Math 361

March 27, 2023

Remember that we will have a quiz on Wednesday. Our cumulative topics sheet is posted.

Today

► The norm of an ideal.

• \mathfrak{O}_K is a UFD if and only if it is a PID.

Let K be a number field, and let \mathfrak{a} be a nonzero ideal of \mathfrak{O}_K .

Let K be a number field, and let \mathfrak{a} be a nonzero ideal of \mathfrak{O}_K .

Recall the argument showing that $\mathfrak{O}_{\mathcal{K}}/\mathfrak{a}$ is finite.

Let K be a number field, and let \mathfrak{a} be a nonzero ideal of \mathfrak{O}_{K} .

Recall the argument showing that $\mathfrak{O}_{\mathcal{K}}/\mathfrak{a}$ is finite.

Definition. The *norm* of the nonzero ideal \mathfrak{a} is

 $N(\mathfrak{a}) = |\mathfrak{O}_K/\mathfrak{a}|.$

Let K be a number field, and let \mathfrak{a} be a nonzero ideal of \mathfrak{O}_K .

Recall the argument showing that $\mathfrak{O}_{\mathcal{K}}/\mathfrak{a}$ is finite.

Definition. The *norm* of the nonzero ideal \mathfrak{a} is

$$N(\mathfrak{a}) = |\mathfrak{O}_K/\mathfrak{a}|.$$

Exercise. Let $K = \mathbb{Q}(\sqrt{-14})$ and $\mathfrak{a} = (6, 1 + \sqrt{-14}) \subset \mathfrak{O}_K$. Compute $N(\mathfrak{a})$.

Proposition. Let \mathfrak{a} be a nonzero ideal of $\mathfrak{O}_{\mathcal{K}}$ and pick a \mathbb{Z} -module basis $\{\alpha_1, \ldots, \alpha_n\}$ for \mathfrak{a} . Then

$$N(\mathfrak{a}) = \left| \frac{\Delta[\alpha_1, \ldots, \alpha_n]}{\Delta} \right|^{1/2}$$

where Δ is the discriminant of K (i.e., the discriminant of any \mathbb{Z} -basis for \mathfrak{O}_K).

Proposition. Let \mathfrak{a} be a nonzero ideal of $\mathfrak{O}_{\mathcal{K}}$ and pick a \mathbb{Z} -module basis $\{\alpha_1, \ldots, \alpha_n\}$ for \mathfrak{a} . Then

$$N(\mathfrak{a}) = \left|\frac{\Delta[\alpha_1,\ldots,\alpha_n]}{\Delta}\right|^{1/2}$$

where Δ is the discriminant of K (i.e., the discriminant of any \mathbb{Z} -basis for \mathfrak{O}_K).

Proof. \mathbb{Z} -basis for $\mathfrak{O}_{\mathcal{K}}$: $\{\omega_1, \ldots, \omega_n\}$.

Proposition. Let \mathfrak{a} be a nonzero ideal of $\mathfrak{O}_{\mathcal{K}}$ and pick a \mathbb{Z} -module basis $\{\alpha_1, \ldots, \alpha_n\}$ for \mathfrak{a} . Then

$$N(\mathfrak{a}) = \left|\frac{\Delta[\alpha_1,\ldots,\alpha_n]}{\Delta}\right|^{1/2}$$

where Δ is the discriminant of K (i.e., the discriminant of any \mathbb{Z} -basis for \mathfrak{O}_K).

Proof. Z-basis for $\mathfrak{O}_{\mathcal{K}}$: $\{\omega_1, \ldots, \omega_n\}$. Write $(\alpha_1, \ldots, \alpha_n)^t = C(\omega_1, \ldots, \omega_n)^t$ for some integer matrix C.

Proposition. Let \mathfrak{a} be a nonzero ideal of $\mathfrak{O}_{\mathcal{K}}$ and pick a \mathbb{Z} -module basis $\{\alpha_1, \ldots, \alpha_n\}$ for \mathfrak{a} . Then

$$N(\mathfrak{a}) = \left| \frac{\Delta[\alpha_1, \ldots, \alpha_n]}{\Delta} \right|^{1/2}$$

where Δ is the discriminant of K (i.e., the discriminant of any \mathbb{Z} -basis for \mathfrak{O}_K).

