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I Every nonzero ideal in OK is uniquely expressible as a product
of prime ideals.



Fractional ideals

Let K be a number field with ring of integers OK .

Definition. An OK -submodule I is a fractional ideal of OK if
there exists α ∈ OK \ {0} such that αI ⊆ OK

I We can take α ∈ K \ {0} in the definition.
I Every ordinary ideal is a fractional ideal.
I αI ⊆ OK is an ordinary ideal.
I The fractional ideals are exactly the OK -submodules of K of

the form α−1a for some ideal a of OK and nonzero α ∈ OK .
I Fractional ideals are exactly the finitely generated

OK -submodules of K .
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Fractional ideals

The product of two fractional ideals I, J in OK is the
OK -submodule of K

IJ = SpanOK {ij : i ∈ I, j ∈ J}.

Proposition. The set of nonzero fractional ideals in a number
field K forms an abelian group under multiplication. If I is a
nonzero fractional ideal of OK , then its inverse is

I−1 = {x ∈ K : xI ⊆ OK}.

Proof. The only difficult property to prove is that I−1 is the
inverse of I. We do that in the proof of the upcoming theorem. �



Fractional ideals

The product of two fractional ideals I, J in OK is the
OK -submodule of K

IJ = SpanOK {ij : i ∈ I, j ∈ J}.

Proposition. The set of nonzero fractional ideals in a number
field K forms an abelian group under multiplication.

If I is a
nonzero fractional ideal of OK , then its inverse is

I−1 = {x ∈ K : xI ⊆ OK}.

Proof. The only difficult property to prove is that I−1 is the
inverse of I. We do that in the proof of the upcoming theorem. �



Fractional ideals

The product of two fractional ideals I, J in OK is the
OK -submodule of K

IJ = SpanOK {ij : i ∈ I, j ∈ J}.

Proposition. The set of nonzero fractional ideals in a number
field K forms an abelian group under multiplication. If I is a
nonzero fractional ideal of OK , then its inverse is

I−1 = {x ∈ K : xI ⊆ OK}.

Proof. The only difficult property to prove is that I−1 is the
inverse of I. We do that in the proof of the upcoming theorem. �



Fractional ideals

The product of two fractional ideals I, J in OK is the
OK -submodule of K

IJ = SpanOK {ij : i ∈ I, j ∈ J}.

Proposition. The set of nonzero fractional ideals in a number
field K forms an abelian group under multiplication. If I is a
nonzero fractional ideal of OK , then its inverse is

I−1 = {x ∈ K : xI ⊆ OK}.

Proof. The only difficult property to prove is that I−1 is the
inverse of I.

We do that in the proof of the upcoming theorem. �



Fractional ideals

The product of two fractional ideals I, J in OK is the
OK -submodule of K

IJ = SpanOK {ij : i ∈ I, j ∈ J}.

Proposition. The set of nonzero fractional ideals in a number
field K forms an abelian group under multiplication. If I is a
nonzero fractional ideal of OK , then its inverse is

I−1 = {x ∈ K : xI ⊆ OK}.

Proof. The only difficult property to prove is that I−1 is the
inverse of I. We do that in the proof of the upcoming theorem. �



In OK , to contain is to divide

Note: I ⊆ J ⇒ J−1 ⊆ I−1.

Definition. If I, J are ideals in a ring R, then I divides J ,
denoted I|J if there exists an ideal H such that J = IH.

Proposition. (To contain is to divide.) Let a and b be ideals
in OK . Then a|b if and only if b ⊆ a.

Proof. On board. �
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Prime factorization of ideals

Theorem. Let K be a number field. Every nonzero ideal of OK
can be factored into a product of prime ideals, uniquely up to the
order of factors.

Outline of proof.

Step 1. a 6= 0 an ideal ⇒ p1 · · · pr ⊆ a for some nonzero prime
ideals pi .

Step 2. I · I−1 = (1) = OK for any nonzero fractional ideal I.

Step 3. Every nonzero ideal a ⊆ OK is a product of prime ideals.

Step 4. Prime factorization of ideals in OK is unique.
Prove Steps 3, Step 4, then Step 1 on the board.
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Prime factorization of ideals

Step 2. I · I−1 = (1) = OK for any nonzero fractional ideal I.

Proof.
Step 2.1 Let a ⊆ OK be a proper nonzero ideal. (By “proper” we mean

a ( OK .) Claim: OK ( a−1.
Step 2.2 Claim: if a is a nonzero ideal and aS ⊆ a for any

subset S ⊆ K , then S ⊆ OK .
Step 2.3 Let p be a maximal ideal of OK . Claim: p−1p = (1) = OK .

So p−1 is the multiplicative inverse of p.
Step 2.4 For every nonzero ideal a ⊆ OK , we have aa−1 = (1) = OK .
Step 2.5 If I is a nonzero fractional ideal, then II−1 = OK .
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Prime factorization of ideals

Step 2.1. Let a ⊆ OK be a proper nonzero ideal. Claim:
OK ( a−1.

Proof. Pick a prime p such that a ⊆ p. (Why is this possible?) It
suffices to show OK ( p−1. (Why?)

Our problem is to find a non-integer γ ∈ p−1.

Take 0 6= α ∈ p. Then we may pick nonzero primes pi such that

p1 · · · pr ⊆ (α) ⊆ p.

with r minimal. We may assume p1 = p. (Why?) By minimality
of r , we have p2 · · · pr 6⊆ (α). Take β ∈ p2 · · · pr \ (α).
Let γ := α−1β. Then γ ∈ p−1 but γ 6∈ OK .
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Prime factorization of ideals

Step 2.2. If a is a nonzero ideal and aS ⊆ a for any
subset S ⊆ K , then S ⊆ OK .

Proof. Let θ ∈ S. Then M := a is a finitely
generated Z-submodule of K such that θM ⊆ M.
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Prime factorization of ideals

Step 2.3. Let p be a maximal ideal of OK .
Claim: p−1p = (1) = OK . So p−1 is the multiplicative inverse of p.

Proof. OK ⊂ p−1 ⇒ p ⊆ pp−1. Definition of p−1 ⇒ pp−1 ⊆ OK .

So pp−1 is an ideal containing the maximal ideal p.

Two possibilities: pp−1 = p or pp−1 = OK .

If pp−1 = p, Step 2.2 says p−1 ⊆ OK , in contradiction to Step 2.1.

Done.
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