Math 361

March 20, 2023

Today

▶ Every nonzero ideal in \mathfrak{O}_K is uniquely expressible as a product of prime ideals.

Let K be a number field with ring of integers \mathfrak{O}_K .

Let K be a number field with ring of integers \mathfrak{O}_K .

Let K be a number field with ring of integers \mathfrak{O}_K .

Definition. An \mathfrak{O}_K -submodule I is a fractional ideal of \mathfrak{O}_K if there exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$

▶ We can take $\alpha \in K \setminus \{0\}$ in the definition.

Let K be a number field with ring of integers \mathfrak{O}_K .

- ▶ We can take $\alpha \in K \setminus \{0\}$ in the definition.
- Every ordinary ideal is a fractional ideal.

Let K be a number field with ring of integers \mathfrak{O}_K .

- ▶ We can take $\alpha \in K \setminus \{0\}$ in the definition.
- Every ordinary ideal is a fractional ideal.
- ▶ $\alpha I \subseteq \mathfrak{O}_K$ is an ordinary ideal.

Let K be a number field with ring of integers \mathfrak{O}_K .

- ▶ We can take $\alpha \in K \setminus \{0\}$ in the definition.
- ▶ Every ordinary ideal is a fractional ideal.
- ▶ $\alpha I \subseteq \mathfrak{O}_K$ is an ordinary ideal.
- ▶ The fractional ideals are exactly the \mathfrak{O}_K -submodules of K of the form $\alpha^{-1}\mathfrak{a}$ for some ideal \mathfrak{a} of \mathfrak{O}_K and nonzero $\alpha \in \mathfrak{O}_K$.

Let K be a number field with ring of integers \mathfrak{O}_K .

- ▶ We can take $\alpha \in K \setminus \{0\}$ in the definition.
- Every ordinary ideal is a fractional ideal.
- $ightharpoonup \alpha I \subseteq \mathfrak{O}_K$ is an ordinary ideal.
- ▶ The fractional ideals are exactly the \mathfrak{O}_K -submodules of K of the form $\alpha^{-1}\mathfrak{a}$ for some ideal \mathfrak{a} of \mathfrak{O}_K and nonzero $\alpha \in \mathfrak{O}_K$.
- ▶ Fractional ideals are exactly the finitely generated \mathfrak{O}_K -submodules of K.

Let K be a number field with ring of integers \mathfrak{O}_K .

- ▶ We can take $\alpha \in K \setminus \{0\}$ in the definition.
- Every ordinary ideal is a fractional ideal.
- $ightharpoonup \alpha I \subseteq \mathfrak{O}_K$ is an ordinary ideal.
- ▶ The fractional ideals are exactly the \mathfrak{O}_K -submodules of K of the form $\alpha^{-1}\mathfrak{a}$ for some ideal \mathfrak{a} of \mathfrak{O}_K and nonzero $\alpha \in \mathfrak{O}_K$.
- ▶ Fractional ideals are exactly the finitely generated \mathfrak{O}_K -submodules of K.

The product of two fractional ideals I,J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ=\operatorname{Span}_{\mathfrak{O}_K}\{ij:i\in I,j\in J\}.$$

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{O}_K} \{ ij : i \in I, j \in J \}.$$

Proposition. The set of nonzero fractional ideals in a number field K forms an abelian group under multiplication.

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{O}_K} \{ ij : i \in I, j \in J \}.$$

Proposition. The set of nonzero fractional ideals in a number field K forms an abelian group under multiplication. If I is a nonzero fractional ideal of \mathfrak{D}_K , then its inverse is

$$I^{-1} = \{ x \in K : xI \subseteq \mathfrak{O}_K \}.$$

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{D}_K} \{ ij : i \in I, j \in J \}.$$

Proposition. The set of nonzero fractional ideals in a number field K forms an abelian group under multiplication. If I is a nonzero fractional ideal of \mathfrak{D}_K , then its inverse is

$$I^{-1} = \{ x \in K : xI \subseteq \mathfrak{O}_K \}.$$

Proof. The only difficult property to prove is that I^{-1} is the inverse of I.

