Math 361

April 5, 2023

Prove that if \mathfrak{p} is a prime ideal in a number ring K of degree n, then

1. p contains a *unique* rational prime p, and

2.
$$N(\mathfrak{p}) = p^m$$
 for where $1 \le m \le n$.

You may use the fact that the number of an ideal is an element of the ideal.

Final projects

▶ Choose final project by Wednesday of next week.

Final projects

- ► Choose final project by Wednesday of next week.
- ▶ When will the presentations occur? How long?

Today

▶ Lattices in \mathbb{R}^n .

▶ Minkowski's lattice point theorem.

K a number field of degree n.

K a number field of degree n.

Motivation:

• \mathcal{F} = multiplicative group of nonzero fractional ideals.

K a number field of degree n.

- $\blacktriangleright \ \mathcal{F} = \text{multiplicative group of nonzero fractional ideals.}$
- \blacktriangleright $\mathcal{P} =$ nonzero principal fractional ideals.

K a number field of degree n.

- $\blacktriangleright \ \mathcal{F} = \text{multiplicative group of nonzero fractional ideals.}$
- \blacktriangleright $\mathcal{P} =$ nonzero principal fractional ideals.
- Class group of K (or \mathfrak{O}_K): $\mathcal{H} := \mathcal{F}/\mathcal{P}$.

K a number field of degree n.

- $\mathcal{F} =$ multiplicative group of nonzero fractional ideals.
- $\mathcal{P} =$ nonzero principal fractional ideals.
- Class group of K (or \mathfrak{O}_K): $\mathcal{H} := \mathcal{F}/\mathcal{P}$.
- Class number $h = |\mathcal{H}|$.

K a number field of degree n.

- $\mathcal{F} =$ multiplicative group of nonzero fractional ideals.
- \blacktriangleright $\mathcal{P} =$ nonzero principal fractional ideals.
- Class group of K (or \mathfrak{O}_K): $\mathcal{H} := \mathcal{F}/\mathcal{P}$.
- Class number $h = |\mathcal{H}|$.
- We will see h = 1 if and only if \mathfrak{O}_K is a PID.

K a number field of degree n.

- $\mathcal{F} =$ multiplicative group of nonzero fractional ideals.
- \blacktriangleright $\mathcal{P} =$ nonzero principal fractional ideals.
- Class group of K (or \mathfrak{O}_K): $\mathcal{H} := \mathcal{F}/\mathcal{P}$.
- Class number $h = |\mathcal{H}|$.
- We will see h = 1 if and only if \mathfrak{O}_K is a PID.
- **Next goal:** Prove *h* is finite.

Definition. A subset $L \subset \mathbb{R}^n$ is a rank *m* lattice in \mathbb{R}^n if

Definition. A subset $L \subset \mathbb{R}^n$ is a rank *m* lattice in \mathbb{R}^n if

$$L = \operatorname{Span}_{\mathbb{Z}}\{v_1, \ldots, v_m\}$$

for some set $\{v_1, \ldots, v_m\}$ of linearly independent vectors in \mathbb{R}^n .

Definition. A subset $L \subset \mathbb{R}^n$ is a rank *m* lattice in \mathbb{R}^n if

$$L = \operatorname{Span}_{\mathbb{Z}}\{v_1, \ldots, v_m\}$$

for some set $\{v_1, \ldots, v_m\}$ of linearly independent vectors in \mathbb{R}^n .

A subset of \mathbb{R}^n is *discrete* if its intersection with each compact subset of \mathbb{R}^n is finite. Equivalently, the subset has no accumulation points.

Definition. A subset $L \subset \mathbb{R}^n$ is a rank *m* lattice in \mathbb{R}^n if

$$L = \operatorname{Span}_{\mathbb{Z}}\{v_1, \ldots, v_m\}$$

for some set $\{v_1, \ldots, v_m\}$ of linearly independent vectors in \mathbb{R}^n .

A subset of \mathbb{R}^n is *discrete* if its intersection with each compact subset of \mathbb{R}^n is finite. Equivalently, the subset has no accumulation points.

Theorem. An additive subgroup $L \subset \mathbb{R}^n$ is a lattice if and only if it is discrete.

Definition. A subset $L \subset \mathbb{R}^n$ is a rank *m* lattice in \mathbb{R}^n if

$$L = \operatorname{Span}_{\mathbb{Z}}\{v_1, \ldots, v_m\}$$

for some set $\{v_1, \ldots, v_m\}$ of linearly independent vectors in \mathbb{R}^n .

A subset of \mathbb{R}^n is *discrete* if its intersection with each compact subset of \mathbb{R}^n is finite. Equivalently, the subset has no accumulation points.

