Math 361

March 10, 2023

▶ Review some Noetherian stuff.

▶ Review and finish proof that \mathfrak{O}_K is Dedekind.

Today

- Review some Noetherian stuff.
- ▶ Review and finish proof that \mathfrak{O}_K is Dedekind.
- ▶ Fractional ideals.

Today

- Review some Noetherian stuff.
- ▶ Review and finish proof that \mathfrak{O}_K is Dedekind.
- Fractional ideals.
- ► Every nonzero ideal in 𝔅_K is uniquely expressible as a product of prime ideals.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT).

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT). Let *I* be an ideal of *S*.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT). Let I be an ideal of S. Since a finitely generated module over a Noetherian ring is Noetherian, S is a Noetherian R-module.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT). Let I be an ideal of S. Since a finitely generated module over a Noetherian ring is Noetherian, S is a Noetherian R-module.

Let I be an ideal of S,

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT). Let I be an ideal of S. Since a finitely generated module over a Noetherian ring is Noetherian, S is a Noetherian R-module.

Let I be an ideal of S, i.e., an S-submodule of S.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT). Let I be an ideal of S. Since a finitely generated module over a Noetherian ring is Noetherian, S is a Noetherian R-module.

Let I be an ideal of S, i.e., an S-submodule of S. Then I is an R-submodule of S.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT). Let I be an ideal of S. Since a finitely generated module over a Noetherian ring is Noetherian, S is a Noetherian R-module.

Let *I* be an ideal of *S*, i.e., an *S*-submodule of *S*. Then *I* is an *R*-submodule of *S*. Since *S* is a Noetherian *R*-module, *I* is finitely generated as an *R*-module.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT). Let I be an ideal of S. Since a finitely generated module over a Noetherian ring is Noetherian, S is a Noetherian R-module.

Let *I* be an ideal of *S*, i.e., an *S*-submodule of *S*. Then *I* is an *R*-submodule of *S*. Since *S* is a Noetherian *R*-module, *I* is finitely generated as an *R*-module. Say $I = \text{Span}_R\{s_1, \ldots, s_k\}$ with the $s_i \in S$.

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT). Let I be an ideal of S. Since a finitely generated module over a Noetherian ring is Noetherian, S is a Noetherian R-module.

Let *I* be an ideal of *S*, i.e., an *S*-submodule of *S*. Then *I* is an *R*-submodule of *S*. Since *S* is a Noetherian *R*-module, *I* is finitely generated as an *R*-module. Say $I = \text{Span}_R\{s_1, \ldots, s_k\}$ with the $s_i \in S$. Then $I = (s_1, \ldots, s_k)$

Suppose that $R \subseteq S$ is an extension of rings and that R is Noetherian.

Theorem. If S is finitely generated as a ring over R, then S is Noetherian.

Proof. Hilbert basis theorem.

Prop. If S is finitely generated as an R-module, then S is Noetherian.

Proof (not using the HBT). Let I be an ideal of S. Since a finitely generated module over a Noetherian ring is Noetherian, S is a Noetherian R-module.

Let *I* be an ideal of *S*, i.e., an *S*-submodule of *S*. Then *I* is an *R*-submodule of *S*. Since *S* is a Noetherian *R*-module, *I* is finitely generated as an *R*-module. Say $I = \text{Span}_R\{s_1, \ldots, s_k\}$ with the $s_i \in S$. Then $I = (s_1, \ldots, s_k) = \text{Span}_S\{s_1, \ldots, s_k\}$.

Finish result from last time

See slides from last time.

Let K be a number field with ring of integers \mathfrak{O}_K .

Let K be a number field with ring of integers \mathfrak{O}_{K} .

Definition. An \mathfrak{O}_K -submodule I is a *fractional ideal* of \mathfrak{O}_K if there exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$

Let K be a number field with ring of integers \mathfrak{O}_{K} .

Definition. An \mathfrak{O}_K -submodule I is a *fractional ideal* of \mathfrak{O}_K if there exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathcal{O}_{\mathcal{K}}} \{ ij : i \in I, j \in J \}.$$

Let K be a number field with ring of integers \mathfrak{O}_{K} .

