Math 361

March 29, 2023

Quiz

- 1. Let R be a commutative ring with 1.
 - (i) What does it mean to say $p \in R$ is prime.
 - (ii) What does it mean to say an ideal P of R is prime?
- 2. How does the Smith normal form allow us to determine the structure of $\mathfrak{O}_{\mathcal{K}}/\mathfrak{a}$ for an ideal \mathfrak{a} in the number ring $\mathfrak{O}_{\mathcal{K}}$?
 - (i) What is the relevant commutative diagram that allows us to turn this question into a question about matrices?
 - (ii) What is the size of $\mathfrak{O}_{\mathcal{K}}/\mathfrak{a}$ in terms of this matrix?

Today

- Finish up Monday's work.
- \mathfrak{O}_K is almost a PID always.
- ▶ Factoring rational primes in number rings having power bases.

Catch up

See Monday's slides.

Let \mathfrak{a} , \mathfrak{b} be ideals in \mathfrak{O}_K .

Let \mathfrak{a} , \mathfrak{b} be ideals in \mathfrak{O}_K .

Definition. $gcd(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if

Let \mathfrak{a} , \mathfrak{b} be ideals in $\mathfrak{O}_{\mathcal{K}}$.

Definition. $gcd(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if

 \triangleright $\mathfrak{c}|\mathfrak{a}$ and $\mathfrak{c}|\mathfrak{b}$, and

Let \mathfrak{a} , \mathfrak{b} be ideals in \mathfrak{O}_K .

Definition. $gcd(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if

 $\blacktriangleright \ \mathfrak{c} | \mathfrak{a}$ and $\mathfrak{c} | \mathfrak{b}$, and

▶ if ϑ is any ideal dividing \mathfrak{a} and \mathfrak{b} , then $\vartheta|\mathfrak{c}$

Let $\mathfrak{a}, \mathfrak{b}$ be ideals in \mathfrak{O}_K .

Definition. $\mathsf{gcd}(\mathfrak{a},\mathfrak{b})=\mathfrak{c}$ if

 $\blacktriangleright \ \mathfrak{c} | \mathfrak{a}$ and $\mathfrak{c} | \mathfrak{b}$, and

 \blacktriangleright if $\mathfrak d$ is any ideal dividing $\mathfrak a$ and $\mathfrak b,$ then $\mathfrak d|\mathfrak c$

 $\mathsf{gcd}(\mathfrak{a},\mathfrak{b}) = \mathfrak{a} + \mathfrak{b}$

Let \mathfrak{a} , \mathfrak{b} be ideals in \mathfrak{O}_K .

Definition. $gcd(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if \triangleright $c|\mathfrak{a}$ and $c|\mathfrak{b}$, and

▶ if ϑ is any ideal dividing \mathfrak{a} and \mathfrak{b} , then $\vartheta|\mathfrak{c}$

 $\mathsf{gcd}(\mathfrak{a},\mathfrak{b}) = \mathfrak{a} + \mathfrak{b}$

Definition. $lcm(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if

Let \mathfrak{a} , \mathfrak{b} be ideals in \mathfrak{O}_K .

Definition. $gcd(\mathfrak{a},\mathfrak{b}) = \mathfrak{c}$ if

 $\blacktriangleright \ \mathfrak{c} | \mathfrak{a}$ and $\mathfrak{c} | \mathfrak{b},$ and

 \blacktriangleright if ϑ is any ideal dividing $\mathfrak a$ and $\mathfrak b,$ then $\vartheta|\mathfrak c$

 $\mathsf{gcd}(\mathfrak{a},\mathfrak{b})=\mathfrak{a}+\mathfrak{b}$

Definition. $lcm(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if $\blacktriangleright \mathfrak{a}|\mathfrak{c}$ and $\mathfrak{b}|\mathfrak{c}$, and

Let \mathfrak{a} , \mathfrak{b} be ideals in \mathfrak{O}_K .

Definition. $gcd(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if

▶ $\mathfrak{c}|\mathfrak{a}$ and $\mathfrak{c}|\mathfrak{b}$, and

 \blacktriangleright if ϑ is any ideal dividing $\mathfrak a$ and $\mathfrak b,$ then $\vartheta|\mathfrak c$

 $\mathsf{gcd}(\mathfrak{a},\mathfrak{b})=\mathfrak{a}+\mathfrak{b}$

Definition. $lcm(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if

▶ $\mathfrak{a}|\mathfrak{c}$ and $\mathfrak{b}|\mathfrak{c}$, and

 \blacktriangleright if $\mathfrak d$ is any ideal divisible by $\mathfrak a$ and $\mathfrak b,$ then $\mathfrak c|\mathfrak d$

Let \mathfrak{a} , \mathfrak{b} be ideals in \mathfrak{O}_K .