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{O}_K} \{ ij : i \in I, j \in J \}.$$

Proposition. The set of nonzero fractional ideals in a number field K forms an abelian group under multiplication. If I is a nonzero fractional ideal of \mathfrak{D}_K , then its inverse is

$$I^{-1} = \{ x \in K : xI \subseteq \mathfrak{O}_K \}.$$

Proof. The only difficult property to prove is that I^{-1} is the inverse of I. We do that in the proof of the upcoming theorem. \square

Note: $I \subseteq J \Rightarrow J^{-1} \subseteq I^{-1}$.

Note: $I \subseteq J \Rightarrow J^{-1} \subseteq I^{-1}$.

Definition. If I, J are ideals in a ring R, then I divides J, denoted I|J if

Note: $I \subseteq J \Rightarrow J^{-1} \subseteq I^{-1}$.

Definition. If I, J are ideals in a ring R, then I divides J, denoted I|J if there exists an ideal H such that J = IH.

Note: $I \subseteq J \Rightarrow J^{-1} \subseteq I^{-1}$.

Definition. If I, J are ideals in a ring R, then I divides J, denoted I|J if there exists an ideal H such that J = IH.

Proposition. (*To contain is to divide.*)

Note: $I \subseteq J \Rightarrow J^{-1} \subseteq I^{-1}$.

Definition. If I, J are ideals in a ring R, then I divides J, denoted I|J if there exists an ideal H such that J = IH.

Proposition. (*To contain is to divide.*) Let $\mathfrak a$ and $\mathfrak b$ be ideals in $\mathfrak O_K$. Then $\mathfrak a|\mathfrak b$ if and only if $\mathfrak b\subseteq \mathfrak a$.

Note:
$$I \subseteq J \Rightarrow J^{-1} \subseteq I^{-1}$$
.

Definition. If I, J are ideals in a ring R, then I divides J, denoted I|J if there exists an ideal H such that J = IH.

Proposition. (*To contain is to divide.*) Let \mathfrak{a} and \mathfrak{b} be ideals in \mathfrak{O}_K . Then $\mathfrak{a}|\mathfrak{b}$ if and only if $\mathfrak{b}\subseteq\mathfrak{a}$.

Proof. On board.

Theorem. Let K be a number field. Every nonzero ideal of \mathfrak{O}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Theorem. Let K be a number field. Every nonzero ideal of \mathfrak{O}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

Theorem. Let K be a number field. Every nonzero ideal of \mathfrak{O}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .

Theorem. Let K be a number field. Every nonzero ideal of \mathfrak{O}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal I.

Theorem. Let K be a number field. Every nonzero ideal of \mathfrak{O}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

- Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .
- Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal I.
- Step 3. Every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$ is a product of prime ideals.

Theorem. Let K be a number field. Every nonzero ideal of \mathfrak{O}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

- Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .
- Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal I.
- Step 3. Every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$ is a product of prime ideals.
- Step 4. Prime factorization of ideals in \mathfrak{O}_K is unique.

Theorem. Let K be a number field. Every nonzero ideal of \mathfrak{O}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

- Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .
- Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal I.
- Step 3. Every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$ is a product of prime ideals.
- Step 4. Prime factorization of ideals in \mathfrak{O}_K is unique.

Prove Steps 3, Step 4, then Step 1 on the board.

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal I.

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal I. **Proof.**

Step 2.1 Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. (By "proper" we mean $\mathfrak{a} \subsetneq \mathfrak{O}_K$.) Claim: $\mathfrak{O}_K \subsetneq \mathfrak{a}^{-1}$.

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{D}_K$ for any nonzero fractional ideal I. **Proof.**

- Step 2.1 Let $\mathfrak{a} \subseteq \mathfrak{D}_K$ be a proper nonzero ideal. (By "proper" we mean $\mathfrak{a} \subsetneq \mathfrak{D}_K$.) Claim: $\mathfrak{D}_K \subsetneq \mathfrak{a}^{-1}$.
- Step 2.2 Claim: if $\mathfrak a$ is a nonzero ideal and $\mathfrak aS\subseteq \mathfrak a$ for any subset $S\subseteq \mathcal K$, then $S\subseteq \mathfrak D_{\mathcal K}$.

