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Field of fractions

Let R be a domain.

Goal: create fractions a/b with
a, b ∈ R, b 6= 0.

Equivalence relation: for a, c ∈ R and b, d ∈ R \ {0},

(a, b) ∼ (c, d) if ad = bc.

Define a/b to be the equivalence class of (a, b).
Define addition and multiplication of fractions as usual to get a
field.

The quotient field Q(R) of R is the field of fractions
{a/b : a ∈ R, b ∈ R \ {0}}. It is the smallest field containing R.

R ↪→ Q(R)
r 7→ r/1.
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Quotient field

Proposition. Let K be a number field, and let OK be its ring of
integers. Then K is the field of fractions of OK .

Proof. We have seen (in homework) that if α ∈ K then there
exists a nonzero integer c ∈ Z such that cα = β ∈ OK .

Thus, α = β/c with β, c ∈ OK . So every element of K is in the
field of fractions of OK .

Conversely, since K is a field and contains OK , it contains the field
of fractions of OK . �
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Dedekind domains

Definition. A domain R is integrally closed if the only elements of
its field of fractions Q(R) that are integral over R are the elements
of R, itself.

Example. The ring Z is integrally closed: Q(Z) = Q and the
elements of Q integral over Z are exactly the elements of Z.
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Dedekind domains

Definition A Dedekind domain is an integrally closed Noetherian
domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let OK be its ring of
integers. Then OK is a Dedekind domain.
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Preliminaries

Structure theorem for finitely-generated Z-modules.

Let M be a finitely generated Z-module. Then there exists a
nonnegative integer r and a list (possibly empty) of
integers n1, . . . , nk with ni > 1 for all i such that M is isomorphic
as a Z-module to

Zr × Z/n1Z× · · · × Z/nkZ.

It is possible to take the ni so that ni |ni+1 for all i , in which case,
the above representation of M as a product of cyclic groups is
unique.

Proof. We will give a constructive proof later in the course.
Probably.

See the wiki page for the structure theorem for finitely generated
modules over a PID.
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Preliminaries

Proposition. Let R be a finite domain.

Then R is a field.

Proof. Homework.

Idea: for 0 6= r ∈ R, consider the multiplication mapping

mr : R → R
s 7→ rs.
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Preliminaries

Proposition. An ideal in a number ring contains the norm of each
of its elements:

if a is an ideal in OK , and α ∈ a,
then Z 3 N(α) ∈ a.

Proof. If α = 0, no problem. Assume α 6= 0. With the usual
notation:

N(α) =
n∏

i=1
σi (n) = α · σ2(α) · · ·σn(α)︸ ︷︷ ︸

β

.

We have β := σ2(α) · · ·σn(α) = N(α)/α ∈ K .

Each σi (α) ∈ O. (Why?). Hence, β ∈ K ∩O = OK .

Hence, N(α) = αβ ∈ a. �
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Proof of main theorem.

Definition A Dedekind domain is an integrally closed Noetherian
domain in which every nonzero prime ideal is maximal.

Theorem. Let K be a number field, and let OK be its ring of
integers. Then OK is a Dedekind domain.

Proof. (1) Noetherian. We have seen that OK is a finitely
generated Z-module.

Since Z is a Noetherian ring, it follows that OK is a
Noetherian Z-module.

So every ideal a ⊆ OK , it is finitely generated as a Z-module.

These generators generate α as an ideal.

Hence, OK is a Noetherian domain.

Alternatively: use the Hilbert basis theorem. (Overkill?).
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Proof of main theorem.

Proof. (2) Every nonzero prime ideal is maximal.

Idea of proof:
We will show OK/p is finite. Then p prime ⇒ OK/p is a finite
domain ⇒ OK/p is a field ⇒ p maximal.

Take 0 6= α ∈ p. Define N := N(α) ∈ Z. Surjections:

π : OK → OK/p induces π : OK/(N)→ OK/p

β 7→ β β 7→ β

Why? Answer: N ∈ p⇒ N ∈ ker(π). So π is well-defined: If
β′ = β + rN with r ∈ OK , then
π(β′) = π(β + rN) = β + rN = β ∈ OK/p.

Since OK/(N) is a finitely generated Z-module,
OK/(N) ' Zr × Z/n1Z× · · · × Z/nkZ. But OK/(N) has no
element of infinite order (Nα = α + · · ·+ α = 0 ∈ OK/(N)).
So r = 0, and OK/(N) is finite. Then π surjective ⇒ OK/p is a
finite.
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Proof of main theorem.
OK is integrally closed.

Take α ∈ K with α integral over OK . We must show that α ∈ OK .
We are done if we show α is integral over Z. (Why?)
It suffices to produce a finitely generated Z-module M ⊂ K such
that αM ⊆ M. (Why?)
Take monic f ∈ OK [x ] such that f (α) = 0. Say
f = xk + bk−1xk−1 + · · ·+ b1x + b0.
Define the ring B := Z[b0, . . . , bk ] ⊆ OK . Then B is a finitely
generated Z-module. (Why? Ans: OK is a Noetherian Z-module.)

From f , we see that B[α] = SpanB{1, α, . . . , αk−1}. So
M := B[α] is a finitely generated B-module:

Z ⊆︸︷︷︸
f.g.

B ⊆︸︷︷︸
f.g.

B[α].

Therefore, B[α] is a f.g. Z-module. Finally, αB[α] ⊆ B[α]. �
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