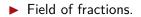
Math 361

March 8, 2023



Dedekind domains.

- Field of fractions.
- Dedekind domains.
- Main theorem: the ring of integers in a number field is a Dedekind domain.

Today

- Field of fractions.
- Dedekind domains.
- Main theorem: the ring of integers in a number field is a Dedekind domain.
- ▶ Preliminaries for proof.

Today

- Field of fractions.
- Dedekind domains.
- Main theorem: the ring of integers in a number field is a Dedekind domain.
- ▶ Preliminaries for proof.
- Proof.

Let R be a domain.

Let *R* be a domain. **Goal:** create fractions a/b with $a, b \in R$, $b \neq 0$.

Let *R* be a domain. **Goal:** create fractions a/b with $a, b \in R$, $b \neq 0$.

Equivalence relation: for $a, c \in R$ and $b, d \in R \setminus \{0\}$,

$$(a,b) \sim (c,d)$$
 if $ad = bc$.

Let *R* be a domain. **Goal:** create fractions a/b with $a, b \in R$, $b \neq 0$.

Equivalence relation: for $a, c \in R$ and $b, d \in R \setminus \{0\}$,

$$(a,b) \sim (c,d)$$
 if $ad = bc$.

Define a/b to be the equivalence class of (a, b).

Let *R* be a domain. **Goal:** create fractions a/b with $a, b \in R$, $b \neq 0$.

Equivalence relation: for $a, c \in R$ and $b, d \in R \setminus \{0\}$,

$$(a,b) \sim (c,d)$$
 if $ad = bc$.

Define a/b to be the equivalence class of (a, b). Define addition and multiplication of fractions as usual

Let *R* be a domain. **Goal:** create fractions a/b with $a, b \in R$, $b \neq 0$.

Equivalence relation: for $a, c \in R$ and $b, d \in R \setminus \{0\}$,

$$(a,b) \sim (c,d)$$
 if $ad = bc$.

Define a/b to be the equivalence class of (a, b). Define addition and multiplication of fractions as usual to get a field.

The *quotient field* Q(R) of R is the field of fractions $\{a/b : a \in R, b \in R \setminus \{0\}\}.$

Let *R* be a domain. **Goal:** create fractions a/b with $a, b \in R$, $b \neq 0$.

Equivalence relation: for $a, c \in R$ and $b, d \in R \setminus \{0\}$,

$$(a,b) \sim (c,d)$$
 if $ad = bc$.

Define a/b to be the equivalence class of (a, b). Define addition and multiplication of fractions as usual to get a field.

The quotient field Q(R) of R is the field of fractions $\{a/b : a \in R, b \in R \setminus \{0\}\}$. It is the smallest field containing R.

$$R \hookrightarrow Q(R)$$

 $r \mapsto r/1.$

Proposition. Let K be a number field, and let \mathfrak{O}_K be its ring of integers. Then K is the field of fractions of \mathfrak{O}_K .

Proposition. Let K be a number field, and let \mathfrak{O}_K be its ring of integers. Then K is the field of fractions of \mathfrak{O}_K .

Proof. We have seen (in homework) that if $\alpha \in K$ then there exists a nonzero integer $c \in \mathbb{Z}$ such that $c\alpha = \beta \in \mathfrak{O}_K$.

Proposition. Let K be a number field, and let \mathfrak{O}_K be its ring of integers. Then K is the field of fractions of \mathfrak{O}_K .

Proof. We have seen (in homework) that if $\alpha \in K$ then there exists a nonzero integer $c \in \mathbb{Z}$ such that $c\alpha = \beta \in \mathfrak{O}_K$.

Thus, $\alpha = \beta/c$ with $\beta, c \in \mathfrak{O}_{K}$.

Proposition. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then K is the field of fractions of \mathcal{D}_K .

Proof. We have seen (in homework) that if $\alpha \in K$ then there exists a nonzero integer $c \in \mathbb{Z}$ such that $c\alpha = \beta \in \mathfrak{O}_K$.

Thus, $\alpha = \beta/c$ with $\beta, c \in \mathfrak{O}_K$. So every element of K is in the field of fractions of \mathfrak{O}_K .

