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Let R be a domain. Goal: create fractions a/b with
a,be R, b#0.

Equivalence relation: for a,c € R and b,d € R\ {0},
(a,b) ~ (¢,d) if ad = bc.

Define a/b to be the equivalence class of (a, b).
Define addition and multiplication of fractions as usual to get a
field.

The quotient field Q(R) of R is the field of fractions
{a/b:ae R,be R\ {0}}. Itis the smallest field containing R.

R — Q(R)
rer/l.
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Proposition. Let K be a number field, and let Ok be its ring of
integers. Then K is the field of fractions of Ok.

Proof. We have seen (in homework) that if « € K then there
exists a nonzero integer ¢ € Z such that ca = € Ok.

Thus, o = 3/c with 3,c € Ok. So every element of K is in the
field of fractions of O.

Conversely, since K is a field and contains Ok, it contains the field
of fractions of Ok. O
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Dedekind domains

Definition. A domain R is integrally closed if the only elements of
its field of fractions Q(R) that are integral over R are the elements
of R, itself.

Example. The ring Z is integrally closed: Q(Z) = Q and the
elements of QQ integral over Z are exactly the elements of Z.
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Dedekind domains

Definition A Dedekind domain is an integrally closed Noetherian
domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let Ok be its ring of
integers. Then Dk is a Dedekind domain.
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Structure theorem for finitely-generated Z-modules.

Let M be a finitely generated Z-module. Then there exists a
nonnegative integer r and a list (possibly empty) of

integers ny, ..., ng with n; > 1 for all j such that M is isomorphic
as a Z-module to

2" XZ/mZ x -+ X L] niL.

It is possible to take the n; so that n;|njy1 for all i, in which case,
the above representation of M as a product of cyclic groups is
unique.

Proof. We will give a constructive proof later in the course.
Probably.

See the wiki page for the structure theorem for finitely generated
modules over a PID.
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Proposition. Let R be a finite domain. Then R is a field.
Proof. Homework.
Idea: for 0 # r € R, consider the multiplication mapping

m:R—R

S+ rs.
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Proposition. An ideal in a number ring contains the norm of each
of its elements: if a is an ideal in Ok, and a € q,
then Z > N(«a) € a.

Proof. If a =0, no problem. Assume « # 0. With the usual
notation:

N(a) = H oi(n) =a-o(a)---op(a).
i=1 3

We have 1= oa(a) - - op(a) = N(a)/a € K.
Each oi(a) € O. (Why?). Hence, 5 € KNO = Og.
Hence, N(a) = af € a. O
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Definition A Dedekind domain is an integrally closed Noetherian
domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let Ok be its ring of
integers. Then O is a Dedekind domain.

Proof. (1) Noetherian. We have seen that Ok is a finitely
generated Z-module.

Since Z is a Noetherian ring, it follows that Ok is a
Noetherian Z-module.

So every ideal a C Oy, it is finitely generated as a Z-module.
These generators generate « as an ideal.

Hence, Ok is a Noetherian domain.

Alternatively: use the Hilbert basis theorem. (Overkill?).
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Proof. (2) Every nonzero prime ideal is maximal. Idea of proof:
We will show O /p is finite. Then p prime = O /p is a finite
domain = Ok/p is a field = p maximal.

Take 0 # « € p. Define N := N(a) € Z. Surjections:
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Proof. (2) Every nonzero prime ideal is maximal. Idea of proof:
We will show O /p is finite. Then p prime = O /p is a finite
domain = Ok/p is a field = p maximal.

Take 0 # « € p. Define N := N(a) € Z. Surjections:

T Ok — Ok/p induces T Ok/(N) — Ok/p
BB BB

Why? Answer: N € p = N € ker(w). So 7 is well-defined: If
B = B+ rN with r € O, then
7(B)=7(B+rN)=B8+TN=753€ Ox/p.
Since Ok /(N) is a finitely generated Z-module,
Ok/(N)=Z" x Z/mZ x -+ x Z/ngZ. But O /(N) has no
element of infinite order (N = o+ --- + a = 0 € Ok /(N)).

So r =0, and Ok/(N) is finite. Then T surjective = Ok /p is a
finite.
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generated Z-module. (Why? Ans: Ok is a Noetherian Z-module.)
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