Definition. An \mathfrak{O}_K -submodule I is a *fractional ideal* of \mathfrak{O}_K if there exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{O}_{K}} \{ ij : i \in I, j \in J \}.$$

Question: Is every (ordinary) ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ a fractional ideal?

Let K be a number field with ring of integers \mathfrak{O}_{K} .

Definition. An \mathfrak{O}_K -submodule I is a *fractional ideal* of \mathfrak{O}_K if there exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{O}_{K}} \{ ij : i \in I, j \in J \}.$$

Question: Is every (ordinary) ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ a fractional ideal? Answer: Yes. For instance, $1 \cdot \mathfrak{a} \subseteq \mathfrak{a}$.

Let K be a number field with ring of integers \mathfrak{O}_{K} .

Definition. An \mathfrak{O}_K -submodule I is a *fractional ideal* of \mathfrak{O}_K if there exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{O}_{K}} \{ ij : i \in I, j \in J \}.$$

Question: Is every (ordinary) ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ a fractional ideal? Answer: Yes. For instance, $1 \cdot \mathfrak{a} \subseteq \mathfrak{a}$.

Question: In the definition, could the condition be " $c \in K \setminus \{0\}$ such that $cI \subseteq \mathcal{D}_{K}$ "?

Let K be a number field with ring of integers \mathfrak{O}_{K} .

Definition. An \mathfrak{O}_K -submodule I is a *fractional ideal* of \mathfrak{O}_K if there exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{O}_{K}} \{ ij : i \in I, j \in J \}.$$

Question: Is every (ordinary) ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ a fractional ideal? Answer: Yes. For instance, $1 \cdot \mathfrak{a} \subseteq \mathfrak{a}$.

Question: In the definition, could the condition be " $c \in K \setminus \{0\}$ such that $cl \subseteq \mathcal{D}_K$ "? Answer: Yes.

Let K be a number field with ring of integers \mathfrak{O}_{K} .

Definition. An \mathfrak{O}_K -submodule I is a *fractional ideal* of \mathfrak{O}_K if there exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{O}_{K}} \{ ij : i \in I, j \in J \}.$$

Question: Is every (ordinary) ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ a fractional ideal? Answer: Yes. For instance, $1 \cdot \mathfrak{a} \subseteq \mathfrak{a}$.

Question: In the definition, could the condition be " $c \in K \setminus \{0\}$ such that $cI \subseteq \mathfrak{O}_{K}$ "? Answer: Yes. We can write $c = \alpha/\beta$ with $\alpha, \beta \in \mathfrak{O}_{K}$.

Let K be a number field with ring of integers \mathfrak{O}_{K} .

Definition. An \mathfrak{O}_K -submodule I is a *fractional ideal* of \mathfrak{O}_K if there exists $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$

The product of two fractional ideals I, J in \mathfrak{O}_K is the \mathfrak{O}_K -submodule of K

$$IJ = \operatorname{Span}_{\mathfrak{O}_{K}} \{ ij : i \in I, j \in J \}.$$

Question: Is every (ordinary) ideal $\mathfrak{a} \subseteq \mathfrak{O}_{\mathcal{K}}$ a fractional ideal? Answer: Yes. For instance, $1 \cdot \mathfrak{a} \subseteq \mathfrak{a}$.

Question: In the definition, could the condition be " $c \in K \setminus \{0\}$ such that $cI \subseteq \mathfrak{O}_{K}$ "? Answer: Yes. We can write $c = \alpha/\beta$ with $\alpha, \beta \in \mathfrak{O}_{K}$. Then $\beta c \in \mathfrak{O}_{K}$, and $\beta cI \subseteq \mathfrak{O}_{K}$.

• Suppose $I \subset K$ is a fractional ideal of \mathfrak{O}_K .

Suppose $I \subset K$ is a fractional ideal of \mathfrak{O}_K . Take $\alpha \in \mathfrak{O}_K$ such that $\alpha I \subseteq \mathfrak{O}_K$.

Suppose $I \subset K$ is a fractional ideal of \mathfrak{O}_K . Take $\alpha \in \mathfrak{O}_K$ such that $\alpha I \subseteq \mathfrak{O}_K$. Then αI is an \mathfrak{O}_K -submodule of \mathfrak{O}_K ,

Suppose *I* ⊂ *K* is a fractional ideal of 𝔅_K. Take α ∈ 𝔅_K such that α*I* ⊆ 𝔅_K. Then α*I* is an 𝔅_K-submodule of 𝔅_K, i.e., an ideal.