Proof. Z-basis for $\mathcal{D}_{\mathcal{K}}$: $\{\omega_1, \ldots, \omega_n\}$. Write $(\alpha_1, \ldots, \alpha_n)^t = C(\omega_1, \ldots, \omega_n)^t$ for some integer matrix C. Change of basis formula for the discriminant:

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\omega_1,\ldots,\omega_n] = \det(C)^2 \Delta.$$

Proposition. Let \mathfrak{a} be a nonzero ideal of $\mathfrak{O}_{\mathcal{K}}$ and pick a \mathbb{Z} -module basis $\{\alpha_1, \ldots, \alpha_n\}$ for \mathfrak{a} . Then

$$N(\mathfrak{a}) = \left| \frac{\Delta[\alpha_1, \ldots, \alpha_n]}{\Delta} \right|^{1/2}$$

where Δ is the discriminant of K (i.e., the discriminant of any \mathbb{Z} -basis for \mathfrak{O}_K).

Proof. Z-basis for $\mathcal{D}_{\mathcal{K}}$: $\{\omega_1, \ldots, \omega_n\}$. Write $(\alpha_1, \ldots, \alpha_n)^t = C(\omega_1, \ldots, \omega_n)^t$ for some integer matrix C. Change of basis formula for the discriminant:

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\omega_1,\ldots,\omega_n] = \det(C)^2 \Delta.$$

The result then follows from the commutative diagram:

Corollary. Let $0 \neq \alpha \in \mathfrak{O}_{K}$, and consider the principal ideal (α). Then

$$N((\alpha)) = |N(\alpha)|$$

where $N(\alpha)$ is the norm we defined previously for elements of K.

Corollary. Let $0 \neq \alpha \in \mathfrak{O}_{K}$, and consider the principal ideal (α). Then

$$N((\alpha)) = |N(\alpha)|$$

where $N(\alpha)$ is the norm we defined previously for elements of K. **Proof.**

Corollary. Let $0 \neq \alpha \in \mathfrak{O}_{K}$, and consider the principal ideal (α). Then

$$N((\alpha)) = |N(\alpha)|$$

where $N(\alpha)$ is the norm we defined previously for elements of K. **Proof.** \mathbb{Z} -basis for \mathfrak{O}_{K} : { $\omega_{1}, \ldots, \omega_{n}$ }.

Corollary. Let $0 \neq \alpha \in \mathfrak{O}_{K}$, and consider the principal ideal (α). Then

 $N((\alpha)) = |N(\alpha)|$

where $N(\alpha)$ is the norm we defined previously for elements of K.

Proof. Z-basis for \mathcal{D}_{K} : { $\omega_{1}, \ldots, \omega_{n}$ }. Z-basis for (α): { $\alpha\omega_{1}, \ldots, \alpha\omega_{n}$ }.

Corollary. Let $0 \neq \alpha \in \mathfrak{O}_{K}$, and consider the principal ideal (α). Then

$$N((\alpha)) = |N(\alpha)|$$

where $N(\alpha)$ is the norm we defined previously for elements of K. **Proof.** \mathbb{Z} -basis for \mathfrak{O}_K : $\{\omega_1, \ldots, \omega_n\}$. \mathbb{Z} -basis for (α) : $\{\alpha\omega_1, \ldots, \alpha\omega_n\}$.

$$\Delta[\alpha\omega_1,\ldots,\alpha\omega_n] = \prod_{i=1}^n \sigma_i(\alpha\omega_i)^2$$

Corollary. Let $0 \neq \alpha \in \mathfrak{O}_{K}$, and consider the principal ideal (α). Then

$$N((\alpha)) = |N(\alpha)|$$

where $N(\alpha)$ is the norm we defined previously for elements of K. **Proof.** \mathbb{Z} -basis for \mathfrak{O}_K : $\{\omega_1, \ldots, \omega_n\}$. \mathbb{Z} -basis for (α) : $\{\alpha\omega_1, \ldots, \alpha\omega_n\}$.

$$\Delta[\alpha\omega_1,\ldots,\alpha\omega_n] = \prod_{i=1}^n \sigma_i(\alpha\omega_i)^2$$
$$= \left(\prod_{i=1}^n \sigma_i(\alpha)\right)^2 \left(\prod_{i=1}^n \sigma_i(\omega_i)^2\right)$$