Proposition. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then K is the field of fractions of \mathcal{D}_K .

Proof. We have seen (in homework) that if $\alpha \in K$ then there exists a nonzero integer $c \in \mathbb{Z}$ such that $c\alpha = \beta \in \mathfrak{O}_K$.

Thus, $\alpha = \beta/c$ with $\beta, c \in \mathfrak{O}_K$. So every element of K is in the field of fractions of \mathfrak{O}_K .

Conversely, since K is a field and contains \mathfrak{O}_K , it contains the field of fractions of \mathfrak{O}_K .

Definition. A domain R is *integrally closed* if the only elements of its field of fractions Q(R) that are integral over R are the elements of R, itself.

Definition. A domain R is *integrally closed* if the only elements of its field of fractions Q(R) that are integral over R are the elements of R, itself.

Example. The ring \mathbb{Z} is integrally closed:

Definition. A domain R is *integrally closed* if the only elements of its field of fractions Q(R) that are integral over R are the elements of R, itself.

Example. The ring \mathbb{Z} is integrally closed: $Q(\mathbb{Z}) = \mathbb{Q}$ and the elements of \mathbb{Q} integral over \mathbb{Z} are exactly the elements of \mathbb{Z} .

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Structure theorem for finitely-generated $\mathbb{Z}\text{-modules}.$

Structure theorem for finitely-generated \mathbb{Z} -modules.

Let *M* be a finitely generated \mathbb{Z} -module. Then there exists a nonnegative integer *r* and a list (possibly empty) of integers n_1, \ldots, n_k with $n_i > 1$ for all *i* such that *M* is isomorphic as a \mathbb{Z} -module to

 $\mathbb{Z}^r \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}.$

Structure theorem for finitely-generated \mathbb{Z} -modules.

Let *M* be a finitely generated \mathbb{Z} -module. Then there exists a nonnegative integer *r* and a list (possibly empty) of integers n_1, \ldots, n_k with $n_i > 1$ for all *i* such that *M* is isomorphic as a \mathbb{Z} -module to

$$\mathbb{Z}^r \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}.$$

It is possible to take the n_i so that $n_i|n_{i+1}$ for all *i*, in which case, the above representation of *M* as a product of cyclic groups is unique.

Structure theorem for finitely-generated \mathbb{Z} -modules.

Let *M* be a finitely generated \mathbb{Z} -module. Then there exists a nonnegative integer *r* and a list (possibly empty) of integers n_1, \ldots, n_k with $n_i > 1$ for all *i* such that *M* is isomorphic as a \mathbb{Z} -module to

$$\mathbb{Z}^r \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}.$$

It is possible to take the n_i so that $n_i|n_{i+1}$ for all i, in which case, the above representation of M as a product of cyclic groups is unique.

Proof. We will give a constructive proof later in the course.

Structure theorem for finitely-generated \mathbb{Z} -modules.

Let *M* be a finitely generated \mathbb{Z} -module. Then there exists a nonnegative integer *r* and a list (possibly empty) of integers n_1, \ldots, n_k with $n_i > 1$ for all *i* such that *M* is isomorphic as a \mathbb{Z} -module to

$$\mathbb{Z}^r \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}.$$

It is possible to take the n_i so that $n_i|n_{i+1}$ for all *i*, in which case, the above representation of *M* as a product of cyclic groups is unique.

Proof. We will give a constructive proof later in the course. Probably.

Structure theorem for finitely-generated \mathbb{Z} -modules.

Let *M* be a finitely generated \mathbb{Z} -module. Then there exists a nonnegative integer *r* and a list (possibly empty) of integers n_1, \ldots, n_k with $n_i > 1$ for all *i* such that *M* is isomorphic as a \mathbb{Z} -module to

$$\mathbb{Z}^r \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}.$$

It is possible to take the n_i so that $n_i|n_{i+1}$ for all *i*, in which case, the above representation of *M* as a product of cyclic groups is unique.

Proof. We will give a constructive proof later in the course. Probably.

See the wiki page for the structure theorem for finitely generated modules over a PID.

Proposition. Let R be a finite domain.

Proposition. Let R be a finite domain. Then R is a field.

