Math 361

March 29, 2023



Quiz

1. Let R be a commutative ring with 1.

(i) What does it mean to say p € R is prime.
(i) What does it mean to say an ideal P of R is prime?

2. How does the Smith normal form allow us to determine the
structure of D, /a for an ideal a in the number ring Ok?
(i) What is the relevant commutative diagram that allows us to
turn this question into a question about matrices?
(i) What is the size of Ok /a in terms of this matrix?



Today

» Finish up Monday's work.
» Ok is almost a PID always.

» Factoring rational primes in number rings having power bases.



Catch up

See Monday's slides.
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gcds and |lcms for ideals

Let a, b be ideals in Ok.

Definition. gcd(a,b) = ¢ if

» c|a and ¢|b, and

» if D is any ideal dividing a and b, then d|c
ged(a,b) =a+b

Definition. lecm(a, b) = ¢ if
» alc and b|c, and
» if D is any ideal divisible by a and b, then ¢[d

lem(a,b) =anb
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gcds and |lcms for ideals

If we have factorizations into primes
k k
i _ ¢
a=]]»r7 and b=]]p;,
i=1 i=1
(taking some e; = 0 or ¢; = 0, if necessary), then

k
ged(a,b) = Hp;mn{e"’e"} and lem(a,b) =
i=1
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gcds and |lcms for ideals

If we have factorizations into primes

K K
a=]]p and b=]]p/,
i=1 i=1
(taking some e; = 0 or ¢; = 0, if necessary), then

gcd(a, b) H min{eiti}  and lem(a, b) H max{ei,fi}.
i=1

In particular, if a and b relatively prime,
then a4+ b = gecd(a, b) = (1) = Ok.



Ok almost a PID

Theorem. Let a be a nonzero ideal of Ok, and let 0 # § € a.
Then there exists o € Ok such that

a=(a,f).

Proof. We first prove a lemma (see the lecture notes and Lemma
5.19 in the text) saying that if a and b are nonzero ideals of O,
then there exists a € a such that

aat +b=9k.
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Ok almost a PID

Theorem. Let a be a nonzero ideal of Ok, and let 0 # § € a.
Then there exists o € Ok such that

a=(a,f).

Proof. We first prove a lemma (see the lecture notes and Lemma
5.19 in the text) saying that if a and b are nonzero ideals of O,
then there exists a € a such that

aat +b=9k.

The result then follows by letting b = Ba~!. (Note that Ba~! is an
ideal since 5 € a.)
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Factorization of rational integers in number rings

Let p be a prime ideal of k. Last time, we saw that there exists a
unique rational prime p such that N(p) = pf where 1 < f < n.
The integer f is called the inertial degree of p.

Theorem (e;-f; theorem) Let p be a rational prime, and say
(p) = T15.; p¥ is the prime factorization of the ideal (p) in Ok.

Then
k
Z eif; = n.
i=1

were f; is the inertial degree of p; for each i and n = [K : Q].

Proof.

k

k k
p" = N((p) = [ N(p)" = [[ o = p2sma .

i=1 i=1

Equate coefficients. O
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Factorization of rational integers in number rings

Say K = Q(0) and Dk = Z[0)]. Suppose that p is a rational prime,
and let f be the minimal polynomial for 6 over Q.
Suppose that

k
=17
i=1

is the factorization of f as an element of F,[x] into monic
irreducibles f; (where F,, := Z/pZ). Let p; = (p, f;(0)) for
i=1,...,k. Then each p; is prime and

k

k
(p) =[] v =[] (p. fi(0))
i=1

i=1

is the prime factorization of (p) in O.
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Consider the case K = Q(1/—6).

How do (2), (5), (10), and (7) factor into primes in Ox?
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Proof of Theorem. We have the surjections
ZIx] = Fpx] = Fp[x]/(fi) = Z[x]/(p, f})
and f is in the kernel. So we get a well-defined surjection
¢i: Z[0] = Z[x]/(f) = Fp[x]/(f;) = Z[x]/(p, fi).

Hence, Z[0]/ ker(¢i) ~ Fp[x]/(f;) = Z[x]/(p, f;). Now f; irreducible
= (f;) maximal in F[x] = F,[x]/(f;) is a field = ker(¢;) maximal.
However, ker(¢;) = (p, fi(0)). Therefore, (p, f;(0)) is prime in Z[0].
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It (p, fi(0)) = (p, £(0)), then
fi(6) € (p, fi(0)) € ker(¢i) = ¢i(fj) = 0= fi(x) € (p, ).

So f; = hfy mod p, i.e., f; = hf; in Fy[x]. However, f; is irreducible.
So his a unit, i.e., a constant in [F,. Since f; and f; are monic,
h =1. Done.
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We now show that

k
(p) = [1(p. i(0))°.
i=1
We use the fact that for ideals in Ok,
(a+b)(a+¢c) Ca+be.
[T (p, £i(0))% = T2y ((P) + ((6))* C ITiea((p) + (£:(6)%))
C (p) + (ITEL H(0)%) = (p) + (£(0)) = ().

So (p) divides [T/ (p, fi(0))% = IT/=y bf'-
Hence, (p) =[5, p!’ for some 0 < ¢; < ;.
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where the a; are F, = Z/pZ and d; = deg(f;). Therefore,
IF,[x]/(f)| = pdeelf). It follows that

di—1

k k .
o7 = TI N = ] s — st
i=1 i=1
and hence n = 3K ; deg(f;)¢;. On the other hand, f = [[&; £
implies n = deg(f) = Y.k, deg(f;)e;. Since 0 < ¢; < e;, we must
have ¢; = ¢; for all i. O