Corollary. Let $0 \neq \alpha \in \mathfrak{O}_{K}$, and consider the principal ideal (α). Then

$$N((\alpha)) = |N(\alpha)|$$

where $N(\alpha)$ is the norm we defined previously for elements of K. **Proof.** \mathbb{Z} -basis for \mathfrak{O}_K : $\{\omega_1, \ldots, \omega_n\}$. \mathbb{Z} -basis for (α) : $\{\alpha\omega_1, \ldots, \alpha\omega_n\}$.

$$\Delta[\alpha\omega_1, \dots, \alpha\omega_n] = \prod_{i=1}^n \sigma_i(\alpha\omega_i)^2$$
$$= \left(\prod_{i=1}^n \sigma_i(\alpha)\right)^2 \left(\prod_{i=1}^n \sigma_i(\omega_i)^2\right)$$
$$= N(\alpha)^2 \Delta.$$

Corollary. Let $0 \neq \alpha \in \mathfrak{O}_{K}$, and consider the principal ideal (α). Then

$$N((\alpha)) = |N(\alpha)|$$

where $N(\alpha)$ is the norm we defined previously for elements of K. **Proof.** \mathbb{Z} -basis for \mathfrak{O}_K : $\{\omega_1, \ldots, \omega_n\}$. \mathbb{Z} -basis for (α) : $\{\alpha\omega_1, \ldots, \alpha\omega_n\}$.

$$\Delta[\alpha\omega_1,\ldots,\alpha\omega_n] = \prod_{i=1}^n \sigma_i(\alpha\omega_i)^2$$
$$= \left(\prod_{i=1}^n \sigma_i(\alpha)\right)^2 \left(\prod_{i=1}^n \sigma_i(\omega_i)^2\right)$$
$$= N(\alpha)^2 \Delta.$$

The result now follows from the Proposition.

Example. Let d be a square-free integer not equal to 0 or 1.

 $\left|\mathfrak{O}_{\mathbb{Q}(\sqrt{d})}/\mathfrak{a}\right|$

$$\left|\mathfrak{O}_{\mathbb{Q}(\sqrt{d})}/\mathfrak{a}\right| = N(\mathfrak{a}) = |N(a+b\sqrt{d})|$$

$$\left|\mathfrak{O}_{\mathbb{Q}(\sqrt{d})}/\mathfrak{a}
ight| = N(\mathfrak{a}) = |N(a+b\sqrt{d})|$$

= $|(a+b\sqrt{d})(a-b\sqrt{d})|$

$$ig|\mathfrak{O}_{\mathbb{Q}(\sqrt{d})}/\mathfrak{a}ig| = N(\mathfrak{a}) = |N(a+b\sqrt{d})|$$

= $|(a+b\sqrt{d})(a-b\sqrt{d})|$
= $|a^2 - db^2|.$

Proposition Let \mathfrak{a} and \mathfrak{b} be nonzero ideals of $\mathfrak{O}_{\mathcal{K}}$. Then

 $N(\mathfrak{ab}) = N(\mathfrak{a})N(\mathfrak{b}).$

Proposition Let \mathfrak{a} and \mathfrak{b} be nonzero ideals of $\mathfrak{O}_{\mathcal{K}}$. Then

 $N(\mathfrak{ab}) = N(\mathfrak{a})N(\mathfrak{b}).$

Proof. Isomorphism theorems from algebra. See Theorem 5.12 in our text.

Proposition. Let \mathfrak{a} be a nonzero ideal in $\mathfrak{O}_{\mathcal{K}}$.

1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.

1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.

Proof. If $\alpha \in \mathfrak{a}$, then the principal ideal (α) is contained in \mathfrak{a} .

1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.

Proof. If $\alpha \in \mathfrak{a}$, then the principal ideal (α) is contained in \mathfrak{a} . Therefore $\mathfrak{a}|(\alpha)$,

1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.

Proof. If $\alpha \in \mathfrak{a}$, then the principal ideal (α) is contained in \mathfrak{a} .

Therefore $\mathfrak{a}|(\alpha)$, i.e., there exists an ideal \mathfrak{b} such that $(\alpha) = \mathfrak{a}\mathfrak{b}$.

1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.