Proposition. Let R be a finite domain. Then R is a field. **Proof.** Homework. **Proposition.** Let R be a finite domain. Then R is a field. **Proof.** Homework.

Idea: for $0 \neq r \in R$, consider the multiplication mapping

 $m_r\colon R\to R$ $s\mapsto rs.$

Proposition. An ideal in a number ring contains the norm of each of its elements:

Proposition. An ideal in a number ring contains the norm of each of its elements: if \mathfrak{a} is an ideal in $\mathfrak{O}_{\mathcal{K}}$, and $\alpha \in \mathfrak{a}$, then $\mathbb{Z} \ni N(\alpha) \in \mathfrak{a}$.

Proposition. An ideal in a number ring contains the norm of each of its elements: if \mathfrak{a} is an ideal in $\mathfrak{O}_{\mathcal{K}}$, and $\alpha \in \mathfrak{a}$, then $\mathbb{Z} \ni N(\alpha) \in \mathfrak{a}$.

Proof. If $\alpha = 0$, no problem.

Proposition. An ideal in a number ring contains the norm of each of its elements: if \mathfrak{a} is an ideal in $\mathfrak{O}_{\mathcal{K}}$, and $\alpha \in \mathfrak{a}$, then $\mathbb{Z} \ni N(\alpha) \in \mathfrak{a}$.

Proof. If $\alpha = 0$, no problem. Assume $\alpha \neq 0$.

Proposition. An ideal in a number ring contains the norm of each of its elements: if \mathfrak{a} is an ideal in $\mathfrak{O}_{\mathcal{K}}$, and $\alpha \in \mathfrak{a}$, then $\mathbb{Z} \ni N(\alpha) \in \mathfrak{a}$.

Proof. If $\alpha = 0$, no problem. Assume $\alpha \neq 0$. With the usual notation:

$$N(\alpha) = \prod_{i=1}^n \sigma_i(n)$$

Proposition. An ideal in a number ring contains the norm of each of its elements: if \mathfrak{a} is an ideal in $\mathfrak{O}_{\mathcal{K}}$, and $\alpha \in \mathfrak{a}$, then $\mathbb{Z} \ni N(\alpha) \in \mathfrak{a}$.

Proof. If $\alpha = 0$, no problem. Assume $\alpha \neq 0$. With the usual notation:

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(n) = \alpha \cdot \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}$$

Proposition. An ideal in a number ring contains the norm of each of its elements: if \mathfrak{a} is an ideal in $\mathfrak{O}_{\mathcal{K}}$, and $\alpha \in \mathfrak{a}$, then $\mathbb{Z} \ni N(\alpha) \in \mathfrak{a}$.

Proof. If $\alpha = 0$, no problem. Assume $\alpha \neq 0$. With the usual notation:

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(n) = \alpha \cdot \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

We have $\beta := \sigma_2(\alpha) \cdots \sigma_n(\alpha) = N(\alpha)/\alpha \in K$.

Proposition. An ideal in a number ring contains the norm of each of its elements: if \mathfrak{a} is an ideal in \mathfrak{O}_{K} , and $\alpha \in \mathfrak{a}$, then $\mathbb{Z} \ni N(\alpha) \in \mathfrak{a}$.

Proof. If $\alpha = 0$, no problem. Assume $\alpha \neq 0$. With the usual notation:

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(n) = \alpha \cdot \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

We have $\beta := \sigma_2(\alpha) \cdots \sigma_n(\alpha) = N(\alpha)/\alpha \in K$. Each $\sigma_i(\alpha) \in \mathfrak{O}$. (Why?).

Proposition. An ideal in a number ring contains the norm of each of its elements: if \mathfrak{a} is an ideal in $\mathfrak{O}_{\mathcal{K}}$, and $\alpha \in \mathfrak{a}$, then $\mathbb{Z} \ni N(\alpha) \in \mathfrak{a}$.

Proof. If $\alpha = 0$, no problem. Assume $\alpha \neq 0$. With the usual notation:

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(n) = \alpha \cdot \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

We have $\beta := \sigma_2(\alpha) \cdots \sigma_n(\alpha) = N(\alpha)/\alpha \in K$. Each $\sigma_i(\alpha) \in \mathfrak{O}$. (Why?). Hence, $\beta \in K \cap \mathfrak{O} = \mathfrak{O}_K$.