Theorem. An additive subgroup $L \subset \mathbb{R}^n$ is a lattice if and only if it is discrete.

Proof. Theorem 6.1.

Definition. A fundamental domain for a rank n lattice L in \mathbb{R}^n is a set of the form

$$F = \{\sum_{i=1}^{n} a_i v_i : 0 \le a_i < 1 \text{ for } i = 1, \dots n\}.$$

where $L = \operatorname{Span}_{\mathbb{Z}} \{ v_1, \ldots, v_n \}.$

Definition. A fundamental domain for a rank n lattice L in \mathbb{R}^n is a set of the form

$$F = \{\sum_{i=1}^{n} a_i v_i : 0 \le a_i < 1 \text{ for } i = 1, \dots n\}.$$

where $L = \operatorname{Span}_{\mathbb{Z}} \{ v_1, \ldots, v_n \}.$

$$\triangleright \operatorname{vol}(F) = |\det(v_1, \ldots, v_n)|.$$

Definition. A fundamental domain for a rank n lattice L in \mathbb{R}^n is a set of the form

$$F = \{\sum_{i=1}^{n} a_i v_i : 0 \le a_i < 1 \text{ for } i = 1, \dots n\}.$$

where $L = \operatorname{Span}_{\mathbb{Z}} \{ v_1, \ldots, v_n \}.$

$$\blacktriangleright \operatorname{vol}(F) = |\det(v_1, \ldots, v_n)|.$$

For each $x \in \mathbb{R}^n$, there exists a unique ℓ such that $x \in \ell + F$.

 $L = \mathbb{Z} \subset \mathbb{R}.$

 $L = \mathbb{Z} \subset \mathbb{R}.$

Fundamental domain F = [0, 1).

 $L = \mathbb{Z} \subset \mathbb{R}.$

Fundamental domain F = [0, 1).

Homeomorphism:

$$\mathbb{R}/\mathbb{Z} \to S^1$$
$$x \to e^{2\pi i x}.$$

$\mathcal{K} = \mathbb{Q}(\sqrt{2})$ with number ring $\mathbb{Z}[1,\sqrt{2}].$

 $K = \mathbb{Q}(\sqrt{2})$ with number ring $\mathbb{Z}[1, \sqrt{2}]$. Embeddings of K into \mathbb{C} : $\sigma_1(a + b\sqrt{2}) = a + b\sqrt{2}$ and $\sigma_2(a + \sqrt{2}) = a - b\sqrt{2}$.

 $K = \mathbb{Q}(\sqrt{2})$ with number ring $\mathbb{Z}[1, \sqrt{2}]$. Embeddings of K into \mathbb{C} : $\sigma_1(a + b\sqrt{2}) = a + b\sqrt{2}$ and $\sigma_2(a + \sqrt{2}) = a - b\sqrt{2}$.

Consider the homomorphism

$$egin{aligned} & \mathcal{K} o \mathbb{R}^2 \ & x \mapsto (\sigma_1(x), \sigma_2(x)). \end{aligned}$$

 $K = \mathbb{Q}(\sqrt{2})$ with number ring $\mathbb{Z}[1, \sqrt{2}]$. Embeddings of K into \mathbb{C} : $\sigma_1(a + b\sqrt{2}) = a + b\sqrt{2}$ and $\sigma_2(a + \sqrt{2}) = a - b\sqrt{2}$.

Consider the homomorphism

$$egin{aligned} \mathcal{K} & o \mathbb{R}^2 \ x &\mapsto (\sigma_1(x), \sigma_2(x)). \end{aligned}$$

Image of $\mathbb{Z}[\sqrt{2}]$ in \mathbb{R}^2 is a lattice with generators $(\sigma_1(1), \sigma_2(1)) = (1, 1)$ and $(\sigma_1(\sqrt{2}), \sigma_2(\sqrt{2})) = (\sqrt{2}, -\sqrt{2}).$

 $K = \mathbb{Q}(\sqrt{2})$ with number ring $\mathbb{Z}[1, \sqrt{2}]$. Embeddings of K into \mathbb{C} : $\sigma_1(a + b\sqrt{2}) = a + b\sqrt{2}$ and $\sigma_2(a + \sqrt{2}) = a - b\sqrt{2}$.