Proof. If $\alpha \in \mathfrak{a}$, then the principal ideal (α) is contained in \mathfrak{a} . Therefore $\mathfrak{a}|(\alpha)$, i.e., there exists an ideal \mathfrak{b} such that $(\alpha) = \mathfrak{a}\mathfrak{b}$. Taking norms yields

$$N((\alpha)) = |N(\alpha)| = N(\mathfrak{a})N(\mathfrak{b}).$$

The result follows.

2.
$$N(\mathfrak{a}) = 1$$
 if and only if $\mathfrak{a} = (1) = \mathfrak{O}_{K}$.

2.
$$N(\mathfrak{a}) = 1$$
 if and only if $\mathfrak{a} = (1) = \mathfrak{O}_{\mathcal{K}}$.

Proof. Immediate from the definition of the norm.
3. If N(a) is prime, a is prime.

3. If N(a) is prime, a is prime. **Proof.**

3. If N(a) is prime, a is prime. **Proof.** Factor a into primes:

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}.$$

3. If N(a) is prime, a is prime. **Proof.** Factor a into primes:

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}.$$

Taking norms:

$$N(\mathfrak{a}) = \prod_{i=1}^{k} N(\mathfrak{p}_i)^{e_i}.$$
 (1)

3. If N(a) is prime, a is prime. **Proof.** Factor a into primes:

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}.$$

Taking norms:

$$N(\mathfrak{a}) = \prod_{i=1}^{k} N(\mathfrak{p}_i)^{e_i}.$$
 (1)

If \mathfrak{p} is prime, then $\mathfrak{p} \neq \mathfrak{O}_{\mathcal{K}}$, and hence $N(\mathfrak{p}) > 1$.

3. If N(a) is prime, a is prime. **Proof.** Factor a into primes:

$$\mathfrak{a} = \prod_{i=1}^{k} \mathfrak{p}_{i}^{e_{i}}.$$

Taking norms:

$$N(\mathfrak{a}) = \prod_{i=1}^{k} N(\mathfrak{p}_i)^{e_i}.$$
 (1)

If \mathfrak{p} is prime, then $\mathfrak{p} \neq \mathfrak{O}_K$, and hence $N(\mathfrak{p}) > 1$. Therefore, if $N(\mathfrak{a})$ is prime, so is \mathfrak{a} .

4. $N(\mathfrak{a}) \in \mathfrak{a}$.

4. $N(\mathfrak{a}) \in \mathfrak{a}$. **Proof.** Let $\alpha \in \mathfrak{O}_K$. 4. $N(\mathfrak{a}) \in \mathfrak{a}$. **Proof.** Let $\alpha \in \mathfrak{O}_{K}$. $N(\mathfrak{a}) = |\mathfrak{O}_{K}/\mathfrak{a}|$ 4. $N(\mathfrak{a}) \in \mathfrak{a}$. **Proof.** Let $\alpha \in \mathfrak{O}_{K}$. $N(\mathfrak{a}) = |\mathfrak{O}_{K}/\mathfrak{a}| \Longrightarrow N(\mathfrak{a})\alpha = 0 \in \mathfrak{O}_{K}/\mathfrak{a}$, 4. $N(\mathfrak{a}) \in \mathfrak{a}$. **Proof.** Let $\alpha \in \mathfrak{O}_K$. $N(\mathfrak{a}) = |\mathfrak{O}_K/\mathfrak{a}| \Longrightarrow N(\mathfrak{a})\alpha = 0 \in \mathfrak{O}_K/\mathfrak{a}$, i.e., $N(\mathfrak{a})\alpha \in \mathfrak{a}$. 4. $N(\mathfrak{a}) \in \mathfrak{a}$. **Proof.** Let $\alpha \in \mathfrak{O}_{K}$. $N(\mathfrak{a}) = |\mathfrak{O}_{K}/\mathfrak{a}| \Longrightarrow N(\mathfrak{a})\alpha = 0 \in \mathfrak{O}_{K}/\mathfrak{a}$, i.e., $N(\mathfrak{a})\alpha \in \mathfrak{a}$. Letting $\alpha = 1$ gives the result.

5. If a is prime, then a contains a unique rational prime p

5. If a is prime, then a contains a unique rational prime p and $N(a) = p^m$ for some $1 \le m \le n := [K : \mathbb{Q}]$.

5. If a is prime, then a contains a unique rational prime p and $N(\mathfrak{a}) = p^m$ for some $1 \le m \le n := [K : \mathbb{Q}]$.

