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Structure theorem for finitely generated abelian groups

Theorem (Structure theorem for finitely generated abelian groups)
A group is a finitely generated abelian group if and only if it is
isomorphic to

Z/n1Z× · · · × Z/nkZ× Zr

for some list (possibly empty) of integers n1, . . . , nk with ni > 1 for
all i and some integer r ≥ 0. Uniqueness: These integers may be
required to satisfy either of the following two conditions, and in
either case they are uniquely determined by the isomorphism class
of the group.
Condition 1: ni |ni+1 ( ni evenly divides ni+1) for all i . In this
case, the ni are the invariant factors of the group.
Condition 2: There exist primes p1 ≤ · · · ≤ pk and positive
integers mi such that ni = pmi

i for all i . In this case, the ni are the
elementary divisors and the Z/niZ are the primary factors of the
group.
The number r is the rank of the group.
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Structure theorem for finitely generated abelian groups

Compare the result for finitely generated Z-modules with the result
for finitely generated K -modules over a field K .



Structure theorem for finitely generated abelian groups

Let A be a finitely generated abelian group

with generators
{a1, . . . , am}.

We get a surjective group homomorphism

Zm π−→ A
ei 7→ ai

Since Zm is Noetherian, every subgroup of Zm is finitely generated.
In particular, the kernel of π is finitely generated, say by
{b1, . . . , bn}. Define

Zn M−→ Zm

where M is the m × n integer matrix with i-th column bi .
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Structure theorem for finitely generated abelian groups

We get a presentation of A:

Zn Zm A 0M π

The sequence is exact: the image of M is the kernel of π and π is
surjective.

Recall that the cokernel of the matrix M is cok(M) := Zm/im(M).

Then π induces an isomorphism

cok(M) ' A
ei 7→ ai .

In this way, A is encoded in the matrix M.
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Structure theorem for finitely generated abelian groups

We have just seen that finitely generated abelian groups are
exactly the groups

cok(M)

where M is any m × n integer matrix.

There were choices in the construction of M: (i) generators for A
and (ii) generators for ker(π).

Different choices could produce a different m × n integer matrix N
such that

cok(M) ' cok(N).

The possible matrices are determined up to integer row and
column operations.
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Smith normal form

Through integer row and column operations, every m × n integer
matrix M has a unique Smith normal form

M = diag(s1, . . . , sk , 0, . . . , 0),

where s1, . . . , sk are positive integers such that si |si+1 for all i .



Corollaries

Let M be a finitely generated Z-module, and let N ⊆ M be a
Z-submodule.

1. If M is free, then so is N.
2. If M is free and the quotient module M/N is finite, then M

and N have the same rank.
3. Suppose that M and N are free, both of rank n. Fix

isomorphisms M ' Zn and N ' Zn and consider the resulting
commutative diagram with exact rows

0 N M M/N 0

0 Zn Zn cok W 0
≈

≈

W

where W is an n × n integer matrix. Then

|M/N| = | det(W )|.
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Proof. M a finitely generated Z-module ⇒ M Noetherian ⇒ N
finitely generated.

Structure theorem:
N ' C × Zr

where C is finite (a finite product of cyclic groups).

N ⊆ M ' Zn ⇒ no nonzero element of N can have finite order
⇒ C = 0 ⇒ N is free. �
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Corollaries

2. If M is free and the quotient module M/N is finite, then M and
N have the same rank.

Proof.
Choosing bases for M and N, we get the commutative diagram

0 N M M/N 0

0 Zn Zm cok W 0

≈

≈

W

Smith normal form for W : D = diag(n1, n2, . . . , nk , 0, . . . , 0︸ ︷︷ ︸
m−k

)

M/N ' cok(W ) ' cok(D) ' Z/n1Z×· · ·×Z/nkZ×Zn−k×Zm−n.

Then M/N finite if and only if k = m = n. So M and N have the
same rank n.
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Corollaries

3. Suppose that M and N are free, both of rank n. Fix
isomorphisms M ' Zn and N ' Zn and consider the resulting
commutative diagram with exact rows

0 N M M/N 0

0 Zn Zn cok W 0

≈

≈

W

where W is an n × n integer matrix. Then

|M/N| = | det(W )|.

Proof. Smith normal form for W : D = diag(s1, s2, . . . , sn) with
PMQ = W . Then
|M/N| = | cok(D)| =

∏n
i=1 si = det(D) = det(W ). �
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