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Quiz

Remember that we will have a quiz on Wednesday. Our cumulative
topics sheet is posted.



Today

I The norm of an ideal.
I OK is a UFD if and only if it is a PID.



Norm of an ideal

Let K be a number field, and let a be a nonzero ideal of OK .

Recall the argument showing that OK/a is finite.

Definition. The norm of the nonzero ideal a is

N(a) = |OK/a| .

Exercise. Let K = Q(
√
−14) and a = (6, 1 +

√
−14) ⊂ OK .

Compute N(a).
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Norm of an ideal
Proposition. Let a be a nonzero ideal of OK and pick a Z-module
basis {α1, . . . , αn} for a. Then

N(a) =
∣∣∣∣∆[α1, . . . , αn]

∆

∣∣∣∣1/2

where ∆ is the discriminant of K (i.e., the discriminant of any
Z-basis for OK ).

Proof. Z-basis for OK : {ω1, . . . , ωn}.
Write (α1, . . . , αn)t = C (ω1, . . . , ωn)t for some integer matrix C .
Change of basis formula for the discriminant:

∆[α1, . . . , αn] = det(C)2∆[ω1, . . . , ωn] = det(C)2∆.
The result then follows from the commutative diagram:

0 a OK OK/a 0

0 Zn Zn cok C 0

≈

≈ ≈

C



Norm of an ideal
Proposition. Let a be a nonzero ideal of OK and pick a Z-module
basis {α1, . . . , αn} for a. Then

N(a) =
∣∣∣∣∆[α1, . . . , αn]

∆

∣∣∣∣1/2

where ∆ is the discriminant of K (i.e., the discriminant of any
Z-basis for OK ).
Proof. Z-basis for OK : {ω1, . . . , ωn}.

Write (α1, . . . , αn)t = C (ω1, . . . , ωn)t for some integer matrix C .
Change of basis formula for the discriminant:

∆[α1, . . . , αn] = det(C)2∆[ω1, . . . , ωn] = det(C)2∆.
The result then follows from the commutative diagram:

0 a OK OK/a 0

0 Zn Zn cok C 0

≈

≈ ≈

C



Norm of an ideal
Proposition. Let a be a nonzero ideal of OK and pick a Z-module
basis {α1, . . . , αn} for a. Then

N(a) =
∣∣∣∣∆[α1, . . . , αn]

∆

∣∣∣∣1/2

where ∆ is the discriminant of K (i.e., the discriminant of any
Z-basis for OK ).
Proof. Z-basis for OK : {ω1, . . . , ωn}.
Write (α1, . . . , αn)t = C (ω1, . . . , ωn)t for some integer matrix C .

Change of basis formula for the discriminant:
∆[α1, . . . , αn] = det(C)2∆[ω1, . . . , ωn] = det(C)2∆.

The result then follows from the commutative diagram:

0 a OK OK/a 0

0 Zn Zn cok C 0

≈

≈ ≈

C



Norm of an ideal
Proposition. Let a be a nonzero ideal of OK and pick a Z-module
basis {α1, . . . , αn} for a. Then

N(a) =
∣∣∣∣∆[α1, . . . , αn]

∆

∣∣∣∣1/2

where ∆ is the discriminant of K (i.e., the discriminant of any
Z-basis for OK ).
Proof. Z-basis for OK : {ω1, . . . , ωn}.
Write (α1, . . . , αn)t = C (ω1, . . . , ωn)t for some integer matrix C .
Change of basis formula for the discriminant:

∆[α1, . . . , αn] = det(C)2∆[ω1, . . . , ωn] = det(C)2∆.

The result then follows from the commutative diagram:

0 a OK OK/a 0

0 Zn Zn cok C 0

≈

≈ ≈

C



Norm of an ideal
Proposition. Let a be a nonzero ideal of OK and pick a Z-module
basis {α1, . . . , αn} for a. Then

N(a) =
∣∣∣∣∆[α1, . . . , αn]

∆

∣∣∣∣1/2

where ∆ is the discriminant of K (i.e., the discriminant of any
Z-basis for OK ).
Proof. Z-basis for OK : {ω1, . . . , ωn}.
Write (α1, . . . , αn)t = C (ω1, . . . , ωn)t for some integer matrix C .
Change of basis formula for the discriminant:

∆[α1, . . . , αn] = det(C)2∆[ω1, . . . , ωn] = det(C)2∆.
The result then follows from the commutative diagram:

0 a OK OK/a 0

0 Zn Zn cok C 0

≈

≈ ≈

C



Norm of an ideal

Corollary. Let 0 6= α ∈ OK , and consider the principal ideal (α).
Then

N((α)) = |N(α)|

where N(α) is the norm we defined previously for elements of K .

Proof. Z-basis for OK : {ω1, . . . , ωn}.
Z-basis for (α): {αω1, . . . , αωn}.

∆[αω1, . . . , αωn] =
n∏

i=1
σi (αωj)2

=
( n∏

i=1
σi (α)

)2( n∏
i=1

σi (ωj)2
)

= N(α)2∆.