Proof. Let $N(\mathfrak{a}) = \prod_{i=1}^{k} p_i^{e_i}$ be the prime factorization of $N(\mathfrak{a})$.

5. If a is prime, then a contains a unique rational prime p and $N(\mathfrak{a}) = p^m$ for some $1 \le m \le n := [K : \mathbb{Q}]$.

Proof. Let $N(\mathfrak{a}) = \prod_{i=1}^{k} p_i^{e_i}$ be the prime factorization of $N(\mathfrak{a})$. Since $N(\mathfrak{a}) \in \mathfrak{a}$,

 $\prod_{i=1}^k (p_i)^{e_i} \subseteq \mathfrak{a},$

5. If a is prime, then a contains a unique rational prime p and $N(\mathfrak{a}) = p^m$ for some $1 \le m \le n := [K : \mathbb{Q}]$.

Proof. Let $N(\mathfrak{a}) = \prod_{i=1}^{k} p_i^{e_i}$ be the prime factorization of $N(\mathfrak{a})$. Since $N(\mathfrak{a}) \in \mathfrak{a}$,

$$\prod_{i=1}^k (p_i)^{e_i} \subseteq \mathfrak{a},$$

and, hence,

$$\mathfrak{a}|\prod_{i=1}^k (p_i)^{e_i}.$$

5. If a is prime, then a contains a unique rational prime p and $N(\mathfrak{a}) = p^m$ for some $1 \le m \le n := [K : \mathbb{Q}]$.

Proof. Let $N(\mathfrak{a}) = \prod_{i=1}^{k} p_i^{e_i}$ be the prime factorization of $N(\mathfrak{a})$. Since $N(\mathfrak{a}) \in \mathfrak{a}$,

$$\prod_{i=1}^k (p_i)^{e_i} \subseteq \mathfrak{a},$$

and, hence,

$$\mathfrak{a}|\prod_{i=1}^k (p_i)^{e_i}.$$

If a is prime, there exists *i* such that $\mathfrak{a}|(p_i)$, which means $(p_i) \subseteq \mathfrak{a}$ or, equivalently, $p_i \in \mathfrak{a}$.

If there exists an rational prime $q \neq p$ in \mathfrak{a} , we would have

If there exists an rational prime $q \neq p$ in \mathfrak{a} , we would have

$$1\in(p,q)=(p)+(q)\subseteq\mathfrak{a}$$

If there exists an rational prime $q \neq p$ in \mathfrak{a} , we would have

$$1\in(p,q)=(p)+(q)\subseteq\mathfrak{a}$$

However, since \mathfrak{a} is prime, it does not contain 1. So there exists a unique rational prime \mathfrak{a} .

If there exists an rational prime $q \neq p$ in \mathfrak{a} , we would have

$$1\in(p,q)=(p)+(q)\subseteq\mathfrak{a}$$

However, since \mathfrak{a} is prime, it does not contain 1. So there exists a unique rational prime \mathfrak{a} .

From the first part of this problem, we have $N(\mathfrak{a})|N(p)$.

If there exists an rational prime $q \neq p$ in \mathfrak{a} , we would have

$$1\in(p,q)=(p)+(q)\subseteq\mathfrak{a}$$

However, since \mathfrak{a} is prime, it does not contain 1. So there exists a unique rational prime \mathfrak{a} .

From the first part of this problem, we have $N(\mathfrak{a})|N(p)$.

Since $N(p) = p^n$, the result follows.

Proposition. Let \mathfrak{a} be a nonzero ideal of $\mathfrak{O}_{\mathcal{K}}$. Then

1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.

- 1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.
- 2. $N(\mathfrak{a}) = 1$ if and only if $\mathfrak{a} = (1) = \mathfrak{O}_{\mathcal{K}}$.

- 1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.
- 2. $N(\mathfrak{a}) = 1$ if and only if $\mathfrak{a} = (1) = \mathfrak{O}_{\mathcal{K}}$.
- 3. If N(a) is prime, a is prime.

- 1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.
- 2. $N(\mathfrak{a}) = 1$ if and only if $\mathfrak{a} = (1) = \mathfrak{O}_{\mathcal{K}}$.
- 3. If N(a) is prime, a is prime.
- 4. $N(\mathfrak{a}) \in \mathfrak{a}$.