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal I. **Proof.**

- Step 2.1 Let $\mathfrak{a} \subseteq \mathfrak{D}_K$ be a proper nonzero ideal. (By "proper" we mean $\mathfrak{a} \subsetneq \mathfrak{D}_K$.) Claim: $\mathfrak{D}_K \subsetneq \mathfrak{a}^{-1}$.
- Step 2.2 Claim: if $\mathfrak a$ is a nonzero ideal and $\mathfrak aS\subseteq \mathfrak a$ for any subset $S\subseteq \mathcal K$, then $S\subseteq \mathfrak D_{\mathcal K}$.
- Step 2.3 Let $\mathfrak p$ be a maximal ideal of $\mathfrak O_K$. Claim: $\mathfrak p^{-1}\mathfrak p=(1)=\mathfrak O_K$. So $\mathfrak p^{-1}$ is the multiplicative inverse of $\mathfrak p$.

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal I. **Proof.**

- Step 2.1 Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. (By "proper" we mean $\mathfrak{a} \subseteq \mathfrak{O}_K$.) Claim: $\mathfrak{O}_K \subseteq \mathfrak{a}^{-1}$.
- Step 2.2 Claim: if $\mathfrak a$ is a nonzero ideal and $\mathfrak aS\subseteq \mathfrak a$ for any subset $S\subseteq \mathcal K$, then $S\subseteq \mathfrak D_{\mathcal K}$.
- Step 2.3 Let $\mathfrak p$ be a maximal ideal of $\mathfrak O_K$. Claim: $\mathfrak p^{-1}\mathfrak p=(1)=\mathfrak O_K$. So $\mathfrak p^{-1}$ is the multiplicative inverse of $\mathfrak p$.
- Step 2.4 For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal I. **Proof.**

- Step 2.1 Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. (By "proper" we mean $\mathfrak{a} \subseteq \mathfrak{O}_K$.) Claim: $\mathfrak{O}_K \subseteq \mathfrak{a}^{-1}$.
- Step 2.2 Claim: if $\mathfrak a$ is a nonzero ideal and $\mathfrak aS\subseteq \mathfrak a$ for any subset $S\subseteq \mathcal K$, then $S\subseteq \mathfrak D_{\mathcal K}$.
- Step 2.3 Let $\mathfrak p$ be a maximal ideal of $\mathfrak O_K$. Claim: $\mathfrak p^{-1}\mathfrak p=(1)=\mathfrak O_K$. So $\mathfrak p^{-1}$ is the multiplicative inverse of $\mathfrak p$.
- Step 2.4 For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.
- Step 2.5 If I is a nonzero fractional ideal, then $II^{-1} = \mathfrak{O}_K$.

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subsetneq \mathfrak{a}^{-1}$.

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subseteq \mathfrak{a}^{-1}$.

Proof. Pick a prime $\mathfrak p$ such that $\mathfrak a\subseteq \mathfrak p.$ (Why is this possible?)

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subseteq \mathfrak{a}^{-1}$.

Proof. Pick a prime \mathfrak{p} such that $\mathfrak{a} \subseteq \mathfrak{p}$. (Why is this possible?) It suffices to show $\mathfrak{O}_K \subsetneq \mathfrak{p}^{-1}$. (Why?)

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subseteq \mathfrak{a}^{-1}$.

Proof. Pick a prime $\mathfrak p$ such that $\mathfrak a\subseteq \mathfrak p$. (Why is this possible?) It suffices to show $\mathfrak O_K\subsetneq \mathfrak p^{-1}$. (Why?)

Our problem is to find a non-integer $\gamma \in \mathfrak{p}^{-1}$.

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim:

$$\mathfrak{O}_{K}\subsetneq \mathfrak{a}^{-1}.$$

Proof. Pick a prime $\mathfrak p$ such that $\mathfrak a\subseteq \mathfrak p$. (Why is this possible?) It suffices to show $\mathfrak O_K\subsetneq \mathfrak p^{-1}$. (Why?)

Our problem is to find a non-integer $\gamma \in \mathfrak{p}^{-1}$.

Take $0 \neq \alpha \in \mathfrak{p}$.

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subseteq \mathfrak{a}^{-1}$.

Proof. Pick a prime $\mathfrak p$ such that $\mathfrak a\subseteq \mathfrak p$. (Why is this possible?) It suffices to show $\mathfrak O_K\subsetneq \mathfrak p^{-1}$. (Why?)