Proposition. An ideal in a number ring contains the norm of each of its elements: if \mathfrak{a} is an ideal in $\mathfrak{O}_{\mathcal{K}}$, and $\alpha \in \mathfrak{a}$, then $\mathbb{Z} \ni N(\alpha) \in \mathfrak{a}$.

Proof. If $\alpha = 0$, no problem. Assume $\alpha \neq 0$. With the usual notation:

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(n) = \alpha \cdot \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

We have $\beta := \sigma_2(\alpha) \cdots \sigma_n(\alpha) = N(\alpha)/\alpha \in K$. Each $\sigma_i(\alpha) \in \mathfrak{O}$. (Why?). Hence, $\beta \in K \cap \mathfrak{O} = \mathfrak{O}_K$. Hence, $N(\alpha) = \alpha\beta \in \mathfrak{a}$.

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Proof. (1) Noetherian.

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Proof. (1) Noetherian. We have seen that $\mathfrak{O}_{\mathcal{K}}$ is a finitely generated \mathbb{Z} -module.

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Proof. (1) Noetherian. We have seen that $\mathfrak{O}_{\mathcal{K}}$ is a finitely generated \mathbb{Z} -module.

Since $\mathbb Z$ is a Noetherian ring, it follows that $\mathfrak O_K$ is a Noetherian $\mathbb Z\text{-module}.$

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Proof. (1) Noetherian. We have seen that $\mathfrak{O}_{\mathcal{K}}$ is a finitely generated \mathbb{Z} -module.

Since $\mathbb Z$ is a Noetherian ring, it follows that $\mathfrak O_{\mathcal K}$ is a Noetherian $\mathbb Z\text{-module}.$

So every ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, it is finitely generated as a \mathbb{Z} -module.

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Proof. (1) Noetherian. We have seen that $\mathfrak{O}_{\mathcal{K}}$ is a finitely generated \mathbb{Z} -module.

Since $\mathbb Z$ is a Noetherian ring, it follows that $\mathfrak O_{\mathcal K}$ is a Noetherian $\mathbb Z\text{-module}.$

So every ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, it is finitely generated as a \mathbb{Z} -module.

These generators generate α as an ideal.

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Proof. (1) Noetherian. We have seen that $\mathfrak{O}_{\mathcal{K}}$ is a finitely generated \mathbb{Z} -module.

Since \mathbb{Z} is a Noetherian ring, it follows that $\mathfrak{O}_{\mathcal{K}}$ is a Noetherian \mathbb{Z} -module.

So every ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$, it is finitely generated as a \mathbb{Z} -module.

These generators generate α as an ideal.

Hence, \mathfrak{O}_K is a Noetherian domain.

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Proof. (1) Noetherian. We have seen that $\mathfrak{O}_{\mathcal{K}}$ is a finitely generated \mathbb{Z} -module.

Since \mathbb{Z} is a Noetherian ring, it follows that \mathfrak{O}_K is a Noetherian \mathbb{Z} -module.

So every ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$, it is finitely generated as a \mathbb{Z} -module.

These generators generate α as an ideal.

Hence, \mathfrak{O}_K is a Noetherian domain.

Alternatively: use the Hilbert basis theorem.

Definition A *Dedekind domain* is an integrally closed Noetherian domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let \mathcal{D}_K be its ring of integers. Then \mathcal{D}_K is a Dedekind domain.

Proof. (1) Noetherian. We have seen that $\mathfrak{O}_{\mathcal{K}}$ is a finitely generated \mathbb{Z} -module.

Since \mathbb{Z} is a Noetherian ring, it follows that \mathfrak{O}_K is a Noetherian \mathbb{Z} -module.

So every ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$, it is finitely generated as a \mathbb{Z} -module.

These generators generate α as an ideal.

Hence, \mathfrak{O}_K is a Noetherian domain.

Alternatively: use the Hilbert basis theorem. (Overkill?).

Proof. (2) Every nonzero prime ideal is maximal.