- 1. If $\alpha \in \mathfrak{a}$, then $N(\mathfrak{a})|N(\alpha)$.
- 2. $N(\mathfrak{a}) = 1$ if and only if $\mathfrak{a} = (1) = \mathfrak{O}_{\mathcal{K}}$.
- 3. If N(a) is prime, a is prime.
- 4. $N(\mathfrak{a}) \in \mathfrak{a}$.
- 5. If a is prime, then a contains a unique rational prime p and $N(a) = p^m$ for some $1 \le m \le n := [K : \mathbb{Q}].$

Corollary

1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.

Corollary

- 1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.
- 2. If $a \in \mathbb{Z}$, there are finitely many ideals \mathfrak{a} of \mathfrak{O}_K containing a.

Corollary

- 1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.
- 2. If $a \in \mathbb{Z}$, there are finitely many ideals \mathfrak{a} of $\mathfrak{O}_{\mathcal{K}}$ containing a.
- 3. There are finitely many ideals with a given norm.

Corollary

- 1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.
- 2. If $a \in \mathbb{Z}$, there are finitely many ideals \mathfrak{a} of $\mathfrak{O}_{\mathcal{K}}$ containing a.
- 3. There are finitely many ideals with a given norm.

Proof.

Corollary

- 1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.
- 2. If $a \in \mathbb{Z}$, there are finitely many ideals \mathfrak{a} of $\mathfrak{O}_{\mathcal{K}}$ containing a.
- 3. There are finitely many ideals with a given norm.

Proof.

1. This is an immediate consequence of prime factorization of ideals.

Corollary

- 1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.
- 2. If $a \in \mathbb{Z}$, there are finitely many ideals \mathfrak{a} of $\mathfrak{O}_{\mathcal{K}}$ containing a.
- 3. There are finitely many ideals with a given norm.

Proof.

- 1. This is an immediate consequence of prime factorization of ideals.
- 2. We have $a \in \mathfrak{a}$ if and only if $\mathfrak{a}|(a)$.
Corollary

- 1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.
- 2. If $a \in \mathbb{Z}$, there are finitely many ideals \mathfrak{a} of $\mathfrak{O}_{\mathcal{K}}$ containing a.
- 3. There are finitely many ideals with a given norm.

- 1. This is an immediate consequence of prime factorization of ideals.
- We have a ∈ a if and only if a|(a). So this result follows from the previous part of this Corollary applied to the principal ideal (a).

Corollary

- 1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.
- 2. If $a \in \mathbb{Z}$, there are finitely many ideals \mathfrak{a} of $\mathfrak{O}_{\mathcal{K}}$ containing a.
- 3. There are finitely many ideals with a given norm.

- 1. This is an immediate consequence of prime factorization of ideals.
- We have a ∈ a if and only if a|(a). So this result follows from the previous part of this Corollary applied to the principal ideal (a).
- 3. Fix $a \in \mathbb{Z}_{>0}$. If a is an ideal with N(a) = a,

Corollary

- 1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.
- 2. If $a \in \mathbb{Z}$, there are finitely many ideals \mathfrak{a} of $\mathfrak{O}_{\mathcal{K}}$ containing a.
- 3. There are finitely many ideals with a given norm.

- 1. This is an immediate consequence of prime factorization of ideals.
- We have a ∈ a if and only if a|(a). So this result follows from the previous part of this Corollary applied to the principal ideal (a).
- 3. Fix $a \in \mathbb{Z}_{>0}$. If a is an ideal with N(a) = a, then from the previous Proposition, we have $a \in a$.

Corollary

- 1. Let a be an ideal of $\mathfrak{O}_{\mathcal{K}}$. Then there are only a finite number of ideals \mathfrak{b} such that $\mathfrak{b}|\mathfrak{a}$, Equivalently, there are finitely many ideals \mathfrak{b} such that $\mathfrak{a} \subseteq \mathfrak{b}$.
- 2. If $a \in \mathbb{Z}$, there are finitely many ideals \mathfrak{a} of $\mathfrak{O}_{\mathcal{K}}$ containing a.
- 3. There are finitely many ideals with a given norm.