Consider the homomorphism

$$\mathcal{K} o \mathbb{R}^2$$

 $x \mapsto (\sigma_1(x), \sigma_2(x)).$

Image of $\mathbb{Z}[\sqrt{2}]$ in \mathbb{R}^2 is a lattice with generators $(\sigma_1(1), \sigma_2(1)) = (1, 1)$ and $(\sigma_1(\sqrt{2}), \sigma_2(\sqrt{2})) = (\sqrt{2}, -\sqrt{2}).$

Fundamental domain corresponding to these generators has volume

 $K = \mathbb{Q}(\sqrt{2})$ with number ring $\mathbb{Z}[1, \sqrt{2}]$. Embeddings of K into \mathbb{C} : $\sigma_1(a + b\sqrt{2}) = a + b\sqrt{2}$ and $\sigma_2(a + \sqrt{2}) = a - b\sqrt{2}$.

Consider the homomorphism

$$K \to \mathbb{R}^2$$

 $x \mapsto (\sigma_1(x), \sigma_2(x)).$

Image of $\mathbb{Z}[\sqrt{2}]$ in \mathbb{R}^2 is a lattice with generators $(\sigma_1(1), \sigma_2(1)) = (1, 1)$ and $(\sigma_1(\sqrt{2}), \sigma_2(\sqrt{2})) = (\sqrt{2}, -\sqrt{2}).$

Fundamental domain corresponding to these generators has volume

$$\left|\det \left(\begin{array}{cc} 1 & \sqrt{2} \\ 1 & -\sqrt{2} \end{array}\right)\right| = 2\sqrt{2}.$$

Tori

Definition. The *n*-torus is the topological space

$$T^n = \underbrace{S^1 \times \cdots \times S^1}_{n \text{ times}}$$

with the product topology.

Tori

Definition. The *n*-torus is the topological space

$$T^n = \underbrace{S^1 \times \cdots \times S^1}_{n \text{ times}}$$

with the product topology.

Proposition. Let *L* be a rank *m* lattice in \mathbb{R}^n with generators v_1, \ldots, v_m .

Tori

Definition. The *n*-torus is the topological space

$$T^n = \underbrace{S^1 \times \cdots \times S^1}_{n \text{ times}}$$

with the product topology.

Proposition. Let *L* be a rank *m* lattice in \mathbb{R}^n with generators v_1, \ldots, v_m . Complete v_1, \ldots, v_m to a basis v_1, \ldots, v_n for \mathbb{R}^n .

Definition. The *n*-torus is the topological space

$$T^n = \underbrace{S^1 \times \cdots \times S^1}_{n \text{ times}}$$

with the product topology.

Proposition. Let *L* be a rank *m* lattice in \mathbb{R}^n with generators v_1, \ldots, v_m . Complete v_1, \ldots, v_m to a basis v_1, \ldots, v_n for \mathbb{R}^n . Homeomorphism

$$\phi \colon \mathbb{R}^n / L \to T^m \times \mathbb{R}^{n-m}$$
$$\sum_{i=1}^n a_i v_i \mapsto \left(e^{2\pi i a_1}, \dots, e^{2\pi i a_m}, a_{m+1}, \dots, a_n \right).$$

The mapping ϕ is a bijection when restricted to a fundamental domain.

Consider the examples

▶
$$L = \operatorname{Span}_{\mathbb{Z}}\{(1,0), (0,1)\},\$$

Consider the examples

•
$$L = \operatorname{Span}_{\mathbb{Z}}\{(1,0), (0,1)\}, \text{ and}$$

▶
$$L' = \operatorname{Span}_{\mathbb{Z}}\{(1,0)\}$$
 in \mathbb{R}^2

Volume

Definition. Let $L \subset \mathbb{R}^n$ be a rank *n* lattice, and consider the mapping $\pi : \mathbb{R}^n \to \mathbb{R}^n / L \xrightarrow{\phi} T^n$.

Definition. Let $L \subset \mathbb{R}^n$ be a rank *n* lattice, and consider the mapping $\pi : \mathbb{R}^n \to \mathbb{R}^n / L \xrightarrow{\phi} T^n$.

The *volume* of $Y \subseteq T^n$ is

$$\operatorname{vol}(Y) = \operatorname{vol}(\pi^{-1}(Y) \cap F)$$

where F is a fundamental domain for L.

Definition. Let $L \subset \mathbb{R}^n$ be a rank *n* lattice, and consider the mapping $\pi : \mathbb{R}^n \to \mathbb{R}^n / L \xrightarrow{\phi} T^n$.

The *volume* of $Y \subseteq T^n$ is

$$\operatorname{vol}(Y) = \operatorname{vol}(\pi^{-1}(Y) \cap F)$$

where F is a fundamental domain for L.

Proposition. Let $X \subset \mathbb{R}^n$ be a bounded such that vol(X) exists. With notation as in the above definition, suppose that π restricted to X is injective.

