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Fractional ideals

The product of two fractional ideals /, J in Ok is the
D k-submodule of K

IJ = Spang, {ij: i€ 1,j € J}.
Proposition. The set of nonzero fractional ideals in a number

field K forms an abelian group under multiplication. If / is a
nonzero fractional ideal of O, then its inverse is

It ={x e K:xlI COk}.

Proof. The only difficult property to prove is that /=1 is the
inverse of /. We do that in the proof of the upcoming theorem. [J
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In Ok, to contain is to divide

Note: /C J= J- 1 C /L

Definition. If /, J are ideals in a ring R, then [ divides J,
denoted /|J if there exists an ideal H such that J = IH.

Proposition. (7o contain is to divide.) Let a and b be ideals
in Ok. Then a|b if and only if b C a.

Proof. On board.
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Prime factorization of ideals

Theorem. Let K be a number field. Every nonzero ideal of Ok
can be factored into a product of prime ideals, uniquely up to the
order of factors.

Outline of proof.

Step 1. a # 0 an ideal = p1---p, C a for some nonzero prime
ideals p;.

Step 2. /- 171 = (1) = Ok for any nonzero fractional ideal /.
Step 3. Every nonzero ideal a C Ok is a product of prime ideals.

Step 4. Prime factorization of ideals in Ok is unique.
Prove Steps 3, Step 4, then Step 1 on the board.



Prime factorization of ideals

Step 2. /- 171 = (1) = Ok for any nonzero fractional ideal /.



Prime factorization of ideals

Step 2. /- 171 = (1) = Ok for any nonzero fractional ideal /.
Proof.

Step 2.1 Let a C Ok be a proper nonzero ideal. (By "“proper” we mean
aC Ok.) Claim: Ox Ca™t.



Prime factorization of ideals

Step 2. /- 171 = (1) = Ok for any nonzero fractional ideal /.
Proof.
Step 2.1 Let a C Ok be a proper nonzero ideal. (By "“proper” we mean
aC Ok.) Claim: Ox Ca™t.
Step 2.2 Claim: if a is a nonzero ideal and aS C a for any
subset S C K, then S C O.



Prime factorization of ideals

Step 2. /- 171 = (1) = Ok for any nonzero fractional ideal /.
Proof.
Step 2.1 Let a C Ok be a proper nonzero ideal. (By "“proper” we mean
aC Ok.) Claim: Ox Ca™t.
Step 2.2 Claim: if a is a nonzero ideal and aS C a for any
subset S C K, then S C O.

Step 2.3 Let p be a maximal ideal of Ox. Claim: p~tp = (1) = Ok.
So p~! is the multiplicative inverse of p.



Prime factorization of ideals

Step 2. /- 171 = (1) = Ok for any nonzero fractional ideal /.

Proof.
Step 2.1 Let a C Ok be a proper nonzero ideal. (By "“proper” we mean
aC Ok.) Claim: Ox Ca™t.
Step 2.2 Claim: if a is a nonzero ideal and aS C a for any
subset S C K, then S C O.
Step 2.3 Let p be a maximal ideal of O. Claim: p~1p = (1) = O.

Step 2.4

So p~! is the multiplicative inverse of p.

For every nonzero ideal a C Ok, we have aa™! = (1) = O.



Prime factorization of ideals

Step 2. /- 171 = (1) = Ok for any nonzero fractional ideal /.

Proof.

Step 2.1
Step 2.2
Step 2.3

Step 2.4
Step 2.5

Let a C Ok be a proper nonzero ideal. (By “proper” we mean
aC Ok.) Claim: Ox Ca™t.

Claim: if a is a nonzero ideal and aS C a for any

subset S C K, then S C O.

Let p be a maximal ideal of Ok. Claim: p~1p = (1) = .
So p~! is the multiplicative inverse of p.

For every nonzero ideal a C Ok, we have aa~! = (1) = O.

If I is a nonzero fractional ideal, then /I71 = O.
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Step 2.1. Let a C Ok be a proper nonzero ideal. Claim:
O Cat.

Proof. Pick a prime p such that a C p. (Why is this possible?) It
suffices to show Ok € p~L. (Why?)

Our problem is to find a non-integer v € p~ 1.

Take 0 # « € p. Then we may pick nonzero primes p; such that

p1---pr C () Cp.

with r minimal. We may assume p; = p. (Why?) By minimality
of r, we have pp---p, Z («). Take S € po---p, \ ().
Let v :=a 13. Then vy € p~ ! but v & Ok.
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Step 2.2. If a is a nonzero ideal and aS C a for any
subset S C K, then S C O.

Proof. Let 8 € S. Then M := a is a finitely
generated Z-submodule of K such that M C M.
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Step 2.3. Let p be a maximal ideal of D.
Claim: p~1p = (1) = Ok. So p~1 is the multiplicative inverse of p.

Proof. Ox C p~! = p C pp~ L. Definition of p~1 = pp~! C O.
So pp~! is an ideal containing the maximal ideal p.

Two possibilities: pp~! = p or pp~! = Ok.

If pp~! = p, Step 2.2 says p~! C O, in contradiction to Step 2.1.

Done.
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Step 2.4. For every nonzero ideal a C D, we
have aa~! = (1) = O.

Proof. Let A be the set of nonzero ideals without the desired
property.

If A+ (0, choose a maximal element a € A. Choose a prime p
containing a.

ACPCOxk=>OxCplCal=aCaptCan!C Ok

If a =ap~?, then p~ C O, by Step 2.2, contradicting Step 2.1.
So a C ap~!. By maximality of a, we have (ap~!)(ap~!)~! = Ok.

By definition of a™1, we have p(ap~!)~! Ca™!
But then Oy = ap(ap™!)~! C aa~! C O, forcing aa~! = Ok.
Contradiction.