- Suppose *I* ⊂ *K* is a fractional ideal of 𝔅_K. Take α ∈ 𝔅_K such that α*I* ⊆ 𝔅_K. Then α*I* is an 𝔅_K-submodule of 𝔅_K, i.e., an ideal.
- The fractional ideals are exactly the 𝔅_K-submodules of K of the form α⁻¹𝔅 for some ideal 𝔅 of 𝔅_K and nonzero α ∈ 𝔅_K.

Proposition. Fractional ideals of \mathfrak{O}_K are exactly finitely generated \mathfrak{O}_K -submodules of K.

Proposition. Fractional ideals of \mathcal{D}_K are exactly finitely generated \mathcal{D}_K -submodules of K.

Proof. (\Rightarrow) First, suppose that *I* is a fractional ideal of \mathfrak{O}_{K} ,

Proposition. Fractional ideals of \mathfrak{O}_K are exactly finitely generated \mathfrak{O}_K -submodules of K.

Proof. (\Rightarrow) First, suppose that I is a fractional ideal of \mathfrak{O}_{K} , and take $\alpha \in \mathfrak{O}_{K} \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_{K}$.

Proposition. Fractional ideals of \mathfrak{O}_K are exactly finitely generated \mathfrak{O}_K -submodules of K.

Proof. (\Rightarrow) First, suppose that *I* is a fractional ideal of \mathfrak{O}_K , and take $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$. Then αI is an ideal of the Noetherian ring \mathfrak{O}_K .

Proposition. Fractional ideals of \mathfrak{O}_K are exactly finitely generated \mathfrak{O}_K -submodules of K.

Proof. (\Rightarrow) First, suppose that *I* is a fractional ideal of \mathfrak{O}_K , and take $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$. Then αI is an ideal of the Noetherian ring \mathfrak{O}_K . Hence, αI is finitely generated as an \mathfrak{O}_K -module.

Proposition. Fractional ideals of \mathfrak{O}_K are exactly finitely generated \mathfrak{O}_K -submodules of K.

Proof. (\Rightarrow) First, suppose that *I* is a fractional ideal of \mathfrak{O}_K , and take $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$. Then αI is an ideal of the Noetherian ring \mathfrak{O}_K . Hence, αI is finitely generated as an \mathfrak{O}_K -module. We have an isomorphism of \mathfrak{O}_K -modules:

 $I \to \alpha I$ $x \mapsto \alpha x.$

Proposition. Fractional ideals of \mathcal{D}_K are exactly finitely generated \mathcal{D}_K -submodules of K.

Proof. (\Rightarrow) First, suppose that *I* is a fractional ideal of \mathfrak{O}_K , and take $\alpha \in \mathfrak{O}_K \setminus \{0\}$ such that $\alpha I \subseteq \mathfrak{O}_K$. Then αI is an ideal of the Noetherian ring \mathfrak{O}_K . Hence, αI is finitely generated as an \mathfrak{O}_K -module. We have an isomorphism of \mathfrak{O}_K -modules:

 $I \to \alpha I$ $x \mapsto \alpha x.$

Hence, I is a finitely generated as an \mathfrak{O}_{K} -module (just multiply the generators of αI by α^{-1} to get generators for I).

Proposition. Fractional ideals of \mathfrak{O}_K are exactly finitely generated \mathfrak{O}_K -submodules of K.

Proposition. Fractional ideals of \mathfrak{O}_K are exactly finitely generated \mathfrak{O}_K -submodules of K.

Proof. (\Leftarrow) Conversely, suppose that $I = \text{Span}_{\mathcal{O}_K} \{x_1, \ldots, x_m\}$ is a finitely-generated \mathcal{O}_K -submodule of K.

Proposition. Fractional ideals of \mathcal{D}_K are exactly finitely generated \mathcal{D}_K -submodules of K.