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof:

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_{\mathcal{K}}/\mathfrak{p}$ is finite.

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$.

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$.

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

 $\pi \colon \mathfrak{O}_{K} \to \mathfrak{O}_{K}/\mathfrak{p} \quad \text{induces} \quad \overline{\pi} \colon \mathfrak{O}_{K}/(N) \to \mathfrak{O}_{K}/\mathfrak{p}$ $\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$

Why?

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

 $\pi \colon \mathfrak{O}_{K} \to \mathfrak{O}_{K}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{K}/(N) \to \mathfrak{O}_{K}/\mathfrak{p}$ $\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined:

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{K} \to \mathfrak{O}_{K}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{K}/(N) \to \mathfrak{O}_{K}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{K} \to \mathfrak{O}_{K}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{K}/(N) \to \mathfrak{O}_{K}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') =$

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{\mathcal{K}} \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{\mathcal{K}}/(\mathcal{N}) \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') = \overline{\pi}(\beta + rN) =$

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{\mathcal{K}} \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{\mathcal{K}}/(\mathcal{N}) \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') = \overline{\pi}(\beta + rN) = \overline{\beta} + \overline{rN}$

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{\mathcal{K}} \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{\mathcal{K}}/(\mathcal{N}) \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') = \overline{\pi}(\beta + rN) = \overline{\beta} + \overline{rN} = \overline{\beta} \in \mathfrak{O}_K/\mathfrak{p}$.

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{\mathcal{K}} \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{\mathcal{K}}/(\mathcal{N}) \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') = \overline{\pi}(\beta + rN) = \overline{\beta} + \overline{rN} = \overline{\beta} \in \mathfrak{O}_K/\mathfrak{p}$.

Since $\mathfrak{O}_{\mathcal{K}}/(N)$ is a finitely generated \mathbb{Z} -module,

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{\mathcal{K}} \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{\mathcal{K}}/(\mathcal{N}) \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') = \overline{\pi}(\beta + rN) = \overline{\beta} + \overline{rN} = \overline{\beta} \in \mathfrak{O}_K/\mathfrak{p}$.

Since $\mathfrak{O}_{K}/(N)$ is a finitely generated \mathbb{Z} -module, $\mathfrak{O}_{K}/(N) \simeq \mathbb{Z}^{r} \times \mathbb{Z}/n_{1}\mathbb{Z} \times \cdots \times \mathbb{Z}/n_{k}\mathbb{Z}.$

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{\mathcal{K}} \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{\mathcal{K}}/(\mathcal{N}) \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') = \overline{\pi}(\beta + rN) = \overline{\beta} + \overline{rN} = \overline{\beta} \in \mathfrak{O}_K/\mathfrak{p}$.

Since $\mathfrak{O}_{K}/(N)$ is a finitely generated \mathbb{Z} -module, $\mathfrak{O}_{K}/(N) \simeq \mathbb{Z}^{r} \times \mathbb{Z}/n_{1}\mathbb{Z} \times \cdots \times \mathbb{Z}/n_{k}\mathbb{Z}$. But $\mathfrak{O}_{K}/(N)$ has no element of infinite order

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{\mathcal{K}} \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{\mathcal{K}}/(\mathcal{N}) \to \mathfrak{O}_{\mathcal{K}}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') = \overline{\pi}(\beta + rN) = \overline{\beta} + \overline{rN} = \overline{\beta} \in \mathfrak{O}_K/\mathfrak{p}$.

Since $\mathfrak{O}_{K}/(N)$ is a finitely generated \mathbb{Z} -module, $\mathfrak{O}_{K}/(N) \simeq \mathbb{Z}^{r} \times \mathbb{Z}/n_{1}\mathbb{Z} \times \cdots \times \mathbb{Z}/n_{k}\mathbb{Z}$. But $\mathfrak{O}_{K}/(N)$ has no element of infinite order $(N\alpha = \alpha + \cdots + \alpha = 0 \in \mathfrak{O}_{K}/(N))$.

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{K} \to \mathfrak{O}_{K}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{K}/(N) \to \mathfrak{O}_{K}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') = \overline{\pi}(\beta + rN) = \overline{\beta} + \overline{rN} = \overline{\beta} \in \mathfrak{O}_K/\mathfrak{p}$.