Our problem is to find a non-integer $\gamma \in \mathfrak{p}^{-1}$.

Take $0 \neq \alpha \in \mathfrak{p}$. Then we may pick nonzero primes \mathfrak{p}_i such that

$$\mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq (\alpha) \subseteq \mathfrak{p}.$$

with r minimal.

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subseteq \mathfrak{a}^{-1}$.

Proof. Pick a prime $\mathfrak p$ such that $\mathfrak a\subseteq \mathfrak p$. (Why is this possible?) It suffices to show $\mathfrak O_K\subsetneq \mathfrak p^{-1}$. (Why?)

Our problem is to find a non-integer $\gamma \in \mathfrak{p}^{-1}$.

Take $0 \neq \alpha \in \mathfrak{p}$. Then we may pick nonzero primes \mathfrak{p}_i such that

$$\mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq (\alpha) \subseteq \mathfrak{p}.$$

with r minimal. We may assume $\mathfrak{p}_1 = \mathfrak{p}$. (Why?)

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subsetneq \mathfrak{a}^{-1}$.

Proof. Pick a prime $\mathfrak p$ such that $\mathfrak a\subseteq \mathfrak p$. (Why is this possible?) It suffices to show $\mathfrak O_K\subsetneq \mathfrak p^{-1}$. (Why?)

Our problem is to find a non-integer $\gamma \in \mathfrak{p}^{-1}$.

Take $0 \neq \alpha \in \mathfrak{p}$. Then we may pick nonzero primes \mathfrak{p}_i such that

$$\mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq (\alpha) \subseteq \mathfrak{p}.$$

with r minimal. We may assume $\mathfrak{p}_1 = \mathfrak{p}$. (Why?) By minimality of r, we have $\mathfrak{p}_2 \cdots \mathfrak{p}_r \not\subseteq (\alpha)$.

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subseteq \mathfrak{a}^{-1}$.

Proof. Pick a prime $\mathfrak p$ such that $\mathfrak a\subseteq \mathfrak p$. (Why is this possible?) It suffices to show $\mathfrak O_K\subsetneq \mathfrak p^{-1}$. (Why?)

Our problem is to find a non-integer $\gamma \in \mathfrak{p}^{-1}$.

Take $0 \neq \alpha \in \mathfrak{p}$. Then we may pick nonzero primes \mathfrak{p}_i such that

$$\mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq (\alpha) \subseteq \mathfrak{p}.$$

with r minimal. We may assume $\mathfrak{p}_1 = \mathfrak{p}$. (Why?) By minimality of r, we have $\mathfrak{p}_2 \cdots \mathfrak{p}_r \not\subseteq (\alpha)$. Take $\beta \in \mathfrak{p}_2 \cdots \mathfrak{p}_r \setminus (\alpha)$.

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subsetneq \mathfrak{a}^{-1}$.

Proof. Pick a prime $\mathfrak p$ such that $\mathfrak a\subseteq \mathfrak p$. (Why is this possible?) It suffices to show $\mathfrak O_K\subsetneq \mathfrak p^{-1}$. (Why?)

Our problem is to find a non-integer $\gamma \in \mathfrak{p}^{-1}$.

Take $0 \neq \alpha \in \mathfrak{p}$. Then we may pick nonzero primes \mathfrak{p}_i such that

$$\mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq (\alpha) \subseteq \mathfrak{p}.$$

with r minimal. We may assume $\mathfrak{p}_1 = \mathfrak{p}$. (Why?) By minimality of r, we have $\mathfrak{p}_2 \cdots \mathfrak{p}_r \not\subseteq (\alpha)$. Take $\beta \in \mathfrak{p}_2 \cdots \mathfrak{p}_r \setminus (\alpha)$. Let $\gamma := \alpha^{-1}\beta$.

Step 2.1. Let $\mathfrak{a} \subseteq \mathfrak{O}_K$ be a proper nonzero ideal. Claim: $\mathfrak{O}_K \subsetneq \mathfrak{a}^{-1}$.

Proof. Pick a prime $\mathfrak p$ such that $\mathfrak a\subseteq \mathfrak p$. (Why is this possible?) It suffices to show $\mathfrak O_K\subsetneq \mathfrak p^{-1}$. (Why?)

