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Quiz

Remember that we will have a quiz on Wednesday. Our cumulative
topics sheet is posted.



Today

» The norm of an ideal.
» Oy is a UFD if and only if it is a PID.
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Norm of an ideal

Let K be a number field, and let a be a nonzero ideal of O.
Recall the argument showing that Ok /a is finite.

Definition. The norm of the nonzero ideal a is

N(a) =[Ok /al.

Exercise. Let K = Q(v/—14) and a = (6,1 + /—14) C O.
Compute N(a).
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Proposition. Let a be a nonzero ideal of D and pick a Z-module
basis {a1,...,a,} for a. Then

Ao, ..., ap)
A

where A is the discriminant of K (i.e., the discriminant of any
Z-basis for D).
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Proposition. Let a be a nonzero ideal of D and pick a Z-module

basis {a1,...,a,} for a. Then

Ao, ..., ap)
A

where A is the discriminant of K (i.e., the discriminant of any
Z-basis for D).

Proof. Z-basis for Ok: {wi,...,wn}.

Write (a1, ...,a,)" = C(wi,...,w,)" for some integer matrix C.
Change of basis formula for the discriminant:

Aloa, ..., a,) = det(C)2Afws, . . . ,wn] = det(C)2A.
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Proposition. Let a be a nonzero ideal of D and pick a Z-module

basis {a1,...,a,} for a. Then

Ao, ..., ap)
A

where A is the discriminant of K (i.e., the discriminant of any
Z-basis for D).

Proof. Z-basis for Ok: {wi,...,wn}.

Write (a1, ...,a,)" = C(wi,...,w,)" for some integer matrix C.

1/2
N(a) =

Change of basis formula for the discriminant:
Aloa, ..., a,) = det(C)2Afws, . . . ,wn] = det(C)2A.
The result then follows from the commutative diagram:
0 a Ok Ok/a —— 0

b E

0 zn — <, gn cokC —— 0
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Corollary. Let 0 # o € Ok, and consider the principal ideal ().
Then

N((a)) = [N(a)]
where N(«) is the norm we defined previously for elements of K.

Proof. Z-basis for Ox: {wi,...,wn}.

Z-basis for (a): {aws,...,aw,}.
Alaws, ..., awy| = H oi(aw;)?
i=1

n 2 n
= <H0i(a)) (Ha,-(wjf)
i=1 i=1

= N(a)?A.
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Corollary. Let 0 # o € Ok, and consider the principal ideal ().
Then

N((a)) = [N(a)]
where N(«) is the norm we defined previously for elements of K.

Proof. Z-basis for Ox: {wi,...,wn}.

Z-basis for (a): {aws,...,aw,}.
Alaws, ..., awy| = H oi(aw;)?
i=1
n 2 n
= (H a;(a)) (H a,-(wj)2>
i=1 i=1

= N(a)?A.

The result now follows from the Proposition.
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Example. Let d be a square-free integer not equal to 0 or 1.

Let a, b € Z and consider the principal ideal a = (a + bV/d) in
Og(va)- Then

Dg(vay/a| = N(a) = [N(a+ bVd)|
=|(a+ bVd)(a— bVd)|
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Example. Let d be a square-free integer not equal to 0 or 1.

Let a, b € Z and consider the principal ideal a = (a + bV/d) in
Og(va)- Then

Dg(vay/a| = N(a) = [N(a+ bVd)|
=|(a+ bVd)(a— bVd)|
= |a® — db?|.
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Proposition Let a and b be nonzero ideals of Dy. Then

N(ab) = N(a)N(b).

Proof. Isomorphism theorems from algebra. See Theorem 5.12 in
our text.
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Proposition. Let a be a nonzero ideal in O.

1. If a € a, then N(a)|N(«).
Proof. If a € a, then the principal ideal («) is contained in a.

Therefore al(«), i.e., there exists an ideal b such that (o) = ab.
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Proposition. Let a be a nonzero ideal in O.

1. If a € a, then N(a)|N(«).

Proof. If a € a, then the principal ideal («) is contained in a.
Therefore al(«), i.e., there exists an ideal b such that (o) = ab.
Taking norms yields

N((«)) = [N(@)| = N(a)N(b).

