Math 361

March 1, 2023



Quiz

1. Let R be a ring, and let M be an R-module. What does it
mean to say the M is Noetherian.

2. Suppose that 0 — M’ 2 M M7 5 0is a short exact
sequence of R-modules. What can we say about the
Noetherian condition in this setting?

3. State the Hilbert basis theorem.



Today

» FDs versus UFD
» Euclidean domains

» Application.
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Factorization

Let R be a ring.

» u € Ris a unit if it divides 1, i.e., if it has a multiplicative
inverse.

» r € R is irreducible if it is nonzero, not a unit, and r = st = s
or t is a unit.

» p € R is prime if it is nonzero, not a unit, and whenever
p|(ab), either p|a or p|b.

» In a domain, prime = irreducible. In a PID, the converse
holds.
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Factorization

r € R has a factorization into irreducibles if there exists a unit u
and irreducibles py, ..., px such that

r=up1--- Pk

The factorization of r is unique if whenever

r=vqi---q
with v a unit and qu, ..., gy irreducible, then k = ¢ and up to a
permutation of the indices p; = u;qg; for some unit u; for all i.

The ring R is a factorization domain (FD) is each nonzero element
has a factorization into irreducibles.

The ring R is a unique factorization domain (UFD) if each nonzero
element r € R has a unique factorization into irreducibles.
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Factorization

We have seen that every Noetherian domain is an FD. In
particular, the ring of integers in a number field is an FD.

Theorem. Let R be an FD. Then R is a UFD if and only if every
irreducible in R is prime.

Proof. See Theorems 4.14 in our text.

Example. In Z[\/—5], we have
6=2-3=(1++v-5)(1—+v-5).

Z[v/—5] is an FD but not a UFD.
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Euclidean domains

Euclidean domains. A domain R is a Euclidean domain if there
exists a function
d: R\ {0} - N

such that for all a,b € R\ {0},
1. a|b implies d(a) < d(b), and
2. there exist g, r € R such that
a=qgb+r
with r =0 or d(r) < d(b).

Examples. Z with d(n) = |n|, and K|[x] for a field K with
d(f) = deg(f).
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Euclidean domains

Proposition. Every Euclidean domain is a PID.

Proof. Let R, d be a Euclidean domain, and let / C R be an ideal.
If I =(0), there is nothing to prove. So suppose / # (0). Among
the nonzero elements of / choose one, a, with minimal value d(a).
We now show that / = (a).

Given b € | we write
b=gqga+r

with either r = 0 or d(r) < d(a). Note that r = b —qa € I.
Therefore, by minimality of d(a), it cannot be the case
that d(r) < d(a). Therefore, r =0 and b = ga. Hence, b € (a). O
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Quadratic fields
Theorem. Let m € Z . be a negative integer, and
let K = Q(y/m). Then O is Euclidean exactly when
d=—1,-2, -3 -7, —11.

In these cases, one may use the norm as the Euclidean function
(d(a) := N(a) for all a € Ok).

Theorem. The ring of integers of Q(y/m), for positive m, is
Euclidean with respect to the (absolute value of the) norm
function if and only if

m=2,3,5,6,7,11,13,17,19,21,29,33,37,41,55,73.

Result from 2000: Z[14] is Euclidean (but not with respect to the
norm function). Full list is an open problem.
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Application

Theorem. The only integer solutions to
V24 4=75

are (y,z) = (£11,5) and (y, z) = (£2,2).

Proof. See Theorem 4.22 in our text. We will do the case where y
is odd.

Factor the equation in Z[i]:

Q+iy)2-iy) =2

The proof proceeds in two steps:
» First show that 2 + iy and 2 — yi are relatively prime in Z[i].

» Consider the implication for a perfect
cube 23 = (2 +iy)(2 — iy) = y*> + 4.
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2+ iy and 2 — iy are relatively prime in Z[i]

If a4+ bi divides both 2 + iy and 2 — iy, then it divides their sum
and difference:

4= (a+bi)y and 2iy=(a+ bi)u,

for some v, u € Z[i].

Take norms:
16 = (a® + b?)N(y) and 4y? = (a* + b?)N(p)
where N(v), N(u) € Z.

16 = (a® + b?)N(v) = a® + b? is a power of 2.
Then 4y? = (a® + b?)N(p) = a* + b? € {1,2,4}.
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We have seen: if a+ bi divides both 2 + jy and 2 — iy, then
a’ + b? € {1,2,4}.

Case 1. a®> + b> =1 = a+ bi = +1,+i. So in this case a + bi is
a unit, hence not prime.

Case 2. a2+ b2 =2= a+ bi=+(141).
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We have seen: if a+ bi divides both 2 + jy and 2 — iy, then
a’ + b? € {1,2,4}.

Case 1. a®> + b> =1 = a+ bi = +1,+i. So in this case a + bi is
a unit, hence not prime.

Case 2. a®> + b2 =2 = a+ bi = +(1 4 i). These four solution
differ by a unit factor: +1,+i. So it suffices to consider the case
a+ bi=1+4i. Then

24+iy=(14i)(s+ti)=(s—t)+ (s+ t)i,

impliesss—t=2ands+t=y.