Definition. $gcd(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if

▶ $\mathfrak{c}|\mathfrak{a}$ and $\mathfrak{c}|\mathfrak{b}$, and

 \blacktriangleright if ϑ is any ideal dividing $\mathfrak a$ and $\mathfrak b,$ then $\vartheta|\mathfrak c$

 $\mathsf{gcd}(\mathfrak{a},\mathfrak{b}) = \mathfrak{a} + \mathfrak{b}$

Definition. $lcm(\mathfrak{a}, \mathfrak{b}) = \mathfrak{c}$ if

▶ $\mathfrak{a}|\mathfrak{c}$ and $\mathfrak{b}|\mathfrak{c}$, and

 \blacktriangleright if ${\mathfrak d}$ is any ideal divisible by ${\mathfrak a}$ and ${\mathfrak b},$ then ${\mathfrak c}|{\mathfrak d}$

 $\operatorname{lcm}(\mathfrak{a},\mathfrak{b}) = \mathfrak{a} \cap \mathfrak{b}$

If we have factorizations into primes

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}$$
 and $\mathfrak{b} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}},$

(taking some $e_i = 0$ or $\ell_i = 0$, if necessary),

If we have factorizations into primes

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}$$
 and $\mathfrak{b} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$

(taking some $e_i = 0$ or $\ell_i = 0$, if necessary), then

 $gcd(\mathfrak{a},\mathfrak{b}) =$

If we have factorizations into primes

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}$$
 and $\mathfrak{b} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$

(taking some $e_i = 0$ or $\ell_i = 0$, if necessary), then

$$\mathsf{gcd}(\mathfrak{a},\mathfrak{b}) = \prod_{i=1}^k \mathfrak{p}_i^{\min\{e_i,\ell_i\}}$$

If we have factorizations into primes

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}$$
 and $\mathfrak{b} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$

(taking some $e_i = 0$ or $\ell_i = 0$, if necessary), then

$$\gcd(\mathfrak{a},\mathfrak{b})=\prod_{i=1}^{k}\mathfrak{p}_{i}^{\min\{e_{i},\ell_{i}\}}$$
 and $\operatorname{lcm}(\mathfrak{a},\mathfrak{b})=$

If we have factorizations into primes

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}$$
 and $\mathfrak{b} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}},$

(taking some $e_i = 0$ or $\ell_i = 0$, if necessary), then

$$\gcd(\mathfrak{a},\mathfrak{b})=\prod_{i=1}^{k}\mathfrak{p}_{i}^{\min\{e_{i},\ell_{i}\}}$$
 and $\operatorname{lcm}(\mathfrak{a},\mathfrak{b})=\prod_{i=1}^{k}\mathfrak{p}_{i}^{\max\{e_{i},\ell_{i}\}}.$

If we have factorizations into primes

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}$$
 and $\mathfrak{b} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}},$

(taking some $e_i = 0$ or $\ell_i = 0$, if necessary), then

$$\mathsf{gcd}(\mathfrak{a},\mathfrak{b}) = \prod_{i=1}^k \mathfrak{p}_i^{\min\{e_i,\ell_i\}} \quad \mathsf{and} \quad \mathrm{lcm}(\mathfrak{a},\mathfrak{b}) = \prod_{i=1}^k \mathfrak{p}_i^{\max\{e_i,\ell_i\}}.$$

In particular, if \mathfrak{a} and \mathfrak{b} relatively prime, then $\mathfrak{a} + \mathfrak{b} = \gcd(\mathfrak{a}, \mathfrak{b}) = (1) = \mathfrak{O}_K$.