Definition. Let $L \subset \mathbb{R}^n$ be a rank *n* lattice, and consider the mapping $\pi : \mathbb{R}^n \to \mathbb{R}^n / L \xrightarrow{\phi} T^n$.

The *volume* of $Y \subseteq T^n$ is

$$\operatorname{vol}(Y) = \operatorname{vol}(\pi^{-1}(Y) \cap F)$$

where F is a fundamental domain for L.

Proposition. Let $X \subset \mathbb{R}^n$ be a bounded such that vol(X) exists. With notation as in the above definition, suppose that π restricted to X is injective. Then $vol(X) = vol(\pi(X))$.

Definition. Let $L \subset \mathbb{R}^n$ be a rank *n* lattice, and consider the mapping $\pi : \mathbb{R}^n \to \mathbb{R}^n / L \xrightarrow{\phi} T^n$.

The *volume* of $Y \subseteq T^n$ is

$$\operatorname{vol}(Y) = \operatorname{vol}(\pi^{-1}(Y) \cap F)$$

where F is a fundamental domain for L.

Proposition. Let $X \subset \mathbb{R}^n$ be a bounded such that vol(X) exists. With notation as in the above definition, suppose that π restricted to X is injective. Then $vol(X) = vol(\pi(X))$.

Proof. See Theorem 6.7 and the accompanying Figure 6.6.

Definition. Let $X \subseteq \mathbb{R}^n$. Then X is *convex* if it contains the line segment joining each pair of points in X.

Definition. Let $X \subseteq \mathbb{R}^n$. Then X is *convex* if it contains the line segment joining each pair of points in X. In other words, if $x, y \in X$, then $\lambda x + (1 - \lambda)y \in X$ for $\lambda \in [0, 1]$.

Definition. Let $X \subseteq \mathbb{R}^n$. Then X is *convex* if it contains the line segment joining each pair of points in X. In other words, if $x, y \in X$, then $\lambda x + (1 - \lambda)y \in X$ for $\lambda \in [0, 1]$.

Example. If $P = \{p_1, \ldots, p_k\} \subset \mathbb{R}^n$, the smallest convex set containing P is

Definition. Let $X \subseteq \mathbb{R}^n$. Then X is *convex* if it contains the line segment joining each pair of points in X. In other words, if $x, y \in X$, then $\lambda x + (1 - \lambda)y \in X$ for $\lambda \in [0, 1]$.

Example. If $P = \{p_1, \ldots, p_k\} \subset \mathbb{R}^n$, the smallest convex set containing P is

$$\operatorname{conv}(P) = \left\{ \sum_{i=1}^k \lambda_i p_i : \lambda_i \ge 0 \text{ and } \sum_{i=1}^k \lambda_i = 1 \right\}.$$

Definition. Let $X \subseteq \mathbb{R}^n$. Then X is *convex* if it contains the line segment joining each pair of points in X. In other words, if $x, y \in X$, then $\lambda x + (1 - \lambda)y \in X$ for $\lambda \in [0, 1]$.

Example. If $P = \{p_1, \ldots, p_k\} \subset \mathbb{R}^n$, the smallest convex set containing P is

$$\operatorname{conv}(P) = \left\{ \sum_{i=1}^k \lambda_i p_i : \lambda_i \ge 0 \text{ and } \sum_{i=1}^k \lambda_i = 1 \right\}.$$

This set is called the *convex hull* of *P*.

Symmetry

Definition. Let $X \subseteq \mathbb{R}^n$. Then X is centrally symmetric about the origin if $x \in X$ implies $-x \in X$ for all $x \in X$.

Symmetry

Definition. Let $X \subseteq \mathbb{R}^n$. Then X is centrally symmetric about the origin if $x \in X$ implies $-x \in X$ for all $x \in X$.

We will use the abbreviation *symmetric* to mean centrally symmetric about the origin in the context of Minkowski's theorem.

Warm-up. Consider the lattice $L = \operatorname{Span}_{\mathbb{Z}} \{ (1,0), (0,1) \} \subset \mathbb{R}^2$.

Warm-up. Consider the lattice $L = \operatorname{Span}_{\mathbb{Z}}\{(1,0), (0,1)\} \subset \mathbb{R}^2$.

What is the volume of the largest convex symmetric set $X \subset \mathbb{R}^2$ containing no nonzero lattice point?

Warm-up. Consider the lattice $L = \operatorname{Span}_{\mathbb{Z}}\{(1,0), (0,1)\} \subset \mathbb{R}^2$.

What is the volume of the largest convex symmetric set $X \subset \mathbb{R}^2$ containing no nonzero lattice point?

What about the analogous question in \mathbb{R}^3 ?