Since $\mathfrak{O}_{\mathcal{K}}/(N)$ is a finitely generated \mathbb{Z} -module, $\mathfrak{O}_{\mathcal{K}}/(N) \simeq \mathbb{Z}^r \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$. But $\mathfrak{O}_{\mathcal{K}}/(N)$ has no element of infinite order $(N\alpha = \alpha + \cdots + \alpha = 0 \in \mathfrak{O}_{\mathcal{K}}/(N))$. So r = 0, and $\mathfrak{O}_{\mathcal{K}}/(N)$ is finite.

Proof. (2) Every nonzero prime ideal is maximal. Idea of proof: We will show $\mathfrak{O}_K/\mathfrak{p}$ is finite. Then \mathfrak{p} prime $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a finite domain $\Rightarrow \mathfrak{O}_K/\mathfrak{p}$ is a field $\Rightarrow \mathfrak{p}$ maximal.

Take $0 \neq \alpha \in \mathfrak{p}$. Define $N := N(\alpha) \in \mathbb{Z}$. Surjections:

$$\pi \colon \mathfrak{O}_{K} \to \mathfrak{O}_{K}/\mathfrak{p} \qquad \text{induces} \qquad \overline{\pi} \colon \mathfrak{O}_{K}/(N) \to \mathfrak{O}_{K}/\mathfrak{p}$$
$$\beta \mapsto \overline{\beta} \qquad \qquad \beta \mapsto \overline{\beta}$$

Why? Answer: $N \in \mathfrak{p} \Rightarrow N \in \ker(\pi)$. So $\overline{\pi}$ is well-defined: If $\beta' = \beta + rN$ with $r \in \mathfrak{O}_K$, then $\overline{\pi}(\beta') = \overline{\pi}(\beta + rN) = \overline{\beta} + \overline{rN} = \overline{\beta} \in \mathfrak{O}_K/\mathfrak{p}$.

Since $\mathfrak{O}_{K}/(N)$ is a finitely generated \mathbb{Z} -module, $\mathfrak{O}_{K}/(N) \simeq \mathbb{Z}^{r} \times \mathbb{Z}/n_{1}\mathbb{Z} \times \cdots \times \mathbb{Z}/n_{k}\mathbb{Z}$. But $\mathfrak{O}_{K}/(N)$ has no element of infinite order $(N\alpha = \alpha + \cdots + \alpha = 0 \in \mathfrak{O}_{K}/(N))$. So r = 0, and $\mathfrak{O}_{K}/(N)$ is finite. Then $\overline{\pi}$ surjective $\Rightarrow \mathfrak{O}_{K}/\mathfrak{p}$ is a finite.

 $\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

 $\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K .

 $\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$.

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

Take monic $f \in \mathcal{O}_K[x]$ such that $f(\alpha) = 0$. Say $f = x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0$.

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

Take monic $f \in \mathcal{O}_K[x]$ such that $f(\alpha) = 0$. Say $f = x^k + b_{k-1}x^{k-1} + \cdots + b_1x + b_0$.

Define the ring $B := \mathbb{Z}[b_0, \ldots, b_k] \subseteq \mathfrak{O}_K$.

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

Take monic $f \in \mathcal{O}_{\mathcal{K}}[x]$ such that $f(\alpha) = 0$. Say $f = x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0$.

Define the ring $B := \mathbb{Z}[b_0, \dots, b_k] \subseteq \mathfrak{O}_K$. Then B is a finitely generated \mathbb{Z} -module. (Why?

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

Take monic $f \in \mathcal{O}_{\mathcal{K}}[x]$ such that $f(\alpha) = 0$. Say $f = x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0$.

Define the ring $B := \mathbb{Z}[b_0, \dots, b_k] \subseteq \mathfrak{O}_K$. Then B is a finitely generated \mathbb{Z} -module. (Why? Ans: \mathfrak{O}_K is a Noetherian \mathbb{Z} -module.)

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

Take monic $f \in \mathcal{O}_{\mathcal{K}}[x]$ such that $f(\alpha) = 0$. Say $f = x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0$.