Proof. (\Leftarrow) Conversely, suppose that $I = \text{Span}_{\mathcal{D}_K}\{x_1, \ldots, x_m\}$ is a finitely-generated \mathcal{D}_K -submodule of K. Since K is the quotient field of \mathcal{D}_K , we can write $x_i = \alpha_i / \beta_i$ with $\beta_i \neq 0$ for all i.

Proposition. Fractional ideals of \mathcal{D}_K are exactly finitely generated \mathcal{D}_K -submodules of K.

Proof. (\Leftarrow) Conversely, suppose that $I = \operatorname{Span}_{\mathcal{D}_K} \{x_1, \ldots, x_m\}$ is a finitely-generated \mathcal{D}_K -submodule of K. Since K is the quotient field of \mathcal{D}_K , we can write $x_i = \alpha_i / \beta_i$ with $\beta_i \neq 0$ for all i. Define $\alpha = \prod_{i=1}^m \beta_i$. Then $\alpha I \subseteq \mathcal{D}_K$. So I is finitely generated. \Box

Proposition. The set of nonzero fractional ideals in a number field K forms an abelian group under multiplication.

$$I^{-1} = \{ x \in K : xI \subseteq \mathfrak{O}_K \}.$$

$$I^{-1} = \{ x \in K : xI \subseteq \mathfrak{O}_K \}.$$

Proof. The only difficult property to prove is that I^{-1} is the inverse of *I*.

$$I^{-1} = \{ x \in K : xI \subseteq \mathfrak{O}_K \}.$$

Proof. The only difficult property to prove is that I^{-1} is the inverse of *I*. We do that in the proof of the upcoming theorem. \Box

$$I^{-1} = \{ x \in K : xI \subseteq \mathfrak{O}_K \}.$$

Proof. The only difficult property to prove is that I^{-1} is the inverse of *I*. We do that in the proof of the upcoming theorem. \Box

Note: $I \subseteq J \Rightarrow J^{-1} \subseteq I^{-1}$.

In \mathfrak{O}_K , to contain is to divide

Definition. If I, J are ideals in a ring R, then I divides J, denoted I|J if

Proposition. (*To contain is to divide.*)

Proposition. (*To contain is to divide.*) Let \mathfrak{a} and \mathfrak{b} be ideals in $\mathfrak{O}_{\mathcal{K}}$. Then $\mathfrak{a}|\mathfrak{b}$ if and only if $\mathfrak{b} \subseteq \mathfrak{a}$.

Proposition. (*To contain is to divide.*) Let \mathfrak{a} and \mathfrak{b} be ideals in $\mathfrak{O}_{\mathcal{K}}$. Then $\mathfrak{a}|\mathfrak{b}$ if and only if $\mathfrak{b} \subseteq \mathfrak{a}$.

Proof. On board.

Theorem. Let K be a number field. Every nonzero ideal of \mathfrak{O}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Theorem. Let K be a number field. Every nonzero ideal of \mathcal{D}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

Theorem. Let K be a number field. Every nonzero ideal of \mathcal{D}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .

Theorem. Let K be a number field. Every nonzero ideal of \mathcal{D}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal *I*.

Theorem. Let K be a number field. Every nonzero ideal of \mathcal{D}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal *I*.

Step 3. Every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$ is a product of prime ideals.

Theorem. Let K be a number field. Every nonzero ideal of \mathcal{D}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal *I*.

Step 3. Every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$ is a product of prime ideals.

Step 4. Prime factorization of ideals in \mathfrak{O}_K is unique.

Theorem. Let K be a number field. Every nonzero ideal of \mathfrak{O}_K can be factored into a product of prime ideals, uniquely up to the order of factors.

Outline of proof.

Step 1. $\mathfrak{a} \neq 0$ an ideal $\Rightarrow \mathfrak{p}_1 \cdots \mathfrak{p}_r \subseteq \mathfrak{a}$ for some nonzero prime ideals \mathfrak{p}_i .

Step 2. $I \cdot I^{-1} = (1) = \mathfrak{O}_K$ for any nonzero fractional ideal *I*.

Step 3. Every nonzero ideal $\mathfrak{a} \subseteq \mathfrak{O}_K$ is a product of prime ideals.

Step 4. Prime factorization of ideals in $\mathfrak{O}_{\mathcal{K}}$ is unique.

We will prove Steps 3 and 4 on the board, assuming Steps 1 and 2.