The result now follows from the Proposition.
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Norm of an ideal

Example. Let d be a square-free integer not equal to 0 or 1.

Let a, b ∈ Z and consider the principal ideal a = (a + b
√

d) in
OQ(

√
d). Then

∣∣∣OQ(
√

d)/a
∣∣∣ = N(a) = |N(a + b

√
d)|

= |(a + b
√

d)(a − b
√

d)|
= |a2 − db2|.
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Proof. Isomorphism theorems from algebra. See Theorem 5.12 in
our text.
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1. If α ∈ a, then N(a)|N(α).

Proof. If α ∈ a, then the principal ideal (α) is contained in a.

Therefore a|(α), i.e., there exists an ideal b such that (α) = ab.

Taking norms yields

N((α)) = |N(α)| = N(a)N(b).

The result follows.
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Norm of an ideal

2. N(a) = 1 if and only if a = (1) = OK .

Proof. Immediate from the definition of the norm.
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Norm of an ideal

3. If N(a) is prime, a is prime.

Proof. Factor a into primes:

a =
k∏

i=1
pei

i .

Taking norms:

N(a) =
k∏

i=1
N(pi )ei . (1)

If p is prime, then p 6= OK , and hence N(p) > 1.

Therefore, if N(a) is prime, so is a.
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Norm of an ideal

4. N(a) ∈ a.

Proof. Let α ∈ OK .

N(a) = |OK/a| =⇒ N(a)α = 0 ∈ OK/a, i.e., N(a)α ∈ a.

Letting α = 1 gives the result.
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5. If a is prime, then a contains a unique rational prime p

and
N(a) = pm for some 1 ≤ m ≤ n := [K : Q].

Proof. Let N(a) =
∏k

i=1 pei
i be the prime factorization of N(a).

Since N(a) ∈ a,
k∏

i=1
(pi )ei ⊆ a,

and, hence,

a|
k∏

i=1
(pi )ei .

If a is prime, there exists i such that a|(pi ), which means (pi ) ⊆ a
or, equivalently, pi ∈ a.
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Norm of an ideal

Step 5 proof continued: We have seen that if a is prime, then
there exists a rational prime p = pi ∈ a.

If there exists an rational prime q 6= p in a, we would have

1 ∈ (p, q) = (p) + (q) ⊆ a

However, since a is prime, it does not contain 1. So there exists a
unique rational prime a.

From the first part of this problem, we have N(a)|N(p).

Since N(p) = pn, the result follows.
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Since N(p) = pn, the result follows.
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Norm of an ideal

Summary:

Proposition. Let a be a nonzero ideal of OK .

Then
1. If α ∈ a, then N(a)|N(α).
2. N(a) = 1 if and only if a = (1) = OK .
3. If N(a) is prime, a is prime.
4. N(a) ∈ a.
5. If a is prime, then a contains a unique rational prime p and

N(a) = pm for some 1 ≤ m ≤ n := [K : Q].
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Norm of an ideal

Corollary
1. Let a be an ideal of OK . Then there are only a finite number

of ideals b such that b|a, Equivalently, there are finitely many
ideals b such that a ⊆ b.

2. If a ∈ Z, there are finitely many ideals a of OK containing a.
3. There are finitely many ideals with a given norm.

Proof.
1. This is an immediate consequence of prime factorization of

ideals.
2. We have a ∈ a if and only if a|(a). So this result follows from

the previous part of this Corollary applied to the principal
ideal (a).

3. Fix a ∈ Z>0. If a is an ideal with N(a) = a, then from the
previous Proposition, we have a ∈ a. The result then follows
from the previous part of this Corollary. �
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OK is a UFD iff it’s a PID

Proposition. The number ring OK is a UFD if and only if it is a
PID.

Proof. (⇐) We already know that a PID is a UFD.

(⇒) Suppose that OK is a UFD, and let p be a prime ideal in OK .

We have p 3 N(p) = π1 · · ·πk where the πi s are irreducibles
in OK .

Since p is prime, it follows that πi ∈ p from some i . Hence,
(πi ) ⊆ p.

In a UFD every irreducible is prime. So (πi ) is a prime ideal.
Primes are maximal in a number ring. Hence, (πi ) = p.

The result now follows since every ideal of OK is a product of
prime ideals. �
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OK is a UFD iff it’s a PID

Proposition. Suppose that OK is not a UFD, and let π ∈ OK be
irreducible but not prime.

Let (π) =
∏k

i=1 p
ei
i be the prime

factorization of (π). Then no pi is principal.

Proof. For the sake of contradiction, suppose pi = (α) from
some i and some α ∈ OK . Then since pi |(π), it follows
that (π) ⊆ pi = (α).

Hence, π = αβ from some β ∈ OK .

Since p is prime, so is α. Since π is irreducible, β is a unit.

Hence, π is prime—a contradiction. �
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