Define the ring $B := \mathbb{Z}[b_0, \dots, b_k] \subseteq \mathfrak{O}_K$. Then B is a finitely generated \mathbb{Z} -module. (Why? Ans: \mathfrak{O}_K is a Noetherian \mathbb{Z} -module.)

From f, we see that $B[\alpha] = \operatorname{Span}_B\{1, \alpha, \dots, \alpha^{k-1}\}.$

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

Take monic $f \in \mathcal{O}_K[x]$ such that $f(\alpha) = 0$. Say $f = x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0$.

Define the ring $B := \mathbb{Z}[b_0, \dots, b_k] \subseteq \mathfrak{O}_K$. Then B is a finitely generated \mathbb{Z} -module. (Why? Ans: \mathfrak{O}_K is a Noetherian \mathbb{Z} -module.)

From f, we see that $B[\alpha] = \text{Span}_B\{1, \alpha, \dots, \alpha^{k-1}\}$. So $M := B[\alpha]$ is a finitely generated *B*-module:

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

Take monic $f \in \mathcal{O}_{\mathcal{K}}[x]$ such that $f(\alpha) = 0$. Say $f = x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0$.

Define the ring $B := \mathbb{Z}[b_0, \dots, b_k] \subseteq \mathfrak{O}_K$. Then B is a finitely generated \mathbb{Z} -module. (Why? Ans: \mathfrak{O}_K is a Noetherian \mathbb{Z} -module.)

From
$$f$$
, we see that $B[\alpha] = \text{Span}_B\{1, \alpha, \dots, \alpha^{k-1}\}$. So $M := B[\alpha]$ is a finitely generated B -module:

$$\mathbb{Z}\underbrace{\subseteq}_{\text{f.g.}} B\underbrace{\subseteq}_{\text{f.g.}} B[\alpha].$$

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

Take monic $f \in \mathfrak{O}_{\mathcal{K}}[x]$ such that $f(\alpha) = 0$. Say $f = x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0$.

Define the ring $B := \mathbb{Z}[b_0, \dots, b_k] \subseteq \mathfrak{O}_K$. Then B is a finitely generated \mathbb{Z} -module. (Why? Ans: \mathfrak{O}_K is a Noetherian \mathbb{Z} -module.)

From
$$f$$
, we see that $B[\alpha] = \text{Span}_B\{1, \alpha, \dots, \alpha^{k-1}\}$. So $M := B[\alpha]$ is a finitely generated B -module:

$$\mathbb{Z}\underbrace{\subseteq}_{\mathrm{f.g.}} B\underbrace{\subseteq}_{\mathrm{f.g.}} B[\alpha].$$

Therefore, $B[\alpha]$ is a f.g. \mathbb{Z} -module.

$\mathfrak{O}_{\mathcal{K}}$ is integrally closed.

Take $\alpha \in K$ with α integral over \mathfrak{O}_K . We must show that $\alpha \in \mathfrak{O}_K$. We are done if we show α is integral over \mathbb{Z} . (Why?)

It suffices to produce a finitely generated \mathbb{Z} -module $M \subset K$ such that $\alpha M \subseteq M$. (Why?)

Take monic $f \in \mathcal{O}_K[x]$ such that $f(\alpha) = 0$. Say $f = x^k + b_{k-1}x^{k-1} + \dots + b_1x + b_0$.

Define the ring $B := \mathbb{Z}[b_0, \dots, b_k] \subseteq \mathfrak{O}_K$. Then B is a finitely generated \mathbb{Z} -module. (Why? Ans: \mathfrak{O}_K is a Noetherian \mathbb{Z} -module.)

From
$$f$$
, we see that $B[\alpha] = \text{Span}_B\{1, \alpha, \dots, \alpha^{k-1}\}$. So $M := B[\alpha]$ is a finitely generated *B*-module:

$$\mathbb{Z} \underbrace{\subseteq}_{\text{f.g.}} B \underbrace{\subseteq}_{\text{f.g.}} B[\alpha].$$

Therefore, $B[\alpha]$ is a f.g. \mathbb{Z} -module. Finally, $\alpha B[\alpha] \subseteq B[\alpha]$.