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Two squares theorem

Theorem. Let p € Z be a prime number, and suppose
that p =1 mod 4. Then

p=x>+y?

for some x,y € Z.



Proof

Step 1. Pick u € {1,...,p — 1} such that > = —1 mod p.
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Step 1. Pick u € {1,...,p — 1} such that v> = —1 mod p. Why
this is possible:
(Z)pZ)* ~Z)mZ x --- x L/ nkZ

with n; > 1, ny|na|---|nk and some k > 0. We get p — 1 solutions
to x™ —1 € Fp[x]. Song > p—1. But ny---ng = p— 1. Hence,
ng<p—1 Sok=1,and (Z/pZ)* ~Z/(p — 1)Z.

By assumption, p = 1 + 4k for some k. Let v be a generator

of (Z/pZ)*, and define u = v¥. It follows

that u* = v* = vP~1 = 1 mod p, and u? # 1 mod p (since v has
order 4). Since

u* —1=(v* - 1)(v* + 1) = 0 mod p,

it follows that u?> = —1 mod p.
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Step 2. Having fixed u € {1,...,p — 1} such
that u?> = —1 mod p, define

L = Spanz{(0, p), (1,u)} C Z* C R?

Then L is a rank 2 lattice in R2, and the area of a fundamental

domain F for L is
01 -
poul| P



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? = %p



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? 2p We have

vol(X) = mr?



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? 2p We have

vol(X) = nr? = gwp



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? 2p We have

vol(X) = nr? = gwp > 4p = 22 vol(F).



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? 2p We have

vol(X) = nr? = gﬂp > 4p = 22 vol(F).

Minkowski: there exists a nonzero lattice point (x,y) € LN X.



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? = p We have

vol(X) = nr? = gwp > 4p = 22 vol(F).
Minkowski: there exists a nonzero lattice point (x,y) € LN X.

(x,y)GX:>x2+y2§r2:%p<2p.



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? 2p We have

3
vol(X) = nr? = 5TP > 4p = 22 vol(F).
Minkowski: there exists a nonzero lattice point (x,y) € LN X.
(x,y)GX:>x2+y2§r2:%p<2p.
(x,y) € L= x? + y? is divisible by p (check).



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? 2p We have

3
vol(X) = nr? = 5TP > 4p = 22 vol(F).
Minkowski: there exists a nonzero lattice point (x,y) € LN X.
(x,y)GX:>x2+y2§r2:%p<2p.
(x,y) € L= x? + y? is divisible by p (check).
So x? + y? = kp for some k € Z~g.



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? = p We have

vol(X) = nr? = gﬂp > 4p = 22 vol(F).
Minkowski: there exists a nonzero lattice point (x,y) € LN X.
(x,y)GX:>x2+y2§r2:%p<2p.
(x,y) € L= x? + y? is divisible by p (check).
So x? + y? = kp for some k € Z~g.
However, x2 + y2 < 2p.



Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R? where r? = p We have

vol(X) = nr? = gﬂp > 4p = 22 vol(F).
Minkowski: there exists a nonzero lattice point (x,y) € LN X.
(x,y)GX:>x2+y2§r2:%p<2p.
(x,y) € L= x? + y? is divisible by p (check).
So x? + y? = kp for some k € Z~g.
However, x2 + y2 < 2p.

It follows that x% + y? = p.



Four squares theorem

Theorem. Every positive integer is the sum of four integer squares.
In other words, if n € Z, then there exist a, b, ¢, d € Z such that

n=a’+b>+c*+d°



Proof

Step 1. It suffices to prove the result for primes p since

(22 + b+ P+ d?)(A2+ B2+ C? + D?) =
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Step 1. It suffices to prove the result for primes p since
(22 + b+ P+ d?)(A2+ B2+ C? + D?) =

(aA — bB — cC — dD)? + (aB + bA + cD — dC)?
+ (aC — bD + cA + dB)? + (aD + bC — cB + dA)?

for all a,b,c,d,A,B,C,D € Z.
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Step 2. The result holds for p = 2
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Step 2. The result holds for p = 2 since 2 = 12 + 12 4 0% + 0°.
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Step 3. Let p be an odd prime. We claim there exist u,v € Z
such that

u? 4+ v? = —1 mod p.

Reason:
|{u? modp:ue{O,l,...,p—l}}]:PTH_
{—1—v? modp:ve{O,l,...,p—l}}‘:Fil.

The two sets above are not disjoint since P L % =p+1>p.
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Step 3. Let p be an odd prime. We claim there exist u,v € Z
such that
u? 4+ v? = —1 mod p.

Reason:
{v’mod p:u€{0,1,...,p—1}} = 2L
2 )
{-1-v?modp:ve{0,1,....,p—1}} =2
The two sets above are not disjoint since %1 + %1 =p+1>p.

So there exist u, v € Z such that u?> = —1 — v mod p.
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L = colspany,

S O

S < =) O
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Step 4.
1 000
L = colspany, 0 100
uv p 0
—v u 0 p

vol(F) = |Z*/L| = p? for a fundamental domain F.
Apply Minkowski with X being a ball of radius r = 1/1.9p.

2.4

vol(X) = Tt = T 52 5 9452 — 4] (F)
Minkowski: there exists a nonzero ¢ = (a,b,c,d) € LN X.
leEX=a%+b+2+d><r>=19p < 2p.

(€ L= a%+ b+ c?+d?>=0mod p.

So a° + b%® + ¢? 4+ d? = kp is a positive multiple of p that is less
then 2p. Therefore, a® + b + c? + d? = p. O