Let $X \subset \mathbb{R}^n$ be bounded, convex, and symmetric.

Let $X \subset \mathbb{R}^n$ be bounded, convex, and symmetric. Suppose that

 $\operatorname{vol}(X) > 2^n \operatorname{vol}(F).$

Let $X \subset \mathbb{R}^n$ be bounded, convex, and symmetric. Suppose that

 $\operatorname{vol}(X) > 2^n \operatorname{vol}(F).$

Then X contains a nonzero lattice point.

Hypotheses: $X \subset \mathbb{R}^n$ bounded, convex, and symmetric,

Hypotheses: $X \subset \mathbb{R}^n$ bounded, convex, and symmetric, and $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$.

Hypotheses: $X \subset \mathbb{R}^n$ bounded, convex, and symmetric, and $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$.

Proof. Consider the lattice 2*L*, whose fundamental domain has volume $2^n \operatorname{vol}(F)$.

Hypotheses: $X \subset \mathbb{R}^n$ bounded, convex, and symmetric, and $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$.

Proof. Consider the lattice 2*L*, whose fundamental domain has volume $2^n \operatorname{vol}(F)$. Since $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$, it follows that $\pi \colon \mathbb{R}^n \to \mathbb{R}^n/(2L)$ is not injective when restricted to *X*.

Hypotheses: $X \subset \mathbb{R}^n$ bounded, convex, and symmetric, and $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$.

Proof. Consider the lattice 2*L*, whose fundamental domain has volume $2^n \operatorname{vol}(F)$. Since $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$, it follows that $\pi \colon \mathbb{R}^n \to \mathbb{R}^n/(2L)$ is not injective when restricted to *X*. Thus, there exist distinct $x, y \in X$ such that $\pi(x) = \pi(y)$.

Hypotheses: $X \subset \mathbb{R}^n$ bounded, convex, and symmetric, and $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$.

Proof. Consider the lattice 2*L*, whose fundamental domain has volume $2^n \operatorname{vol}(F)$. Since $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$, it follows that $\pi \colon \mathbb{R}^n \to \mathbb{R}^n/(2L)$ is not injective when restricted to *X*. Thus, there exist distinct $x, y \in X$ such that $\pi(x) = \pi(y)$. So $x - y \in 2L$, and thus

$$\frac{1}{2}(x-y)\in L.$$

Hypotheses: $X \subset \mathbb{R}^n$ bounded, convex, and symmetric, and $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$.

Proof. Consider the lattice 2*L*, whose fundamental domain has volume $2^n \operatorname{vol}(F)$. Since $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$, it follows that $\pi \colon \mathbb{R}^n \to \mathbb{R}^n/(2L)$ is not injective when restricted to *X*. Thus, there exist distinct $x, y \in X$ such that $\pi(x) = \pi(y)$. So $x - y \in 2L$, and thus

$$\frac{1}{2}(x-y)\in L.$$

Since X is symmetric, $-y \in X$.

Hypotheses: $X \subset \mathbb{R}^n$ bounded, convex, and symmetric, and $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$.

Proof. Consider the lattice 2*L*, whose fundamental domain has volume $2^n \operatorname{vol}(F)$. Since $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$, it follows that $\pi \colon \mathbb{R}^n \to \mathbb{R}^n/(2L)$ is not injective when restricted to *X*. Thus, there exist distinct $x, y \in X$ such that $\pi(x) = \pi(y)$. So $x - y \in 2L$, and thus

$$\frac{1}{2}(x-y)\in L.$$

Since X is symmetric, $-y \in X$. Since X is convex, it follows that

$$\frac{1}{2}(x-y) = \frac{1}{2}x + \frac{1}{2}(-y) \in X.$$

Hypotheses: $X \subset \mathbb{R}^n$ bounded, convex, and symmetric, and $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$.

Proof. Consider the lattice 2*L*, whose fundamental domain has volume $2^n \operatorname{vol}(F)$. Since $\operatorname{vol}(X) > 2^n \operatorname{vol}(F)$, it follows that $\pi \colon \mathbb{R}^n \to \mathbb{R}^n/(2L)$ is not injective when restricted to *X*. Thus, there exist distinct $x, y \in X$ such that $\pi(x) = \pi(y)$. So $x - y \in 2L$, and thus

$$\frac{1}{2}(x-y)\in L.$$

Since X is symmetric, $-y \in X$. Since X is convex, it follows that

$$\frac{1}{2}(x-y) = \frac{1}{2}x + \frac{1}{2}(-y) \in X.$$

Since $x \neq y$, we have (x - y)/2 is a nonzero lattice point in X. \Box