The result follows.
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2. N(a) =1if and only if a = (1) = O.

Proof. Immediate from the definition of the norm.
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3. If N(a) is prime, a is prime.

Proof. Factor a into primes:

k
a= H ps.
i=1
Taking norms:
N(a) = T M(e:)* (1)

If p is prime, then p # Oy, and hence N(p) > 1.



Norm of an ideal

3. If N(a) is prime, a is prime.

Proof. Factor a into primes:

k
a= H ps.
i=1
Taking norms:
N(a) = T] M(wi)*. (1)

If p is prime, then p # Oy, and hence N(p) > 1.

Therefore, if N(a) is prime, so is a.
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4. N(a) € a.

Proof. Let o € O.
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4. N(a) € a.
Proof. Let o € O.
N(a) = [Ok/a] = N(a)a =0 € Ok/a, i.e., N(a)a € a.
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4. N(a) € a.

Proof. Let o € O.

N(a) = |Ok/a| = N(a)a =0 € Ok/a, ie, N(a)a € a.
Letting o = 1 gives the result.
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5. If ais prime, then a contains a unique rational prime p and
N(a) = p™ for some 1 < m < n:=[K:Q].

Proof. Let N(a) = [T5; pf be the prime factorization of N(a).
Since N(a) € qa,
k
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5. If ais prime, then a contains a unique rational prime p and
N(a) = p™ for some 1 < m < n:=[K:Q].
Proof. Let N(a) = [T5; pf be the prime factorization of N(a).

Since N(a) € qa,
k

[1(p)* Ca,

i=1

and, hence,
k
al [T(pi)°.
i=1

If a is prime, there exists i such that a|(p;), which means (p;) C a
or, equivalently, p; € a.
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Step 5 proof continued: We have seen that if a is prime, then
there exists a rational prime p = p; € a.
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Step 5 proof continued: We have seen that if a is prime, then
there exists a rational prime p = p; € a.

If there exists an rational prime g # p in a, we would have
1e(p,a)=(p)+(q)Ca

However, since a is prime, it does not contain 1. So there exists a
unique rational prime a.
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Step 5 proof continued: We have seen that if a is prime, then
there exists a rational prime p = p; € a.

If there exists an rational prime g # p in a, we would have

le(p.q)=(p)+(q)Ca

However, since a is prime, it does not contain 1. So there exists a
unique rational prime a.

From the first part of this problem, we have N(a)|N(p).



Norm of an ideal

Step 5 proof continued: We have seen that if a is prime, then
there exists a rational prime p = p; € a.

If there exists an rational prime g # p in a, we would have

le(p.q)=(p)+(q)Ca

However, since a is prime, it does not contain 1. So there exists a
unique rational prime a.

From the first part of this problem, we have N(a)|N(p).

Since N(p) = p", the result follows.
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SUMMARY:

Proposition. Let a be a nonzero ideal of Ok. Then
1. If a € a, then N(a)|N(c).
2. N(a) =1if and only if a = (1) = Ok.
3. If N(a) is prime, a is prime.
4. N(a) € a.
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SUMMARY:

Proposition. Let a be a nonzero ideal of Ok. Then

1.

AR

If @« € a, then N(a)|N(«).

N(a) =1 if and only if a = (1) = O.
If N(a) is prime, a is prime.

N(a) € a.

If a is prime, then a contains a unique rational prime p and
N(a) = p™ for some 1 < m < n:=[K:Q].
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Corollary

1. Let a be an ideal of Ok. Then there are only a finite number
of ideals b such that b|a, Equivalently, there are finitely many
ideals b such that a C b.

2. If a € Z, there are finitely many ideals a of Ok containing a.
3. There are finitely many ideals with a given norm.

Proof.
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Corollary

1. Let a be an ideal of Ok. Then there are only a finite number
of ideals b such that b|a, Equivalently, there are finitely many
ideals b such that a C b.

2. If a € Z, there are finitely many ideals a of Ok containing a.
3. There are finitely many ideals with a given norm.
Proof.