- 1. This is an immediate consequence of prime factorization of ideals.
- We have a ∈ a if and only if a|(a). So this result follows from the previous part of this Corollary applied to the principal ideal (a).
- 3. Fix $a \in \mathbb{Z}_{>0}$. If a is an ideal with N(a) = a, then from the previous Proposition, we have $a \in a$. The result then follows from the previous part of this Corollary.

Proposition. The number ring $\mathfrak{O}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proposition. The number ring $\mathfrak{O}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proof. (\Leftarrow) We already know that a PID is a UFD.

Proposition. The number ring $\mathfrak{O}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proof. (\Leftarrow) We already know that a PID is a UFD.

 (\Rightarrow) Suppose that $\mathfrak{O}_{\mathcal{K}}$ is a UFD, and let \mathfrak{p} be a prime ideal in $\mathfrak{O}_{\mathcal{K}}$.

Proposition. The number ring $\mathfrak{O}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proof. (\Leftarrow) We already know that a PID is a UFD.

 (\Rightarrow) Suppose that $\mathfrak{O}_{\mathcal{K}}$ is a UFD, and let \mathfrak{p} be a prime ideal in $\mathfrak{O}_{\mathcal{K}}$.

We have $\mathfrak{p} \ni N(\mathfrak{p}) = \pi_1 \cdots \pi_k$ where the π_i s are irreducibles in \mathfrak{O}_K .

Proposition. The number ring $\mathfrak{O}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proof. (\Leftarrow) We already know that a PID is a UFD.

 (\Rightarrow) Suppose that $\mathfrak{O}_{\mathcal{K}}$ is a UFD, and let \mathfrak{p} be a prime ideal in $\mathfrak{O}_{\mathcal{K}}$.

We have $\mathfrak{p} \ni N(\mathfrak{p}) = \pi_1 \cdots \pi_k$ where the π_i s are irreducibles in \mathfrak{O}_K .

Since \mathfrak{p} is prime, it follows that $\pi_i \in \mathfrak{p}$ from some *i*.

Proposition. The number ring $\mathfrak{O}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proof. (\Leftarrow) We already know that a PID is a UFD.

 (\Rightarrow) Suppose that $\mathfrak{O}_{\mathcal{K}}$ is a UFD, and let \mathfrak{p} be a prime ideal in $\mathfrak{O}_{\mathcal{K}}$.

We have $\mathfrak{p} \ni N(\mathfrak{p}) = \pi_1 \cdots \pi_k$ where the π_i s are irreducibles in \mathfrak{O}_K .

Since \mathfrak{p} is prime, it follows that $\pi_i \in \mathfrak{p}$ from some *i*. Hence, $(\pi_i) \subseteq \mathfrak{p}$.

Proposition. The number ring $\mathfrak{O}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proof. (\Leftarrow) We already know that a PID is a UFD.

 (\Rightarrow) Suppose that $\mathfrak{O}_{\mathcal{K}}$ is a UFD, and let \mathfrak{p} be a prime ideal in $\mathfrak{O}_{\mathcal{K}}$.

We have $\mathfrak{p} \ni N(\mathfrak{p}) = \pi_1 \cdots \pi_k$ where the π_i s are irreducibles in \mathfrak{O}_K .

Since \mathfrak{p} is prime, it follows that $\pi_i \in \mathfrak{p}$ from some *i*. Hence, $(\pi_i) \subseteq \mathfrak{p}$.

In a UFD every irreducible is prime.

Proposition. The number ring $\mathcal{D}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proof. (\Leftarrow) We already know that a PID is a UFD.

 (\Rightarrow) Suppose that $\mathfrak{O}_{\mathcal{K}}$ is a UFD, and let \mathfrak{p} be a prime ideal in $\mathfrak{O}_{\mathcal{K}}$.

We have $\mathfrak{p} \ni N(\mathfrak{p}) = \pi_1 \cdots \pi_k$ where the π_i s are irreducibles in \mathfrak{O}_K .

Since p is prime, it follows that $\pi_i \in \mathfrak{p}$ from some *i*. Hence, $(\pi_i) \subseteq \mathfrak{p}$.

In a UFD every irreducible is prime. So (π_i) is a prime ideal. Primes are maximal in a number ring.

Proposition. The number ring $\mathcal{D}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proof. (\Leftarrow) We already know that a PID is a UFD.