2+ iy and 2 — iy are relatively prime in Z[i]

We have seen: if a+ bi divides both 2 + jy and 2 — iy, then
a’ + b? € {1,2,4}.

Case 1. a®> + b> =1 = a+ bi = +1,+i. So in this case a + bi is
a unit, hence not prime.

Case 2. a®> + b2 =2 = a+ bi = +(1 4 i). These four solution
differ by a unit factor: +1,+i. So it suffices to consider the case
a+ bi=1+4i. Then

24+iy=(14i)(s+ti)=(s—t)+ (s+ t)i,

implies s —t =2 and s+t = y. That's not possible since y is odd.
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2+ iy and 2 — iy are relatively prime in Z[i]

Case 3. a° + b?> =4 = a+ bi = £2, £2i. Again, these solutions
all differ by a factor of a unit. Consider the case a + bi = 2.
However, 2 is not prime in Z[i]:

2=(1+i)(1—i).

So 2 divides the product of 1+ i and 1 — j. But 2 does not divide
1+ i since N(2) = 4 does not divide N(1+ i) = 2.

Thus, we have shown that 2 + jy and 2 — iy are relatively prime in
Z]i].
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Implications

We have (2 + yi)(2 — iy) = z3 with z € Z and where 2 + iy and
2 — iy are relatively prime.

Consider the factorization of z in Z[i]. We must be able to group
the factors so that z = a3 in Z[i] where « is relatively prime to
2 — iy and [ is relatively prime to 2 4 iy. Therefore,

2+iy=ua® and 2—iy=vs®

for some units v and v.

Every unit in Z[i] is a cube. (Check.) Therefore, we have
2+ iy = (a+ bi)?

for some a, b € Z.



Implications

We have (2 + yi)(2 — iy) = z3 with z € Z and where 2 + iy and
2 — iy are relatively prime.

Consider the factorization of z in Z[i]. We must be able to group
the factors so that z = a3 in Z[i] where « is relatively prime to
2 — iy and [ is relatively prime to 2 4 iy. Therefore,

2+iy=ua® and 2—iy=vs®

for some units v and v.

Every unit in Z[i] is a cube. (Check.) Therefore, we have
2+ iy = (a+ bi)?
for some a, b € Z. Take conjugates to get

2 — iy = (a— bi)3.



Implications

Add the equations 2 + iy = (a+ bi)® and 2 — iy = (a — bi)3:

4= (a+ bi)®+ (a— bi)?
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Add the equations 2 + iy = (a+ bi)® and 2 — iy = (a — bi)3:
4 = (a+ bi)® + (a— bi)® =2a(a® — 3b°).

Hence, 2 = a(a® — 3b?).



Implications

Add the equations 2 + iy = (a+ bi)® and 2 — iy = (a — bi)3:
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Hence, 2 = a(a® — 3b?).
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Possible solutions: a=1,b= =41, and a =2,b = +1.
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Add the equations 2 + iy = (a+ bi)® and 2 — iy = (a — bi)3:
4 = (a+ bi)® + (a— bi)® =2a(a® — 3b°).

Hence, 2 = a(a® — 3b?).
Possible solutions: a=1,b= =41, and a =2,b = +1.

Next, note that

23 = (2+iy)(2—iy) = (a+bi)3(a—bi)® = ((a+bi)(a—bi))? = (a*+b?)3.
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Add the equations 2 + iy = (a+ bi)® and 2 — iy = (a — bi)3:
4 = (a+ bi)® + (a— bi)® =2a(a® — 3b°).
Hence, 2 = a(a® — 3b?).
Possible solutions: a=1,b= =41, and a =2,b = +1.
Next, note that
23 = (2+iy)(2—iy) = (a+bi)3(a—bi)® = ((a+bi)(a—bi))? = (a*+b?)3.
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Implications

Add the equations 2 + iy = (a+ bi)® and 2 — iy = (a — bi)3:
4 = (a+ bi)® + (a— bi)® =2a(a® — 3b°).

Hence, 2 = a(a® — 3b?).

Possible solutions: a=1,b= =41, and a =2,b = +1.

Next, note that
23 = (2+iy)(2—iy) = (a+bi)3(a—bi)® = ((a+bi)(a—bi))? = (a*+b?)3.

So z = a® + b%. Plugging in possible values for a and b
give z = 2,5.



Implications

Add the equations 2 + iy = (a+ bi)3 and 2 — iy = (a — bi)3:
4 = (a+ bi)® + (a— bi)® =2a(a® — 3b°).
Hence, 2 = a(a® — 3b?).
Possible solutions: a=1,b= =41, and a =2,b = +1.
Next, note that
23 = (24iy)(2—iy) = (a+bi)*(a—bi)? = ((a+bi)(a—bi))? = (a>+b?)3.

So z = a® + b%. Plugging in possible values for a and b
give z = 2,5.

To finish the case where y is odd, solve y? + 4 = z3 in these cases.



