
Math 361

March 29, 2023



Quiz

1. Let R be a commutative ring with 1.
(i) What does it mean to say p ∈ R is prime.
(ii) What does it mean to say an ideal P of R is prime?

2. How does the Smith normal form allow us to determine the
structure of OK/a for an ideal a in the number ring OK ?

(i) What is the relevant commutative diagram that allows us to
turn this question into a question about matrices?

(ii) What is the size of OK/a in terms of this matrix?



Today

I Finish up Monday’s work.
I OK is almost a PID always.
I Factoring rational primes in number rings having power bases.



Catch up

See Monday’s slides.



gcds and lcms for ideals

Let a, b be ideals in OK .

Definition. gcd(a, b) = c if
I c|a and c|b, and
I if d is any ideal dividing a and b, then d|c

gcd(a, b) = a + b

Definition. lcm(a, b) = c if
I a|c and b|c, and
I if d is any ideal divisible by a and b, then c|d

lcm(a, b) = a ∩ b
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gcds and lcms for ideals

If we have factorizations into primes

a =
k∏

i=1
pei

i and b =
k∏

i=1
p`i

i ,

(taking some ei = 0 or `i = 0, if necessary),

then

gcd(a, b) =
k∏

i=1
p

min{ei ,`i}
i and lcm(a, b) =

k∏
i=1

p
max{ei ,`i}
i .

In particular, if a and b relatively prime,
then a + b = gcd(a, b) = (1) = OK .
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OK almost a PID

Theorem. Let a be a nonzero ideal of OK , and let 0 6= β ∈ a.
Then there exists α ∈ OK such that

a = (α, β).

Proof. We first prove a lemma (see the lecture notes and Lemma
5.19 in the text) saying that if a and b are nonzero ideals of OK ,
then there exists α ∈ a such that

αa−1 + b = OK .

The result then follows by letting b = βa−1. (Note that βa−1 is an
ideal since β ∈ a.)



OK almost a PID

Theorem. Let a be a nonzero ideal of OK , and let 0 6= β ∈ a.
Then there exists α ∈ OK such that

a = (α, β).

Proof. We first prove a lemma (see the lecture notes and Lemma
5.19 in the text) saying that if a and b are nonzero ideals of OK ,
then there exists α ∈ a such that

αa−1 + b = OK .

The result then follows by letting b = βa−1.

(Note that βa−1 is an
ideal since β ∈ a.)



OK almost a PID

Theorem. Let a be a nonzero ideal of OK , and let 0 6= β ∈ a.
Then there exists α ∈ OK such that

a = (α, β).

Proof. We first prove a lemma (see the lecture notes and Lemma
5.19 in the text) saying that if a and b are nonzero ideals of OK ,
then there exists α ∈ a such that

αa−1 + b = OK .

The result then follows by letting b = βa−1. (Note that βa−1 is an
ideal since β ∈ a.)



Factorization of rational integers in number rings

Let p be a prime ideal of OK . Last time, we saw that there exists a
unique rational prime p such that N(p) = pf where 1 ≤ f ≤ n.
The integer f is called the inertial degree of p.

Theorem (ei -fi theorem) Let p be a rational prime, and say
(p) =

∏k
i=1 p

ei
i is the prime factorization of the ideal (p) in OK .

Then
k∑

i=1
ei fi = n.

were fi is the inertial degree of pi for each i and n = [K : Q].

Proof.

pn = N((p)) =
k∏

i=1
N(pi )ei =

k∏
i=1

pfi ei = p
∑k

i=1 ei fi .

Equate coefficients. �
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Factorization of rational integers in number rings

Say K = Q(θ) and OK = Z[θ].

Suppose that p is a rational prime,
and let f be the minimal polynomial for θ over Q.
Suppose that

f =
k∏

i=1
f ei

i

is the factorization of f as an element of Fp[x ] into monic
irreducibles f i (where Fp := Z/pZ). Let pi = (p, fi (θ)) for
i = 1, . . . , k. Then each pi is prime and

(p) =
k∏

i=1
pei

i =
k∏

i=1
(p, fi (θ))ei

is the prime factorization of (p) in OK .
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Examples

Consider the case K = Q(
√
−6).

How do (2), (5), (10), and (7) factor into primes in OK ?
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Proof of theorem

Proof of Theorem.

We have the surjections

Z[x ]→ Fp[x ]→ Fp[x ]/(fi ) = Z[x ]/(p, fi )

and f is in the kernel. So we get a well-defined surjection

φi : Z[θ] ' Z[x ]/(f )→ Fp[x ]/(fi ) = Z[x ]/(p, fi ).

Hence, Z[θ]/ ker(φi ) ' Fp[x ]/(fi ) = Z[x ]/(p, fi ). Now fi irreducible
⇒ (fi ) maximal in Fp[x ] ⇒ Fp[x ]/(fi ) is a field ⇒ ker(φi ) maximal.
However, ker(φi ) = (p, fi (θ))

.

Therefore, (p, fi (θ)) is prime in Z[θ].
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Proof of theorem

We now show that

(p) =
k∏

i=1
(p, fi (θ))ei .

We use the fact that for ideals in OK ,

(a + b)(a + c) ⊆ a + bc.∏k
i=1(p, fi (θ))ei =

∏k
i=1 ((p) + (fi (θ)))ei ⊆

∏k
i=1((p) + (fi (θ)ei ))

⊆ (p) +
(∏k

i=1 fi (θ)ei
)

= (p) + (f (θ)) = (p).

So (p) divides
∏k

i=1(p, fi (θ))ei =
∏k

i=1 p
ei
i .

Hence, (p) =
∏k

i=1 p
`i
i for some 0 ≤ `i ≤ ei .
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Proof of theorem

We have (p) =
∏k

i=1 p
`i
i for some 0 ≤ `i ≤ ei .

Take norms:

N(pi ) = |Z[θ]/pi |

and
Z[θ]/pi = Z[θ]/ ker(φi ) ' Fp[x ]/(fi ).

The elements of Fp[x ]/(fi ) are exactly a0 + a1x + · · ·+ adi−1xdi−1

where the ai are Fp = Z/pZ and di = deg(fi ). Therefore,
|Fp[x ]/(fi )| = pdeg(fi ). It follows that

pn =
k∏

i=1
N(pi )`i =

k∏
i=1

pdeg(fi )`i = p
∑k

i=1 deg(fi )`i ,

and hence n =
∑k

i=1 deg(fi )`i . On the other hand, f =
∏k

i=1 f ei
i

implies n = deg(f ) =
∑k

i=1 deg(fi )ei . Since 0 ≤ `i ≤ ei , we must
have `i = ei for all i . �
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