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Every nonzero ideal in Ok is uniquely expressible as a product
of prime ideals.
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Noetherian stuff

Suppose that R C S is an extension of rings and that R is
Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is
Noetherian.

Proof. Hilbert basis theorem. O

Prop. If S is finitely generated as an R-module, then S is
Noetherian.

Proof (not using the HBT). Let / be an ideal of S. Since a

finitely generated module over a Noetherian ring is Noetherian, S
is a Noetherian R-module.

Let / be an ideal of S, i.e., an S-submodule of S. Then [ is an
R-submodule of S. Since S is a Noetherian R-module, / is finitely
generated as an R-module. Say / = Spang{s,..., sk} with the
si€S. Then I = (s1,...,sk) = Spang{si,..., sk} O



Finish result from last time

See slides from last time.
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Let K be a number field with ring of integers Ok.

Definition. An D k-submodule [ is a fractional ideal of Ok if
there exists v € Ok \ {0} such that al C Ok

The product of two fractional ideals /I, J in O is the
O k-submodule of K

IJ = Spang, {ij: i€ l,j € J}.
Question: Is every (ordinary) ideal a C Ok a fractional ideal?

Answer: Yes. For instance, 1-a C a.

Question: In the definition, could the condition be “c € K\ {0}
such that ¢/ € Ok"? Answer: Yes. We can write ¢ = /3
with o, 5 € Ok. Then Bc € Ok, and Bcl C O.
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Fractional ideals

» Suppose | C K is a fractional ideal of Dx. Take o € Dk such
that ol C Ok. Then al is an Ok-submodule of Ok, i.e., an
ideal.

» The fractional ideals are exactly the O x-submodules of K of
the form a~1a for some ideal a of Ok and nonzero o € O.
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Fractional ideals

Proposition. Fractional ideals of Ok are exactly finitely generated
D k-submodules of K.

Proof. (=) First, suppose that / is a fractional ideal of Dk, and
take @ € Ok \ {0} such that al C Ok. Then al is an ideal of the
Noetherian ring O . Hence, al is finitely generated as

an Dx-module. We have an isomorphism of O x-modules:

| — ol

X = aX.

Hence, [ is a finitely generated as an Ok-module (just multiply the
generators of al by a~! to get generators for /).
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Fractional ideals

Proposition. Fractional ideals of Ok are exactly finitely generated
O k-submodules of K.

Proof. (<) Conversely, suppose that / = Spang, {x1,...,xmn} is a
finitely-generated £ k-submodule of K. Since K is the quotient
field of Dk, we can write x; = «;/f; with §; # 0 for all i.

Define a = [[{Z; Bi. Then al C Ok. So [ is finitely generated. O
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Fractional ideals

Proposition. The set of nonzero fractional ideals in a number
field K forms an abelian group under multiplication. If / is a
nonzero fractional ideal of O, then its inverse is

It ={x € K:xlI C Ok}.

Proof. The only difficult property to prove is that /= is the
inverse of /. We do that in the proof of the upcoming theorem. [J

Note: /1 C J= J- 1 C /L
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In Ok, to contain is to divide

Definition. If /,J are ideals in a ring R, then [ divides J,
denoted /|J if there exists an ideal H such that J = IH.

Proposition. (To contain is to divide.) Let a and b be ideals
in Ok. Then alb if and only if b C a.

Proof. On board.
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Prime factorization of ideals

Theorem. Let K be a number field. Every nonzero ideal of Ok
can be factored into a product of prime ideals, uniquely up to the
order of factors.

Outline of proof.

Step 1. a # 0 an ideal = p1---p, C a for some nonzero prime
ideals p;.

Step 2. /- 171 = (1) = Ok for any nonzero fractional ideal /.
Step 3. Every nonzero ideal a C Ok is a product of prime ideals.

Step 4. Prime factorization of ideals in Ok is unique.

We will prove Steps 3 and 4 on the board, assuming Steps 1 and 2.