$\mathfrak{O}_{\mathcal{K}}$ almost a PID

Theorem. Let \mathfrak{a} be a nonzero ideal of \mathfrak{O}_K , and let $0 \neq \beta \in \mathfrak{a}$. Then there exists $\alpha \in \mathfrak{O}_K$ such that

$$\mathfrak{a} = (\alpha, \beta).$$

Proof. We first prove a lemma (see the lecture notes and Lemma 5.19 in the text) saying that if \mathfrak{a} and \mathfrak{b} are nonzero ideals of \mathfrak{O}_{K} , then there exists $\alpha \in \mathfrak{a}$ such that

$$\alpha \mathfrak{a}^{-1} + \mathfrak{b} = \mathfrak{O}_K.$$

$\mathfrak{O}_{\mathcal{K}}$ almost a PID

Theorem. Let \mathfrak{a} be a nonzero ideal of \mathfrak{O}_K , and let $0 \neq \beta \in \mathfrak{a}$. Then there exists $\alpha \in \mathfrak{O}_K$ such that

$$\mathfrak{a} = (\alpha, \beta).$$

Proof. We first prove a lemma (see the lecture notes and Lemma 5.19 in the text) saying that if \mathfrak{a} and \mathfrak{b} are nonzero ideals of \mathfrak{O}_{K} , then there exists $\alpha \in \mathfrak{a}$ such that

$$\alpha \mathfrak{a}^{-1} + \mathfrak{b} = \mathfrak{O}_K.$$

The result then follows by letting $\mathfrak{b} = \beta \mathfrak{a}^{-1}$.

$\mathfrak{O}_{\mathcal{K}}$ almost a PID

Theorem. Let \mathfrak{a} be a nonzero ideal of \mathfrak{O}_K , and let $0 \neq \beta \in \mathfrak{a}$. Then there exists $\alpha \in \mathfrak{O}_K$ such that

$$\mathfrak{a} = (\alpha, \beta).$$

Proof. We first prove a lemma (see the lecture notes and Lemma 5.19 in the text) saying that if \mathfrak{a} and \mathfrak{b} are nonzero ideals of \mathfrak{O}_{K} , then there exists $\alpha \in \mathfrak{a}$ such that

$$\alpha \mathfrak{a}^{-1} + \mathfrak{b} = \mathfrak{O}_K.$$

The result then follows by letting $\mathfrak{b} = \beta \mathfrak{a}^{-1}$. (Note that $\beta \mathfrak{a}^{-1}$ is an ideal since $\beta \in \mathfrak{a}$.)

Let \mathfrak{p} be a prime ideal of \mathfrak{O}_K . Last time, we saw that there exists a unique rational prime p such that $N(\mathfrak{p}) = p^f$ where $1 \le f \le n$. The integer f is called the *inertial degree* of \mathfrak{p} .

Let \mathfrak{p} be a prime ideal of \mathfrak{O}_K . Last time, we saw that there exists a unique rational prime p such that $N(\mathfrak{p}) = p^f$ where $1 \le f \le n$. The integer f is called the *inertial degree* of \mathfrak{p} .

Theorem (e_i - f_i theorem) Let p be a rational prime, and say $(p) = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i}$ is the prime factorization of the ideal (p) in \mathfrak{O}_K . Then

$$\sum_{i=1}^{\kappa} e_i f_i = n.$$

were f_i is the inertial degree of \mathfrak{p}_i for each i and $n = [K : \mathbb{Q}]$.

Let \mathfrak{p} be a prime ideal of $\mathfrak{O}_{\mathcal{K}}$. Last time, we saw that there exists a unique rational prime p such that $N(\mathfrak{p}) = p^f$ where $1 \le f \le n$. The integer f is called the *inertial degree* of \mathfrak{p} .

Theorem (e_i - f_i theorem) Let p be a rational prime, and say $(p) = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i}$ is the prime factorization of the ideal (p) in \mathfrak{O}_K . Then

$$\sum_{i=1}^{\kappa} e_i f_i = n.$$

were f_i is the inertial degree of \mathfrak{p}_i for each i and $n = [K : \mathbb{Q}]$. **Proof.**

$$p^n = N((p)) =$$

Let \mathfrak{p} be a prime ideal of \mathfrak{O}_K . Last time, we saw that there exists a unique rational prime p such that $N(\mathfrak{p}) = p^f$ where $1 \le f \le n$. The integer f is called the *inertial degree* of \mathfrak{p} .

Theorem (e_i - f_i theorem) Let p be a rational prime, and say $(p) = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i}$ is the prime factorization of the ideal (p) in \mathfrak{O}_K . Then

$$\sum_{i=1}^{\kappa} e_i f_i = n.$$

were f_i is the inertial degree of \mathfrak{p}_i for each i and $n = [K : \mathbb{Q}]$. **Proof.**

$$p^n = N((p)) = \prod_{i=1}^k N(\mathfrak{p}_i)^{\mathbf{e}_i} =$$

Let \mathfrak{p} be a prime ideal of \mathfrak{O}_K . Last time, we saw that there exists a unique rational prime p such that $N(\mathfrak{p}) = p^f$ where $1 \le f \le n$. The integer f is called the *inertial degree* of \mathfrak{p} .

