1,...,a,,).
i=1

The mapping ¢ is a bijection when restricted to a fundamental
domain.
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Examples

Consider the examples

» L= Spany{(1,0),(0,1)}, and
» L' = Spany{(1,0)} in R?
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Volume

Definition. Let L C R" be a rank n lattice, and consider the
mapping 7 : R" — R"/L 2,
The volumeof Y C T" is

vol(Y) = vol(m (YY) N F)

where F is a fundamental domain for L.

Proposition. Let X C R” be a bounded such that vol(X) exists.
With notation as in the above definition, suppose that 7 restricted
to X is injective. Then vol(X) = vol(m(X)).

Proof. See Theorem 6.7 and the accompanying Figure 6.6. O
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Convexity

Definition. Let X C R". Then X is convex if it contains the line
segment joining each pair of points in X. In other words, if
x,y € X, then Ax + (1 = \)y € X for X € [0,1].

Example. If P = {p1,...,px} C R", the smallest convex set
containing P is

conv(P) = {Zf-‘zl Aipi i Ai>0and YK\ = 1}.

This set is called the convex hull of P.
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Symmetry

Definition. Let X C R". Then X is centrally symmetric about the
origin if x € X implies —x € X for all x € X.

We will use the abbreviation symmetric to mean centrally
symmetric about the origin in the context of Minkowski's theorem.
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Warm-up. Consider the lattice L = Spany{(1,0),(0,1)} C R2.

What is the volume of the largest convex symmetric set X C R?
containing no nonzero lattice point?

What about the analogous question in R3?
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Minkowski's theorem

Minkowski’s Theorem. Let L C R" be a rank n lattice, and let F
be a fundamental domain for L.

Let X C R"” be bounded, convex, and symmetric. Suppose that
vol(X) > 2" vol(F).

Then X contains a nonzero lattice point.
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Minkowski's theorem

Hypotheses: X C R"” bounded, convex, and symmetric, and
vol(X) > 2" vol(F).

Proof. Consider the lattice 2L, whose fundamental domain has
volume 2" vol(F). Since vol(X) > 2" vol(F), it follows
that 7: R” — R"/(2L) is not injective when restricted to X. Thus,
there exist distinct x,y € X such that 7(x) = 7(y).
So x — y € 2L, and thus

1

E(x—y) €L

Since X is symmetric, —y € X. Since X is convex, it follows that

1 1 1
E(X—y) = §x+ 5(—)/) € X.

Since x # y, we have (x — y)/2 is a nonzero lattice point in X. O



