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March 22, 2023



Quiz

1. What is a Dedekind domain?
2. Why do we care?



Today

» Smith normal form
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Motivation

Important concept. The norm of a nonzero ideal:

N(a) =[Ok /a.

0 a Ok DK/Cl — 0
EJ(ZZ fJ{ZZ %
0 zn —M_, zn Z"/im(M) — 0,

The Smith normal form of the matrix M determines the structure

of Ok/a.
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Cokernel of an integer matrix

Let M be an m X n integer matrix.

Definition. The cokernel of M is

cok(M) = Z™ /im(M).

» We have an exact sequence

7" My 7m s cok(M) = 0.

» im(M) = colspacez(M).
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Cokernel of an integer matrix

Examples.
» M = [5], cok(M) = Z/5Z.
» M =diag(2,3), a 2 x 2 diagonal matrix. Then

cok(M) :Z2/Span{< g ) : ( g )} 5 Z/22 9 7/37
(a, b) — (a mod 2, b mod 3).

» Let M = diag(0,0,1,2,3). Then

cok(M) ~ Z/0Z & Z0Z & Z/12. & Z./27. & 737 =5 L& 7. & 7,/27. & 7,/3Z
(a,b,c,d,e) — (a,b,de).



Integer row and column operations

Definition. The integer row (resp., column) operations on an
integer matrix consist of the following:

1. swapping two rows (resp., columns);
2. negating a row (resp., column);

3. adding one row (resp., column) to a different row (resp.,
column).
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Diagonalization

Claim. By performing integer row and column operations, the
matrix M can be transformed into a diagonal matrix D,
i.e., Dj =0 fori#j.

Start with the the identity matrix /,, and perform all of the same
row operations on /,,, as used in the reduction of M to D to create
a matrix P.

Similarly, start with /, and perform the same column operations on
it as used in the reduction of M to D to create a matrix Q.

Then both P and Q have inverses that are integer matrices
(equivalently, det(P) = 41 and det(Q) = +1), and

PMQ = D.
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Diagonalization

PMQ = D

0 zn M, zm cok(M) —— 0
Q*IlZZ Pl?l %

0 zn -2 zm cok(D) — 0,

Changing basis in domain and codomain.

Important point: Since D is diagonal, it is easy to see how cok(D)
is a product of cyclic groups.

Discuss algorithm.
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