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Two squares theorem

Theorem. Let p ∈ Z be a prime number, and suppose
that p = 1 mod 4. Then

p = x2 + y2

for some x , y ∈ Z.



Proof

Step 1. Pick u ∈ {1, . . . , p − 1} such that u2 = −1 mod p.

Why
this is possible:

(Z/pZ)∗ ' Z/n1Z× · · · × Z/nkZ

with n1 ≥ 1, n1|n2| · · · |nk and some k ≥ 0. We get p − 1 solutions
to xnk − 1 ∈ Fp[x ]. So nk ≥ p − 1. But n1 · · · nk = p − 1. Hence,
nk ≤ p − 1. So k = 1, and (Z/pZ)∗ ' Z/(p − 1)Z.

By assumption, p = 1 + 4k for some k. Let v be a generator
of (Z/pZ)∗, and define u = vk . It follows
that u4 = v4k = vp−1 = 1 mod p, and u2 6= 1 mod p (since v has
order 4). Since

u4 − 1 = (u2 − 1)(u2 + 1) = 0 mod p,

it follows that u2 = −1 mod p.
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Proof

Step 2. Having fixed u ∈ {1, . . . , p − 1} such
that u2 = −1 mod p, define

L = SpanZ{(0, p), (1, u)} ⊂ Z2 ⊂ R2

Then L is a rank 2 lattice in R2, and the area of a fundamental
domain F for L is ∣∣∣∣∣

(
0 1
p u

)∣∣∣∣∣ = p.
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Proof

Step 3. Let X be the unit disc of radius r centered at the origin
in R2 where r2 = 3

2p.

We have

vol(X ) = πr2 = 3
2πp > 4p = 22 vol(F ).

Minkowski: there exists a nonzero lattice point (x , y) ∈ L ∩ X .

(x , y) ∈ X ⇒ x2 + y2 ≤ r2 = 3
2p < 2p.

(x , y) ∈ L⇒ x2 + y2 is divisible by p (check).

So x2 + y2 = kp for some k ∈ Z>0.

However, x2 + y2 < 2p.

It follows that x2 + y2 = p. �
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Four squares theorem

Theorem. Every positive integer is the sum of four integer squares.
In other words, if n ∈ Z, then there exist a, b, c, d ∈ Z such that

n = a2 + b2 + c2 + d2.



Proof

Step 1. It suffices to prove the result for primes p since

(a2 + b2 + c2 + d2)(A2 + B2 + C2 + D2) =

(aA− bB − cC − dD)2 + (aB + bA + cD − dC)2

+ (aC − bD + cA + dB)2 + (aD + bC − cB + dA)2

for all a, b, c, d ,A,B,C ,D ∈ Z.
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Proof

Step 2. The result holds for p = 2

since 2 = 12 + 12 + 02 + 02.



Proof

Step 2. The result holds for p = 2 since 2 = 12 + 12 + 02 + 02.



Proof

Step 3. Let p be an odd prime. We claim there exist u, v ∈ Z
such that

u2 + v2 = −1 mod p.

Reason:

|{u2 mod p : u ∈ {0, 1, . . . , p − 1}}| = p+1
2 .

|{−1− v2 mod p : v ∈ {0, 1, . . . , p − 1}}| = p+1
2 .

The two sets above are not disjoint since p+1
2 + p+1

2 = p + 1 > p.

So there exist u, v ∈ Z such that u2 = −1− v2 mod p.
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Proof

Step 4.

L = colspanZ


1 0 0 0
0 1 0 0
u v p 0
−v u 0 p

 .

vol(F ) = |Z4/L| = p2 for a fundamental domain F .

Apply Minkowski with X being a ball of radius r =
√

1.9p.

vol(X ) = π2r4

2 = π2(1.9)2

2 p2 > 24p2 = 24 vol(F )

Minkowski: there exists a nonzero ` = (a, b, c, d) ∈ L ∩ X .

` ∈ X ⇒ a2 + b2 + c2 + d2 ≤ r2 = 1.9p < 2p.

` ∈ L⇒ a2 + b2 + c2 + d2 = 0 mod p.

So a2 + b2 + c2 + d2 = kp is a positive multiple of p that is less
then 2p. Therefore, a2 + b2 + c2 + d2 = p. �
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