Theorem (e_i - f_i theorem) Let p be a rational prime, and say $(p) = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i}$ is the prime factorization of the ideal (p) in \mathfrak{O}_K . Then

$$\sum_{i=1}^{\kappa} e_i f_i = n.$$

were f_i is the inertial degree of \mathfrak{p}_i for each i and $n = [K : \mathbb{Q}]$. **Proof.**

$$p^n = N((p)) = \prod_{i=1}^k N(\mathfrak{p}_i)^{e_i} = \prod_{i=1}^k p^{f_i e_i} = p^{\sum_{i=1}^k e_i f_i}.$$

Let \mathfrak{p} be a prime ideal of $\mathfrak{O}_{\mathcal{K}}$. Last time, we saw that there exists a unique rational prime p such that $N(\mathfrak{p}) = p^f$ where $1 \le f \le n$. The integer f is called the *inertial degree* of \mathfrak{p} .

Theorem (e_i - f_i theorem) Let p be a rational prime, and say $(p) = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i}$ is the prime factorization of the ideal (p) in \mathfrak{O}_K . Then

$$\sum_{i=1}^{\kappa} e_i f_i = n.$$

were f_i is the inertial degree of \mathfrak{p}_i for each i and $n = [K : \mathbb{Q}]$. **Proof.**

$$p^n = N((p)) = \prod_{i=1}^k N(\mathfrak{p}_i)^{e_i} = \prod_{i=1}^k p^{f_i e_i} = p^{\sum_{i=1}^k e_i f_i}$$

Equate coefficients.

Say $K = \mathbb{Q}(\theta)$ and $\mathfrak{O}_K = \mathbb{Z}[\theta]$.

Say $K = \mathbb{Q}(\theta)$ and $\mathfrak{O}_K = \mathbb{Z}[\theta]$. Suppose that p is a rational prime, and let f be the minimal polynomial for θ over \mathbb{Q} .

Say $K = \mathbb{Q}(\theta)$ and $\mathfrak{O}_K = \mathbb{Z}[\theta]$. Suppose that p is a rational prime, and let f be the minimal polynomial for θ over \mathbb{Q} . Suppose that

$$\overline{f} = \prod_{i=1}^{k} \overline{f}_{i}^{e_{i}}$$

is the factorization of f as an element of $\mathbb{F}_p[x]$ into monic irreducibles \overline{f}_i (where $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$).

Say $K = \mathbb{Q}(\theta)$ and $\mathfrak{O}_K = \mathbb{Z}[\theta]$. Suppose that p is a rational prime, and let f be the minimal polynomial for θ over \mathbb{Q} . Suppose that

$$\overline{f} = \prod_{i=1}^{k} \overline{f}_{i}^{e_{i}}$$

is the factorization of f as an element of $\mathbb{F}_p[x]$ into monic irreducibles \overline{f}_i (where $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$). Let $\mathfrak{p}_i = (p, f_i(\theta))$ for $i = 1, \ldots, k$.

Say $K = \mathbb{Q}(\theta)$ and $\mathfrak{O}_K = \mathbb{Z}[\theta]$. Suppose that p is a rational prime, and let f be the minimal polynomial for θ over \mathbb{Q} . Suppose that

$$\overline{f} = \prod_{i=1}^{k} \overline{f}_{i}^{e_{i}}$$

is the factorization of f as an element of $\mathbb{F}_p[x]$ into monic irreducibles \overline{f}_i (where $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$). Let $\mathfrak{p}_i = (p, f_i(\theta))$ for i = 1, ..., k. Then each \mathfrak{p}_i is prime

Say $K = \mathbb{Q}(\theta)$ and $\mathfrak{O}_K = \mathbb{Z}[\theta]$. Suppose that p is a rational prime, and let f be the minimal polynomial for θ over \mathbb{Q} . Suppose that

$$\overline{f} = \prod_{i=1}^{k} \overline{f}_{i}^{e_{i}}$$

is the factorization of f as an element of $\mathbb{F}_p[x]$ into monic irreducibles \overline{f}_i (where $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$). Let $\mathfrak{p}_i = (p, f_i(\theta))$ for $i = 1, \ldots, k$. Then each \mathfrak{p}_i is prime and

$$(p) = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i} = \prod_{i=1}^{k} (p, f_i(\theta))^{e_i}$$

is the prime factorization of (p) in $\mathfrak{O}_{\mathcal{K}}$.