Our problem is to find a non-integer $\gamma \in \mathfrak{p}^{-1}$.

Take $0 \neq \alpha \in \mathfrak{p}$. Then we may pick nonzero primes \mathfrak{p}_i such that

$$\mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq (\alpha) \subseteq \mathfrak{p}.$$

with r minimal. We may assume $\mathfrak{p}_1 = \mathfrak{p}$. (Why?) By minimality of r, we have $\mathfrak{p}_2 \cdots \mathfrak{p}_r \not\subseteq (\alpha)$. Take $\beta \in \mathfrak{p}_2 \cdots \mathfrak{p}_r \setminus (\alpha)$. Let $\gamma := \alpha^{-1}\beta$. Then $\gamma \in \mathfrak{p}^{-1}$ but $\gamma \not\in \mathfrak{O}_K$.

Step 2.2. If $\mathfrak a$ is a nonzero ideal and $\mathfrak aS\subseteq \mathfrak a$ for any subset $S\subseteq \mathcal K$, then $S\subseteq \mathfrak O_{\mathcal K}$.

Step 2.2. If $\mathfrak a$ is a nonzero ideal and $\mathfrak aS\subseteq \mathfrak a$ for any subset $S\subseteq \mathcal K$, then $S\subseteq \mathfrak O_{\mathcal K}$.

Proof. Let $\theta \in S$.

Step 2.2. If \mathfrak{a} is a nonzero ideal and $\mathfrak{a}S\subseteq\mathfrak{a}$ for any subset $S\subseteq\mathcal{K}$, then $S\subseteq\mathfrak{O}_{\mathcal{K}}$.

Proof. Let $\theta \in S$. Then $M := \mathfrak{a}$ is a finitely generated \mathbb{Z} -submodule of K such that $\theta M \subseteq M$.

Step 2.3. Let \mathfrak{p} be a maximal ideal of \mathfrak{O}_K .

Claim: $\mathfrak{p}^{-1}\mathfrak{p}=(1)=\mathfrak{O}_{\mathcal{K}}.$ So \mathfrak{p}^{-1} is the multiplicative inverse of $\mathfrak{p}.$

Step 2.3. Let \mathfrak{p} be a maximal ideal of \mathfrak{O}_K .

Claim: $\mathfrak{p}^{-1}\mathfrak{p}=(1)=\mathfrak{O}_K$. So \mathfrak{p}^{-1} is the multiplicative inverse of \mathfrak{p} .

 $\textbf{Proof.} \ \mathfrak{O}_{\mathcal{K}} \subset \mathfrak{p}^{-1} \Rightarrow \mathfrak{p} \subseteq \mathfrak{p}\mathfrak{p}^{-1}. \ \text{Definition of} \ \mathfrak{p}^{-1} \Rightarrow \mathfrak{p}\mathfrak{p}^{-1} \subseteq \mathfrak{O}_{\mathcal{K}}.$

Step 2.3. Let \mathfrak{p} be a maximal ideal of \mathfrak{O}_K .

Claim: $\mathfrak{p}^{-1}\mathfrak{p}=(1)=\mathfrak{O}_{\mathcal{K}}.$ So \mathfrak{p}^{-1} is the multiplicative inverse of $\mathfrak{p}.$

Proof. $\mathfrak{O}_K \subset \mathfrak{p}^{-1} \Rightarrow \mathfrak{p} \subseteq \mathfrak{p}\mathfrak{p}^{-1}$. Definition of $\mathfrak{p}^{-1} \Rightarrow \mathfrak{p}\mathfrak{p}^{-1} \subseteq \mathfrak{O}_K$.

So \mathfrak{pp}^{-1} is an ideal containing the maximal ideal \mathfrak{p} .

Step 2.3. Let \mathfrak{p} be a maximal ideal of \mathfrak{O}_K .

Claim: $\mathfrak{p}^{-1}\mathfrak{p}=(1)=\mathfrak{O}_{\mathcal{K}}.$ So \mathfrak{p}^{-1} is the multiplicative inverse of $\mathfrak{p}.$

Proof. $\mathfrak{O}_K \subset \mathfrak{p}^{-1} \Rightarrow \mathfrak{p} \subseteq \mathfrak{p}\mathfrak{p}^{-1}$. Definition of $\mathfrak{p}^{-1} \Rightarrow \mathfrak{p}\mathfrak{p}^{-1} \subseteq \mathfrak{O}_K$.