1. This is an immediate consequence of prime factorization of
ideals.
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Corollary

1. Let a be an ideal of Ok. Then there are only a finite number
of ideals b such that b|a, Equivalently, there are finitely many
ideals b such that a C b.

2. If a € Z, there are finitely many ideals a of Ok containing a.
3. There are finitely many ideals with a given norm.
Proof.

1. This is an immediate consequence of prime factorization of
ideals.

2. We have a € a if and only if a|(a).
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Corollary

1. Let a be an ideal of Ok. Then there are only a finite number
of ideals b such that b|a, Equivalently, there are finitely many
ideals b such that a C b.

2. If a € Z, there are finitely many ideals a of Ok containing a.

3. There are finitely many ideals with a given norm.

Proof.

1. This is an immediate consequence of prime factorization of
ideals.

2. We have a € a if and only if a|(a). So this result follows from

the previous part of this Corollary applied to the principal
ideal (a).
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Corollary

1.

2.

Let a be an ideal of Ok. Then there are only a finite number
of ideals b such that b|a, Equivalently, there are finitely many
ideals b such that a C b.

If a € Z, there are finitely many ideals a of Ok containing a.

3. There are finitely many ideals with a given norm.
Proof.
1. This is an immediate consequence of prime factorization of

ideals.

We have a € a if and only if a|(a). So this result follows from
the previous part of this Corollary applied to the principal
ideal (a).

Fix a € Z~o. If ais an ideal with N(a) = a,
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Corollary

1. Let a be an ideal of Ok. Then there are only a finite number
of ideals b such that b|a, Equivalently, there are finitely many
ideals b such that a C b.

2. If a € Z, there are finitely many ideals a of Ok containing a.

3. There are finitely many ideals with a given norm.

Proof.

1. This is an immediate consequence of prime factorization of
ideals.

2. We have a € a if and only if a|(a). So this result follows from
the previous part of this Corollary applied to the principal
ideal (a).

3. Fix a € Zsg. If ais an ideal with N(a) = a, then from the
previous Proposition, we have a € a.
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Corollary
1. Let a be an ideal of Ok. Then there are only a finite number
of ideals b such that b|a, Equivalently, there are finitely many
ideals b such that a C b.
2. If a € Z, there are finitely many ideals a of Ok containing a.
3. There are finitely many ideals with a given norm.
Proof.

1. This is an immediate consequence of prime factorization of
ideals.

2. We have a € a if and only if a|(a). So this result follows from
the previous part of this Corollary applied to the principal
ideal (a).

3. Fix a € Zsg. If ais an ideal with N(a) = a, then from the
previous Proposition, we have a € a. The result then follows
from the previous part of this Corollary. Il
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Proposition. The number ring O is a UFD if and only if it is a
PID.

Proof. (<) We already know that a PID is a UFD.
(=) Suppose that Ok is a UFD, and let p be a prime ideal in Og.

We have p 3 N(p) = 71 - - - mx where the ;s are irreducibles
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Ok is a UFD iff it's a PID

Proposition. The number ring O is a UFD if and only if it is a
PID.

Proof. (<) We already know that a PID is a UFD.
(=) Suppose that Ok is a UFD, and let p be a prime ideal in Og.

We have p > N(p) = 71 - - - mx where the ;s are irreducibles
in DK.

Since p is prime, it follows that 7; € p from some i. Hence,
(m;) Cp.

In a UFD every irreducible is prime. So (7;) is a prime ideal.
Primes are maximal in a number ring. Hence, (7;) = p.

The result now follows since every ideal of O is a product of
prime ideals. 0
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Ok is a UFD iff it's a PID

Proposition. Suppose that Ok is not a UFD, and let m € Ok be
irreducible but not prime. Let () = [[<_; p% be the prime
factorization of (7). Then no p; is principal.

Proof. For the sake of contradiction, suppose p; = (a) from
some i and some « € Ok. Then since p;|(7), it follows
that (7) C p; = («).

Hence, m = af from some § € Ok.
Since p is prime, so is «.. Since 7 is irreducible, 5 is a unit.

Hence, 7 is prime—a contradiction. O