Examples

Consider the case $K = \mathbb{Q}(\sqrt{-6})$.

Examples

Consider the case $K = \mathbb{Q}(\sqrt{-6})$.

How do (2), (5), (10), and (7) factor into primes in \mathfrak{O}_K ?

Proof of Theorem.

Proof of Theorem. We have the surjections

 $\mathbb{Z}[x] \to \mathbb{F}_p[x]$

Proof of Theorem. We have the surjections

 $\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i)$

Proof of Theorem. We have the surjections

$$\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$$

$$\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$$

and f is in the kernel.

$$\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$$

and f is in the kernel. So we get a well-defined surjection

.

$$\mathbb{Z}[x]/(f) \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i).$$

$$\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$$

and f is in the kernel. So we get a well-defined surjection

.

$$\phi_i \colon \mathbb{Z}[\theta] \simeq \mathbb{Z}[x]/(f) \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i).$$

$$\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$$

and f is in the kernel. So we get a well-defined surjection

$$\phi_i \colon \mathbb{Z}[\theta] \simeq \mathbb{Z}[x]/(f) \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i).$$

Hence, $\mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i).$

$$\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$$

and f is in the kernel. So we get a well-defined surjection

.

$$\phi_i \colon \mathbb{Z}[\theta] \simeq \mathbb{Z}[x]/(f) \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i).$$

Hence, $\mathbb{Z}[\theta] / \ker(\phi_i) \simeq \mathbb{F}_p[x] / (f_i) = \mathbb{Z}[x] / (p, f_i)$. Now f_i irreducible $\Rightarrow (f_i)$ maximal in $\mathbb{F}_p[x]$

$$\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$$

and f is in the kernel. So we get a well-defined surjection

$$\phi_i \colon \mathbb{Z}[\theta] \simeq \mathbb{Z}[x]/(f) \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i).$$

Hence, $\mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$. Now f_i irreducible $\Rightarrow (f_i)$ maximal in $\mathbb{F}_p[x] \Rightarrow \mathbb{F}_p[x]/(f_i)$ is a field

$$\mathbb{Z}[x] \to \mathbb{F}_p[x] \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$$

and f is in the kernel. So we get a well-defined surjection

$$\phi_i \colon \mathbb{Z}[\theta] \simeq \mathbb{Z}[x]/(f) \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i).$$

Hence, $\mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$. Now f_i irreducible $\Rightarrow (f_i)$ maximal in $\mathbb{F}_p[x] \Rightarrow \mathbb{F}_p[x]/(f_i)$ is a field $\Rightarrow \ker(\phi_i)$ maximal.

$$\mathbb{Z}[x] \to \mathbb{F}_{p}[x] \to \mathbb{F}_{p}[x]/(f_{i}) = \mathbb{Z}[x]/(p, f_{i})$$

and f is in the kernel. So we get a well-defined surjection

$$\phi_i \colon \mathbb{Z}[\theta] \simeq \mathbb{Z}[x]/(f) \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i).$$

Hence, $\mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$. Now f_i irreducible $\Rightarrow (f_i)$ maximal in $\mathbb{F}_p[x] \Rightarrow \mathbb{F}_p[x]/(f_i)$ is a field $\Rightarrow \ker(\phi_i)$ maximal. However, $\ker(\phi_i) = (p, f_i(\theta))$.

$$\mathbb{Z}[x] \to \mathbb{F}_{p}[x] \to \mathbb{F}_{p}[x]/(f_{i}) = \mathbb{Z}[x]/(p, f_{i})$$

and f is in the kernel. So we get a well-defined surjection

$$\phi_i \colon \mathbb{Z}[\theta] \simeq \mathbb{Z}[x]/(f) \to \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i).$$

Hence, $\mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i) = \mathbb{Z}[x]/(p, f_i)$. Now f_i irreducible $\Rightarrow (f_i)$ maximal in $\mathbb{F}_p[x] \Rightarrow \mathbb{F}_p[x]/(f_i)$ is a field $\Rightarrow \ker(\phi_i)$ maximal. However, $\ker(\phi_i) = (p, f_i(\theta))$. Therefore, $(p, f_i(\theta))$ is prime in $\mathbb{Z}[\theta]$.