So \mathfrak{pp}^{-1} is an ideal containing the maximal ideal \mathfrak{p} .

Two possibilities: $\mathfrak{pp}^{-1} = \mathfrak{p}$ or $\mathfrak{pp}^{-1} = \mathfrak{O}_K$.

Step 2.3. Let \mathfrak{p} be a maximal ideal of \mathfrak{O}_K .

Claim: $\mathfrak{p}^{-1}\mathfrak{p}=(1)=\mathfrak{O}_{\mathcal{K}}.$ So \mathfrak{p}^{-1} is the multiplicative inverse of $\mathfrak{p}.$

Proof. $\mathfrak{O}_K \subset \mathfrak{p}^{-1} \Rightarrow \mathfrak{p} \subseteq \mathfrak{p}\mathfrak{p}^{-1}$. Definition of $\mathfrak{p}^{-1} \Rightarrow \mathfrak{p}\mathfrak{p}^{-1} \subseteq \mathfrak{O}_K$.

So \mathfrak{pp}^{-1} is an ideal containing the maximal ideal \mathfrak{p} .

Two possibilities: $\mathfrak{pp}^{-1} = \mathfrak{p}$ or $\mathfrak{pp}^{-1} = \mathfrak{O}_K$.

If $\mathfrak{pp}^{-1}=\mathfrak{p}$, Step 2.2 says $\mathfrak{p}^{-1}\subseteq\mathfrak{O}_K$, in contradiction to Step 2.1.

Step 2.3. Let \mathfrak{p} be a maximal ideal of \mathfrak{O}_K .

Claim: $\mathfrak{p}^{-1}\mathfrak{p}=(1)=\mathfrak{O}_{\mathcal{K}}.$ So \mathfrak{p}^{-1} is the multiplicative inverse of $\mathfrak{p}.$

Proof. $\mathfrak{O}_K \subset \mathfrak{p}^{-1} \Rightarrow \mathfrak{p} \subseteq \mathfrak{p}\mathfrak{p}^{-1}$. Definition of $\mathfrak{p}^{-1} \Rightarrow \mathfrak{p}\mathfrak{p}^{-1} \subseteq \mathfrak{O}_K$.

So \mathfrak{pp}^{-1} is an ideal containing the maximal ideal \mathfrak{p} .

Two possibilities: $\mathfrak{pp}^{-1} = \mathfrak{p}$ or $\mathfrak{pp}^{-1} = \mathfrak{O}_K$.

If $\mathfrak{pp}^{-1}=\mathfrak{p}$, Step 2.2 says $\mathfrak{p}^{-1}\subseteq\mathfrak{O}_K$, in contradiction to Step 2.1.

Done.

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let $\mathcal A$ be the set of nonzero ideals without the desired property.

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let $\mathcal A$ be the set of nonzero ideals without the desired property.

If $A \neq \emptyset$, choose a maximal element $\mathfrak{a} \in A$.

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let $\mathcal A$ be the set of nonzero ideals without the desired property.

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let $\mathcal A$ be the set of nonzero ideals without the desired property.

$$\mathfrak{a}\subset\mathfrak{p}\subset\mathfrak{O}_{\mathcal{K}}\Rightarrow\mathfrak{O}_{\mathcal{K}}\subseteq\mathfrak{p}^{-1}\subseteq\mathfrak{a}^{-1}$$

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let $\mathcal A$ be the set of nonzero ideals without the desired property.

$$\mathfrak{a}\subset\mathfrak{p}\subset\mathfrak{O}_{\mathcal{K}}\Rightarrow\mathfrak{O}_{\mathcal{K}}\subseteq\mathfrak{p}^{-1}\subseteq\mathfrak{a}^{-1}\Rightarrow\mathfrak{a}\subseteq\mathfrak{a}\mathfrak{p}^{-1}\subseteq\mathfrak{a}\mathfrak{a}^{-1}\subseteq\mathfrak{O}_{\mathcal{K}}$$

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let $\mathcal A$ be the set of nonzero ideals without the desired property.

