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Quiz

Prove that if p is a prime ideal in a number ring K of degree n,
then

1. p contains a unique rational prime p, and
2. N(p) = pm for where 1 ≤ m ≤ n.

You may use the fact that the number of an ideal is an element of
the ideal.



Final projects

I Choose final project by Wednesday of next week.

I When will the presentations occur? How long?
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Today

I Lattices in Rn.
I Minkowski’s lattice point theorem.



Lattices

K a number field of degree n.

Motivation:

I F = multiplicative group of nonzero fractional ideals.
I P = nonzero principal fractional ideals.
I Class group of K (or OK ): H := F/P.
I Class number h = |H|.
I We will see h = 1 if and only if OK is a PID.
I Next goal: Prove h is finite.
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Lattices

Definition. A subset L ⊂ Rn is a rank m lattice in Rn if

L = SpanZ{v1, . . . , vm}

for some set {v1, . . . , vm} of linearly independent vectors in Rn.

A subset of Rn is discrete if its intersection with each compact
subset of Rn is finite. Equivalently, the subset has no accumulation
points.

Theorem. An additive subgroup L ⊂ Rn is a lattice if and only if
it is discrete.
Proof. Theorem 6.1. �
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Lattices

Definition. A fundamental domain for a rank n lattice L in Rn is a
set of the form

F = {
∑n

i=1 aivi : 0 ≤ ai < 1 for i = 1, . . . n} .

where L = SpanZ{v1, . . . , vn}.

I vol(F ) = | det(v1, . . . , vn)|.

I For each x ∈ Rn, there exists a unique ` such that x ∈ `+ F .
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Example

L = Z ⊂ R.

Fundamental domain F = [0, 1).

Homeomorphism:

R/Z→ S1

x → e2πix .
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Example

K = Q(
√

2) with number ring Z[1,
√

2].

Embeddings of K into C: σ1(a + b
√

2) = a + b
√

2 and
σ2(a +

√
2) = a − b

√
2.

Consider the homomorphism

K → R2

x 7→ (σ1(x), σ2(x)).

Image of Z[
√

2] in R2 is a lattice with generators
(σ1(1), σ2(1)) = (1, 1) and (σ1(

√
2), σ2(

√
2)) = (

√
2,−
√

2).

Fundamental domain corresponding to these generators has volume∣∣∣∣∣det
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Tori

Definition. The n-torus is the topological space

T n = S1 × · · · × S1︸ ︷︷ ︸
n times

with the product topology.

Proposition. Let L be a rank m lattice in Rn with generators
v1, . . . , vm. Complete v1, . . . , vm to a basis v1, . . . , vn for Rn.
Homeomorphism

φ : Rn/L→ T m × Rn−m

n∑
i=1

aivi 7→
(
e2πia1 , . . . , e2πiam , am+1, . . . , an

)
.

The mapping φ is a bijection when restricted to a fundamental
domain.
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Volume

Definition. Let L ⊂ Rn be a rank n lattice, and consider the
mapping π : Rn → Rn/L φ−→ T n.

The volume of Y ⊆ T n is

vol(Y ) = vol(π−1(Y ) ∩ F )

where F is a fundamental domain for L.

Proposition. Let X ⊂ Rn be a bounded such that vol(X ) exists.
With notation as in the above definition, suppose that π restricted
to X is injective. Then vol(X ) = vol(π(X )).
Proof. See Theorem 6.7 and the accompanying Figure 6.6. �
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Convexity

Definition. Let X ⊆ Rn. Then X is convex if it contains the line
segment joining each pair of points in X .

In other words, if
x , y ∈ X , then λx + (1− λ)y ∈ X for λ ∈ [0, 1].

Example. If P = {p1, . . . , pk} ⊂ Rn, the smallest convex set
containing P is

conv(P) =
{∑k

i=1 λipi : λi ≥ 0 and
∑k

i=1 λi = 1
}
.

This set is called the convex hull of P.
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Symmetry

Definition. Let X ⊆ Rn. Then X is centrally symmetric about the
origin if x ∈ X implies −x ∈ X for all x ∈ X .

We will use the abbreviation symmetric to mean centrally
symmetric about the origin in the context of Minkowski’s theorem.
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Minkowski’s Theorem

Warm-up. Consider the lattice L = SpanZ{(1, 0), (0, 1)} ⊂ R2.

What is the volume of the largest convex symmetric set X ⊂ R2

containing no nonzero lattice point?

What about the analogous question in R3?
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Minkowski’s Theorem. Let L ⊂ Rn be a rank n lattice, and let F
be a fundamental domain for L.

Let X ⊂ Rn be bounded, convex, and symmetric. Suppose that

vol(X ) > 2n vol(F ).

Then X contains a nonzero lattice point.
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Minkowski’s theorem

Hypotheses: X ⊂ Rn bounded, convex, and symmetric,

and
vol(X ) > 2n vol(F ).

Proof. Consider the lattice 2L, whose fundamental domain has
volume 2n vol(F ). Since vol(X ) > 2n vol(F ), it follows
that π : Rn → Rn/(2L) is not injective when restricted to X . Thus,
there exist distinct x , y ∈ X such that π(x) = π(y).
So x − y ∈ 2L, and thus

1
2(x − y) ∈ L.

Since X is symmetric, −y ∈ X . Since X is convex, it follows that

1
2(x − y) = 1

2x + 1
2(−y) ∈ X .

Since x 6= y , we have (x − y)/2 is a nonzero lattice point in X . �
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