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Quiz

1. What is a Dedekind domain?
2. Why do we care?



Today

I Smith normal form



Motivation

Important concept. The norm of a nonzero ideal:
N(a) = |OK /a|.

0 a OK OK /a 0

0 Zn Zn Zn/ im(M) 0,

g ≈ f ≈

M

The Smith normal form of the matrix M determines the structure
of OK /a.
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Cokernel of an integer matrix

Let M be an m × n integer matrix.

Definition. The cokernel of M is

cok(M) = Zm/ im(M).

I We have an exact sequence

Zn M−→ Zm → cok(M)→ 0.

I im(M) = colspaceZ(M).
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Cokernel of an integer matrix

Examples.
I M = [5],

cok(M) = Z/5Z.
I M = diag(2, 3), a 2× 2 diagonal matrix. Then

cok(M) = Z2/ Span
{(

2
0

)
,

(
0
3

)}
∼−→ Z/2Z⊕ Z/3Z

(a, b) 7→ (a mod 2, b mod 3).

I Let M = diag(0, 0, 1, 2, 3). Then

cok(M) ' Z/0Z⊕ Z0Z⊕ Z/1Z⊕ Z/2Z⊕ Z/3Z ∼−→ Z⊕ Z⊕ Z/2Z⊕ Z/3Z
(a, b, c, d , e) 7→ (a, b, d , e).
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Integer row and column operations

Definition. The integer row (resp., column) operations on an
integer matrix consist of the following:

1. swapping two rows (resp., columns);
2. negating a row (resp., column);
3. adding one row (resp., column) to a different row (resp.,

column).



Diagonalization

Claim. By performing integer row and column operations, the
matrix M can be transformed into a diagonal matrix D,
i.e., Dij = 0 for i 6= j .

Start with the the identity matrix Im and perform all of the same
row operations on Im as used in the reduction of M to D to create
a matrix P.

Similarly, start with In and perform the same column operations on
it as used in the reduction of M to D to create a matrix Q.

Then both P and Q have inverses that are integer matrices
(equivalently, det(P) = ±1 and det(Q) = ±1), and

PMQ = D.
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Diagonalization

PMQ = D

0 Zn Zm cok(M) 0

0 Zn Zm cok(D) 0,

M

Q−1 ≈ P ≈

D

Changing basis in domain and codomain.

Important point: Since D is diagonal, it is easy to see how cok(D)
is a product of cyclic groups.

Discuss algorithm.
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Example

Apply the algorithm to

M =


2 −1 −1 0
−1 4 −1 −2
−1 −1 3 −1

0 −2 −1 3

 .
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