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct.

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then $f_i(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i)$

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then

 $f_j(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i) \Rightarrow \phi_i(f_j) = 0$

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then

 $f_j(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i) \Rightarrow \phi_i(f_j) = 0 \Rightarrow f_j(x) \in (p, f_i).$

We claim the $\mathfrak{p}_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then $f_j(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i) \Rightarrow \phi_i(f_j) = 0 \Rightarrow f_j(x) \in (p, f_i).$ So $f_j = hf_i \mod p$,

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then $f_j(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i) \Rightarrow \phi_i(f_j) = 0 \Rightarrow f_j(x) \in (p, f_i).$ So $f_j = hf_i \mod p$, i.e., $f_j = hf_i$ in $\mathbb{F}_p[x]$.

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then $f_j(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i) \Rightarrow \phi_i(f_j) = 0 \Rightarrow f_j(x) \in (p, f_i).$ So $f_j = hf_i \mod p$, i.e., $f_j = hf_i \inf \mathbb{F}_p[x]$. However, f_j is irreducible.

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then

 $f_j(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i) \Rightarrow \phi_i(f_j) = 0 \Rightarrow f_j(x) \in (p, f_i).$

So $f_j = hf_i \mod p$, i.e., $f_j = hf_i \mod \mathbb{F}_p[x]$. However, f_j is irreducible. So h is a unit, i.e., a constant in \mathbb{F}_p .

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then

$$f_j(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i) \Rightarrow \phi_i(f_j) = 0 \Rightarrow f_j(x) \in (p, f_i).$$

So $f_j = hf_i \mod p$, i.e., $f_j = hf_i \inf \mathbb{F}_p[x]$. However, f_j is irreducible. So h is a unit, i.e., a constant in \mathbb{F}_p . Since f_i and f_j are monic, h = 1.

We claim the $p_i := (p, f_i(\theta))$ for i = 1, ..., k are distinct. If $(p, f_i(\theta)) = (p, f_j(\theta))$, then

 $f_j(\theta) \in (p, f_i(\theta)) \in \ker(\phi_i) \Rightarrow \phi_i(f_j) = 0 \Rightarrow f_j(x) \in (p, f_i).$

So $f_j = hf_i \mod p$, i.e., $f_j = hf_i \inf \mathbb{F}_p[x]$. However, f_j is irreducible. So h is a unit, i.e., a constant in \mathbb{F}_p . Since f_i and f_j are monic, h = 1. Done.

We now show that

$$(p)=\prod_{i=1}^k (p,f_i(heta))^{e_i}.$$

We now show that

$$(p) = \prod_{i=1}^k (p, f_i(\theta))^{e_i}.$$

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$$

We now show that

$$(p) = \prod_{i=1}^k (p, f_i(\theta))^{e_i}.$$

We use the fact that for ideals in \mathfrak{O}_K ,

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$$

 $\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} =$

We now show that

$$(p) = \prod_{i=1}^k (p, f_i(\theta))^{e_i}.$$

We use the fact that for ideals in \mathfrak{O}_K ,

 $(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$ $\prod_{i=1}^{k} (\rho, f_i(\theta))^{e_i} = \prod_{i=1}^{k} ((\rho) + (f_i(\theta)))^{e_i}$

We now show that

$$(p) = \prod_{i=1}^k (p, f_i(\theta))^{e_i}.$$

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$$

$$\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} ((p) + (f_i(\theta)))^{e_i} \subseteq \prod_{i=1}^{k} ((p) + (f_i(\theta)^{e_i}))$$

We now show that

$$(p) = \prod_{i=1}^k (p, f_i(\theta))^{e_i}.$$

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$$
$$\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} ((p) + (f_i(\theta)))^{e_i} \subseteq \prod_{i=1}^{k} ((p) + (f_i(\theta)^{e_i}))$$
$$\subseteq (p) + \left(\prod_{i=1}^{k} f_i(\theta)^{e_i}\right) =$$

We now show that

$$(p) = \prod_{i=1}^k (p, f_i(\theta))^{e_i}.$$

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$$

$$\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} ((p) + (f_i(\theta)))^{e_i} \subseteq \prod_{i=1}^{k} ((p) + (f_i(\theta)^{e_i}))$$
$$\subseteq (p) + \left(\prod_{i=1}^{k} f_i(\theta)^{e_i}\right) = (p) + (f(\theta)) =$$

