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Today

I Review some Noetherian stuff.

I Review and finish proof that OK is Dedekind.
I Fractional ideals.
I Every nonzero ideal in OK is uniquely expressible as a product

of prime ideals.
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Noetherian stuff

Suppose that R ⊆ S is an extension of rings and that R is
Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is
Noetherian.
Proof. Hilbert basis theorem. �

Prop. If S is finitely generated as an R-module, then S is
Noetherian.
Proof (not using the HBT). Let I be an ideal of S. Since a
finitely generated module over a Noetherian ring is Noetherian, S
is a Noetherian R-module.

Let I be an ideal of S, i.e., an S-submodule of S. Then I is an
R-submodule of S. Since S is a Noetherian R-module, I is finitely
generated as an R-module. Say I = SpanR{s1, . . . , sk} with the
si ∈ S. Then I = (s1, . . . , sk) = SpanS{s1, . . . , sk}. �
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Finish result from last time

See slides from last time.



Fractional ideals

Let K be a number field with ring of integers OK .

Definition. An OK -submodule I is a fractional ideal of OK if
there exists α ∈ OK \ {0} such that αI ⊆ OK

The product of two fractional ideals I, J in OK is the
OK -submodule of K

IJ = SpanOK {ij : i ∈ I, j ∈ J}.

Question: Is every (ordinary) ideal a ⊆ OK a fractional ideal?
Answer: Yes. For instance, 1 · a ⊆ a.

Question: In the definition, could the condition be “c ∈ K \ {0}
such that cI ⊆ OK ”? Answer: Yes. We can write c = α/β
with α, β ∈ OK . Then βc ∈ OK , and βcI ⊆ OK .
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Fractional ideals

I Suppose I ⊂ K is a fractional ideal of OK .

Take α ∈ OK such
that αI ⊆ OK . Then αI is an OK -submodule of OK , i.e., an

ideal.
I The fractional ideals are exactly the OK -submodules of K of

the form α−1a for some ideal a of OK and nonzero α ∈ OK .
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Fractional ideals

Proposition. Fractional ideals of OK are exactly finitely generated
OK -submodules of K .

Proof. (⇒) First, suppose that I is a fractional ideal of OK , and
take α ∈ OK \ {0} such that αI ⊆ OK . Then αI is an ideal of the
Noetherian ring OK . Hence, αI is finitely generated as
an OK -module. We have an isomorphism of OK -modules:

I → αI
x 7→ αx .

Hence, I is a finitely generated as an OK -module (just multiply the
generators of αI by α−1 to get generators for I).
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Proposition. Fractional ideals of OK are exactly finitely generated
OK -submodules of K .

Proof. (⇐) Conversely, suppose that I = SpanOK {x1, . . . , xm} is a
finitely-generated OK -submodule of K . Since K is the quotient
field of OK , we can write xi = αi/βi with βi 6= 0 for all i .
Define α =

∏m
i=1 βi . Then αI ⊆ OK . So I is finitely generated. �
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Fractional ideals

Proposition. The set of nonzero fractional ideals in a number
field K forms an abelian group under multiplication.

If I is a
nonzero fractional ideal of OK , then its inverse is

I−1 = {x ∈ K : xI ⊆ OK}.

Proof. The only difficult property to prove is that I−1 is the
inverse of I. We do that in the proof of the upcoming theorem. �

Note: I ⊆ J ⇒ J−1 ⊆ I−1.
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I−1 = {x ∈ K : xI ⊆ OK}.

Proof. The only difficult property to prove is that I−1 is the
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In OK , to contain is to divide

Definition. If I, J are ideals in a ring R, then I divides J ,
denoted I|J if

there exists an ideal H such that J = IH.

Proposition. (To contain is to divide.) Let a and b be ideals
in OK . Then a|b if and only if b ⊆ a.

Proof. On board. �
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Prime factorization of ideals

Theorem. Let K be a number field. Every nonzero ideal of OK
can be factored into a product of prime ideals, uniquely up to the
order of factors.

Outline of proof.

Step 1. a 6= 0 an ideal ⇒ p1 · · · pr ⊆ a for some nonzero prime
ideals pi .

Step 2. I · I−1 = (1) = OK for any nonzero fractional ideal I.

Step 3. Every nonzero ideal a ⊆ OK is a product of prime ideals.

Step 4. Prime factorization of ideals in OK is unique.
We will prove Steps 3 and 4 on the board, assuming Steps 1 and 2.
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