 (\Rightarrow) Suppose that $\mathfrak{O}_{\mathcal{K}}$ is a UFD, and let \mathfrak{p} be a prime ideal in $\mathfrak{O}_{\mathcal{K}}$.

We have $\mathfrak{p} \ni N(\mathfrak{p}) = \pi_1 \cdots \pi_k$ where the π_i s are irreducibles in \mathfrak{O}_K .

Since p is prime, it follows that $\pi_i \in \mathfrak{p}$ from some *i*. Hence, $(\pi_i) \subseteq \mathfrak{p}$.

In a UFD every irreducible is prime. So (π_i) is a prime ideal. Primes are maximal in a number ring. Hence, $(\pi_i) = \mathfrak{p}$.

Proposition. The number ring $\mathcal{D}_{\mathcal{K}}$ is a UFD if and only if it is a PID.

Proof. (\Leftarrow) We already know that a PID is a UFD.

 (\Rightarrow) Suppose that $\mathfrak{O}_{\mathcal{K}}$ is a UFD, and let \mathfrak{p} be a prime ideal in $\mathfrak{O}_{\mathcal{K}}$.

We have $\mathfrak{p} \ni N(\mathfrak{p}) = \pi_1 \cdots \pi_k$ where the π_i s are irreducibles in \mathfrak{O}_K .

Since p is prime, it follows that $\pi_i \in \mathfrak{p}$ from some *i*. Hence, $(\pi_i) \subseteq \mathfrak{p}$.

In a UFD every irreducible is prime. So (π_i) is a prime ideal. Primes are maximal in a number ring. Hence, $(\pi_i) = \mathfrak{p}$.

The result now follows since every ideal of $\mathfrak{O}_{\mathcal{K}}$ is a product of prime ideals.

Proposition. Suppose that \mathfrak{O}_K is not a UFD, and let $\pi \in \mathfrak{O}_K$ be irreducible but not prime.

Proof. For the sake of contradiction, suppose $\mathfrak{p}_i = (\alpha)$ from some *i* and some $\alpha \in \mathfrak{O}_K$.

Proof. For the sake of contradiction, suppose $\mathfrak{p}_i = (\alpha)$ from some *i* and some $\alpha \in \mathfrak{O}_K$. Then since $\mathfrak{p}_i | (\pi)$, it follows that $(\pi) \subseteq \mathfrak{p}_i = (\alpha)$.

Proof. For the sake of contradiction, suppose $\mathfrak{p}_i = (\alpha)$ from some *i* and some $\alpha \in \mathfrak{O}_K$. Then since $\mathfrak{p}_i | (\pi)$, it follows that $(\pi) \subseteq \mathfrak{p}_i = (\alpha)$.

Hence, $\pi = \alpha \beta$ from some $\beta \in \mathfrak{O}_{\mathcal{K}}$.

Proof. For the sake of contradiction, suppose $\mathfrak{p}_i = (\alpha)$ from some *i* and some $\alpha \in \mathfrak{O}_K$. Then since $\mathfrak{p}_i | (\pi)$, it follows that $(\pi) \subseteq \mathfrak{p}_i = (\alpha)$.

Hence, $\pi = \alpha \beta$ from some $\beta \in \mathfrak{O}_{\mathcal{K}}$.

Since \mathfrak{p} is prime, so is α .

Proof. For the sake of contradiction, suppose $\mathfrak{p}_i = (\alpha)$ from some *i* and some $\alpha \in \mathfrak{O}_K$. Then since $\mathfrak{p}_i | (\pi)$, it follows that $(\pi) \subseteq \mathfrak{p}_i = (\alpha)$.

Hence, $\pi = \alpha \beta$ from some $\beta \in \mathfrak{O}_{\mathcal{K}}$.

Since \mathfrak{p} is prime, so is α . Since π is irreducible, β is a unit.

Proof. For the sake of contradiction, suppose $\mathfrak{p}_i = (\alpha)$ from some *i* and some $\alpha \in \mathfrak{O}_K$. Then since $\mathfrak{p}_i | (\pi)$, it follows that $(\pi) \subseteq \mathfrak{p}_i = (\alpha)$.

Hence, $\pi = \alpha \beta$ from some $\beta \in \mathfrak{O}_{\mathcal{K}}$.

Since $\mathfrak p$ is prime, so is $\alpha.$ Since π is irreducible, β is a unit.

Hence, π is prime—a contradiction.