We now show that

$$(p) = \prod_{i=1}^k (p, f_i(\theta))^{e_i}.$$

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$$

$$\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} ((p) + (f_i(\theta)))^{e_i} \subseteq \prod_{i=1}^{k} ((p) + (f_i(\theta)^{e_i}))$$
$$\subseteq (p) + \left(\prod_{i=1}^{k} f_i(\theta)^{e_i}\right) = (p) + (f(\theta)) = (p).$$

We now show that

$$(p) = \prod_{i=1}^k (p, f_i(\theta))^{e_i}.$$

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$$
$$\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} ((p) + (f_i(\theta)))^{e_i} \subseteq \prod_{i=1}^{k} ((p) + (f_i(\theta)^{e_i}))$$
$$\subseteq (p) + \left(\prod_{i=1}^{k} f_i(\theta)^{e_i}\right) = (p) + (f(\theta)) = (p).$$
So (p) divides $\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i}.$

We now show that

$$(p) = \prod_{i=1}^k (p, f_i(\theta))^{e_i}.$$

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} + \mathfrak{c}) \subseteq \mathfrak{a} + \mathfrak{b}\mathfrak{c}.$$
$$\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} ((p) + (f_i(\theta)))^{e_i} \subseteq \prod_{i=1}^{k} ((p) + (f_i(\theta)^{e_i}))$$
$$\subseteq (p) + \left(\prod_{i=1}^{k} f_i(\theta)^{e_i}\right) = (p) + (f(\theta)) = (p).$$
So (p) divides $\prod_{i=1}^{k} (p, f_i(\theta))^{e_i} = \prod_{i=1}^{k} \mathfrak{p}_i^{e_i}.$ Hence, $(p) = \prod_{i=1}^{k} \mathfrak{p}_i^{\ell_i}$ for some $0 \le \ell_i \le e_i.$

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$.

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms:

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms: $N(\mathfrak{p}_{i}) = |\mathbb{Z}[\theta]/\mathfrak{p}_{i}|$

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms: $N(\mathfrak{p}_{i}) = |\mathbb{Z}[\theta]/\mathfrak{p}_{i}|$

and

$$\mathbb{Z}[\theta]/\mathfrak{p}_i = \mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i).$$

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms: $N(\mathfrak{p}_{i}) = |\mathbb{Z}[\theta]/\mathfrak{p}_{i}|$

and

$$\mathbb{Z}[\theta]/\mathfrak{p}_i = \mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i).$$

The elements of $\mathbb{F}_p[x]/(f_i)$ are exactly $a_0 + a_1x + \cdots + a_{d_i-1}x^{d_i-1}$ where the a_i are $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and $d_i = \deg(f_i)$.

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms: $N(\mathfrak{p}_{i}) = |\mathbb{Z}[\theta]/\mathfrak{p}_{i}|$

and

$$\mathbb{Z}[\theta]/\mathfrak{p}_i = \mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i).$$

The elements of $\mathbb{F}_p[x]/(f_i)$ are exactly $a_0 + a_1x + \cdots + a_{d_i-1}x^{d_i-1}$ where the a_i are $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and $d_i = \deg(f_i)$. Therefore, $|\mathbb{F}_p[x]/(f_i)| = p^{\deg(f_i)}$.

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms: $N(\mathfrak{p}_{i}) = |\mathbb{Z}[\theta]/\mathfrak{p}_{i}|$

and

$$\mathbb{Z}[\theta]/\mathfrak{p}_i = \mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i).$$

The elements of $\mathbb{F}_p[x]/(f_i)$ are exactly $a_0 + a_1x + \cdots + a_{d_i-1}x^{d_i-1}$ where the a_i are $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and $d_i = \deg(f_i)$. Therefore, $|\mathbb{F}_p[x]/(f_i)| = p^{\deg(f_i)}$. It follows that

$$p^{n} = \prod_{i=1}^{k} N(\mathfrak{p}_{i})^{\ell_{i}} = \prod_{i=1}^{k} p^{\deg(f_{i})\ell_{i}} = p^{\sum_{i=1}^{k} \deg(f_{i})\ell_{i}},$$

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms: $N(\mathfrak{p}_{i}) = |\mathbb{Z}[\theta]/\mathfrak{p}_{i}|$

and

$$\mathbb{Z}[\theta]/\mathfrak{p}_i = \mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i).$$