$$\mathfrak{a} \subset \mathfrak{p} \subset \mathfrak{O}_K \Rightarrow \mathfrak{O}_K \subseteq \mathfrak{p}^{-1} \subseteq \mathfrak{a}^{-1} \Rightarrow \mathfrak{a} \subseteq \mathfrak{a}\mathfrak{p}^{-1} \subseteq \mathfrak{a}\mathfrak{a}^{-1} \subseteq \mathfrak{O}_K$$

If $\mathfrak{a} = \mathfrak{a}\mathfrak{p}^{-1}$, then $\mathfrak{p}^{-1} \subseteq \mathfrak{O}_K$, by Step 2.2, contradicting Step 2.1.

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let $\mathcal A$ be the set of nonzero ideals without the desired property.

$$\mathfrak{a} \subset \mathfrak{p} \subset \mathfrak{O}_{\mathcal{K}} \Rightarrow \mathfrak{O}_{\mathcal{K}} \subseteq \mathfrak{p}^{-1} \subseteq \mathfrak{a}^{-1} \Rightarrow \mathfrak{a} \subseteq \mathfrak{a}\mathfrak{p}^{-1} \subseteq \mathfrak{a}\mathfrak{a}^{-1} \subseteq \mathfrak{O}_{\mathcal{K}}$$
 If $\mathfrak{a} = \mathfrak{a}\mathfrak{p}^{-1}$, then $\mathfrak{p}^{-1} \subseteq \mathfrak{O}_{\mathcal{K}}$, by Step 2.2, contradicting Step 2.1. So $\mathfrak{a} \subsetneq \mathfrak{a}\mathfrak{p}^{-1}$.

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let \mathcal{A} be the set of nonzero ideals without the desired property.

If $\mathcal{A} \neq \emptyset$, choose a maximal element $\mathfrak{a} \in \mathcal{A}$. Choose a prime \mathfrak{p} containing \mathfrak{a} .

$$\mathfrak{a} \subset \mathfrak{p} \subset \mathfrak{O}_{\mathcal{K}} \Rightarrow \mathfrak{O}_{\mathcal{K}} \subseteq \mathfrak{p}^{-1} \subseteq \mathfrak{a}^{-1} \Rightarrow \mathfrak{a} \subseteq \mathfrak{a}\mathfrak{p}^{-1} \subseteq \mathfrak{a}\mathfrak{a}^{-1} \subseteq \mathfrak{O}_{\mathcal{K}}$$

If $\mathfrak{a}=\mathfrak{a}\mathfrak{p}^{-1}$, then $\mathfrak{p}^{-1}\subseteq \mathfrak{O}_K$, by Step 2.2, contradicting Step 2.1. So $\mathfrak{a}\subsetneq \mathfrak{a}\mathfrak{p}^{-1}$. By maximality of \mathfrak{a} , we have $(\mathfrak{a}\mathfrak{p}^{-1})(\mathfrak{a}\mathfrak{p}^{-1})^{-1}=\mathfrak{O}_K$.

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let $\mathcal A$ be the set of nonzero ideals without the desired property.

If $\mathcal{A} \neq \emptyset$, choose a maximal element $\mathfrak{a} \in \mathcal{A}$. Choose a prime \mathfrak{p} containing \mathfrak{a} .

$$\mathfrak{a} \subset \mathfrak{p} \subset \mathfrak{O}_K \Rightarrow \mathfrak{O}_K \subseteq \mathfrak{p}^{-1} \subseteq \mathfrak{a}^{-1} \Rightarrow \mathfrak{a} \subseteq \mathfrak{a}\mathfrak{p}^{-1} \subseteq \mathfrak{a}\mathfrak{a}^{-1} \subseteq \mathfrak{O}_K$$

If $\mathfrak{a}=\mathfrak{a}\mathfrak{p}^{-1}$, then $\mathfrak{p}^{-1}\subseteq \mathfrak{O}_{\mathcal{K}}$, by Step 2.2, contradicting Step 2.1. So $\mathfrak{a}\subsetneq \mathfrak{a}\mathfrak{p}^{-1}$. By maximality of \mathfrak{a} , we have $(\mathfrak{a}\mathfrak{p}^{-1})(\mathfrak{a}\mathfrak{p}^{-1})^{-1}=\mathfrak{O}_{\mathcal{K}}$.