The elements of $\mathbb{F}_p[x]/(f_i)$ are exactly $a_0 + a_1x + \cdots + a_{d_i-1}x^{d_i-1}$ where the a_i are $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and $d_i = \deg(f_i)$. Therefore, $|\mathbb{F}_p[x]/(f_i)| = p^{\deg(f_i)}$. It follows that

$$p^{n} = \prod_{i=1}^{k} N(\mathfrak{p}_{i})^{\ell_{i}} = \prod_{i=1}^{k} p^{\deg(f_{i})\ell_{i}} = p^{\sum_{i=1}^{k} \deg(f_{i})\ell_{i}},$$

and hence $n = \sum_{i=1}^{k} \deg(f_i)\ell_i$.

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms: $N(\mathfrak{p}_{i}) = |\mathbb{Z}[\theta]/\mathfrak{p}_{i}|$

and

$$\mathbb{Z}[\theta]/\mathfrak{p}_i = \mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i).$$

The elements of $\mathbb{F}_p[x]/(f_i)$ are exactly $a_0 + a_1x + \cdots + a_{d_i-1}x^{d_i-1}$ where the a_i are $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and $d_i = \deg(f_i)$. Therefore, $|\mathbb{F}_p[x]/(f_i)| = p^{\deg(f_i)}$. It follows that

$$p^n = \prod_{i=1}^k N(\mathfrak{p}_i)^{\ell_i} = \prod_{i=1}^k p^{\deg(f_i)\ell_i} = p^{\sum_{i=1}^k \deg(f_i)\ell_i},$$

and hence $n = \sum_{i=1}^{k} \deg(f_i)\ell_i$. On the other hand, $f = \prod_{i=1}^{k} f_i^{e_i}$ implies $n = \deg(f) =$

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms: $N(\mathfrak{p}_{i}) = |\mathbb{Z}[\theta]/\mathfrak{p}_{i}|$

and

$$\mathbb{Z}[\theta]/\mathfrak{p}_i = \mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_p[x]/(f_i).$$

The elements of $\mathbb{F}_p[x]/(f_i)$ are exactly $a_0 + a_1x + \cdots + a_{d_i-1}x^{d_i-1}$ where the a_i are $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and $d_i = \deg(f_i)$. Therefore, $|\mathbb{F}_p[x]/(f_i)| = p^{\deg(f_i)}$. It follows that

$$p^n = \prod_{i=1}^k N(\mathfrak{p}_i)^{\ell_i} = \prod_{i=1}^k p^{\deg(f_i)\ell_i} = p^{\sum_{i=1}^k \deg(f_i)\ell_i},$$

and hence $n = \sum_{i=1}^{k} \deg(f_i)\ell_i$. On the other hand, $f = \prod_{i=1}^{k} f_i^{e_i}$ implies $n = \deg(f) = \sum_{i=1}^{k} \deg(f_i)e_i$.

We have $(p) = \prod_{i=1}^{k} \mathfrak{p}_{i}^{\ell_{i}}$ for some $0 \leq \ell_{i} \leq e_{i}$. Take norms: $N(\mathfrak{p}_{i}) = |\mathbb{Z}[\theta]/\mathfrak{p}_{i}|$

and

$$\mathbb{Z}[\theta]/\mathfrak{p}_i = \mathbb{Z}[\theta]/\ker(\phi_i) \simeq \mathbb{F}_{\rho}[x]/(f_i).$$

The elements of $\mathbb{F}_p[x]/(f_i)$ are exactly $a_0 + a_1x + \cdots + a_{d_i-1}x^{d_i-1}$ where the a_i are $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ and $d_i = \deg(f_i)$. Therefore, $|\mathbb{F}_p[x]/(f_i)| = p^{\deg(f_i)}$. It follows that

$$p^n = \prod_{i=1}^k N(\mathfrak{p}_i)^{\ell_i} = \prod_{i=1}^k p^{\deg(f_i)\ell_i} = p^{\sum_{i=1}^k \deg(f_i)\ell_i}$$

and hence $n = \sum_{i=1}^{k} \deg(f_i)\ell_i$. On the other hand, $f = \prod_{i=1}^{k} f_i^{e_i}$ implies $n = \deg(f) = \sum_{i=1}^{k} \deg(f_i)e_i$. Since $0 \le \ell_i \le e_i$, we must have $\ell_i = e_i$ for all *i*.