By definition of \mathfrak{a}^{-1} , we have $\mathfrak{p}(\mathfrak{a}\mathfrak{p}^{-1})^{-1}\subseteq\mathfrak{a}^{-1}$

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let \mathcal{A} be the set of nonzero ideals without the desired property.

If $\mathcal{A} \neq \emptyset$, choose a maximal element $\mathfrak{a} \in \mathcal{A}$. Choose a prime \mathfrak{p} containing \mathfrak{a} .

$$\mathfrak{a} \subset \mathfrak{p} \subset \mathfrak{O}_{\mathcal{K}} \Rightarrow \mathfrak{O}_{\mathcal{K}} \subseteq \mathfrak{p}^{-1} \subseteq \mathfrak{a}^{-1} \Rightarrow \mathfrak{a} \subseteq \mathfrak{a}\mathfrak{p}^{-1} \subseteq \mathfrak{a}\mathfrak{a}^{-1} \subseteq \mathfrak{O}_{\mathcal{K}}$$

If $\mathfrak{a}=\mathfrak{a}\mathfrak{p}^{-1}$, then $\mathfrak{p}^{-1}\subseteq \mathfrak{O}_{\mathcal{K}}$, by Step 2.2, contradicting Step 2.1. So $\mathfrak{a}\subsetneq \mathfrak{a}\mathfrak{p}^{-1}$. By maximality of \mathfrak{a} , we have $(\mathfrak{a}\mathfrak{p}^{-1})(\mathfrak{a}\mathfrak{p}^{-1})^{-1}=\mathfrak{O}_{\mathcal{K}}$.

By definition of \mathfrak{a}^{-1} , we have $\mathfrak{p}(\mathfrak{a}\mathfrak{p}^{-1})^{-1} \subseteq \mathfrak{a}^{-1}$ But then $\mathfrak{O}_K = \mathfrak{a}\mathfrak{p}(\mathfrak{a}\mathfrak{p}^{-1})^{-1} \subseteq \mathfrak{a}\mathfrak{a}^{-1} \subseteq \mathfrak{O}_K$,

Step 2.4. For every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, we have $\mathfrak{a}\mathfrak{a}^{-1} = (1) = \mathfrak{O}_K$.

Proof. Let \mathcal{A} be the set of nonzero ideals without the desired property.

If $\mathcal{A} \neq \emptyset$, choose a maximal element $\mathfrak{a} \in \mathcal{A}$. Choose a prime \mathfrak{p} containing \mathfrak{a} .

$$\mathfrak{a} \subset \mathfrak{p} \subset \mathfrak{O}_K \Rightarrow \mathfrak{O}_K \subseteq \mathfrak{p}^{-1} \subseteq \mathfrak{a}^{-1} \Rightarrow \mathfrak{a} \subseteq \mathfrak{a}\mathfrak{p}^{-1} \subseteq \mathfrak{a}\mathfrak{a}^{-1} \subseteq \mathfrak{O}_K$$

If $\mathfrak{a}=\mathfrak{a}\mathfrak{p}^{-1}$, then $\mathfrak{p}^{-1}\subseteq \mathfrak{O}_K$, by Step 2.2, contradicting Step 2.1. So $\mathfrak{a}\subsetneq \mathfrak{a}\mathfrak{p}^{-1}$. By maximality of \mathfrak{a} , we have $(\mathfrak{a}\mathfrak{p}^{-1})(\mathfrak{a}\mathfrak{p}^{-1})^{-1}=\mathfrak{O}_K$.

By definition of \mathfrak{a}^{-1} , we have $\mathfrak{p}(\mathfrak{a}\mathfrak{p}^{-1})^{-1} \subseteq \mathfrak{a}^{-1}$ But then $\mathfrak{O}_K = \mathfrak{a}\mathfrak{p}(\mathfrak{a}\mathfrak{p}^{-1})^{-1} \subseteq \mathfrak{a}\mathfrak{a}^{-1} \subseteq \mathfrak{O}_K$, forcing $\mathfrak{a}\mathfrak{a}^{-1} = \mathfrak{O}_K$. Contradiction.