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Quiz

1. Let R be a ring, and let M be an R-module. What does it
mean to say the M is Noetherian.

2. Suppose that 0→ M ′ φ−→ M ψ−→ M ′′ → 0 is a short exact
sequence of R-modules. What can we say about the
Noetherian condition in this setting?

3. State the Hilbert basis theorem.



Today

I FDs versus UFD
I Euclidean domains
I Application.



Factorization

Let R be a ring.

I u ∈ R is a unit if it divides 1, i.e., if it has a multiplicative
inverse.

I r ∈ R is irreducible if it is nonzero, not a unit, and r = st ⇒ s
or t is a unit.

I p ∈ R is prime if it is nonzero, not a unit, and whenever
p|(ab), either p|a or p|b.

I In a domain, prime ⇒ irreducible. In a PID, the converse
holds.
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Factorization

r ∈ R has a factorization into irreducibles if there exists a unit u
and irreducibles p1, . . . , pk such that

r = up1 · · · pk .

The factorization of r is unique if whenever

r = vq1 · · · q`

with v a unit and q1, . . . , q` irreducible, then k = ` and up to a
permutation of the indices pi = uiqi for some unit ui for all i .

The ring R is a factorization domain (FD) is each nonzero element
has a factorization into irreducibles.

The ring R is a unique factorization domain (UFD) if each nonzero
element r ∈ R has a unique factorization into irreducibles.
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Factorization

We have seen that every Noetherian domain is an FD.

In
particular, the ring of integers in a number field is an FD.

Theorem. Let R be an FD. Then R is a UFD if and only if every
irreducible in R is prime.
Proof. See Theorems 4.14 in our text.

Example. In Z[
√
−5], we have

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Z[
√
−5] is an FD but not a UFD.
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Euclidean domains

Euclidean domains. A domain R is a Euclidean domain if

there
exists a function

d : R \ {0} → N

such that for all a, b ∈ R \ {0},
1. a|b implies d(a) ≤ d(b), and
2. there exist q, r ∈ R such that

a = qb + r

with r = 0 or d(r) < d(b).

Examples. Z with d(n) = |n|, and K [x ] for a field K with
d(f ) = deg(f ).
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Euclidean domains

Proposition. Every Euclidean domain is a PID.

Proof. Let R, d be a Euclidean domain, and let I ⊆ R be an ideal.
If I = (0), there is nothing to prove. So suppose I 6= (0). Among
the nonzero elements of I choose one, a, with minimal value d(a).
We now show that I = (a).

Given b ∈ I we write
b = qa + r

with either r = 0 or d(r) < d(a). Note that r = b − qa ∈ I.
Therefore, by minimality of d(a), it cannot be the case
that d(r) < d(a). Therefore, r = 0 and b = qa. Hence, b ∈ (a).�
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Quadratic fields

Theorem. Let m ∈ Z<0 be a negative integer, and
let K = Q(

√
m). Then OK is Euclidean exactly when

d = −1,−2,−3,−7,−11.

In these cases, one may use the norm as the Euclidean function
(d(α) := N(α) for all α ∈ OK ).

Theorem. The ring of integers of Q(
√

m), for positive m, is
Euclidean with respect to the (absolute value of the) norm
function if and only if

m = 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 55, 73.

Result from 2000: Z[14] is Euclidean (but not with respect to the
norm function). Full list is an open problem.
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Application

Theorem. The only integer solutions to

y2 + 4 = z3

are (y , z) = (±11, 5) and (y , z) = (±2, 2).

Proof. See Theorem 4.22 in our text. We will do the case where y
is odd.

Factor the equation in Z[i ]:

(2 + iy)(2− iy) = z3.

The proof proceeds in two steps:
I First show that 2 + iy and 2− yi are relatively prime in Z[i ].
I Consider the implication for a perfect

cube z3 = (2 + iy)(2− iy) = y2 + 4.
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I First show that 2 + iy and 2− yi are relatively prime in Z[i ].
I Consider the implication for a perfect

cube z3 = (2 + iy)(2− iy) = y2 + 4.
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2 + iy and 2− iy are relatively prime in Z[i ]

If a + bi divides both 2 + iy and 2− iy , then it divides their sum
and difference:

4 = (a + bi)γ and 2iy = (a + bi)µ,

for some γ, µ ∈ Z[i ].

Take norms:

16 = (a2 + b2)N(γ) and 4y2 = (a2 + b2)N(µ)

where N(γ),N(µ) ∈ Z.

16 = (a2 + b2)N(γ)⇒ a2 + b2 is a power of 2.
Then 4y2 = (a2 + b2)N(µ)⇒ a2 + b2 ∈ {1, 2, 4}.
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2 + iy and 2− iy are relatively prime in Z[i ]

We have seen: if a + bi divides both 2 + iy and 2− iy , then
a2 + b2 ∈ {1, 2, 4}.

Case 1. a2 + b2 = 1⇒ a + bi = ±1,±i . So in this case a + bi is
a unit, hence not prime.

Case 2. a2 + b2 = 2⇒ a + bi = ±(1± i). These four solution
differ by a unit factor: ±1,±i . So it suffices to consider the case
a + bi = 1 + i . Then

2 + iy = (1 + i)(s + ti) = (s − t) + (s + t)i ,

implies s − t = 2 and s + t = y . That’s not possible since y is odd.
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2 + iy and 2− iy are relatively prime in Z[i ]

Case 3. a2 + b2 = 4

⇒ a + bi = ±2,±2i . Again, these solutions
all differ by a factor of a unit. Consider the case a + bi = 2.
However, 2 is not prime in Z[i ]:

2 = (1 + i)(1− i).

So 2 divides the product of 1 + i and 1− i . But 2 does not divide
1± i since N(2) = 4 does not divide N(1± i) = 2.

Thus, we have shown that 2 + iy and 2− iy are relatively prime in
Z[i ].
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Implications

We have (2 + yi)(2− iy) = z3 with z ∈ Z and where 2 + iy and
2− iy are relatively prime.

Consider the factorization of z in Z[i ]. We must be able to group
the factors so that z = αβ in Z[i ] where α is relatively prime to
2− iy and β is relatively prime to 2 + iy . Therefore,

2 + iy = uα3 and 2− iy = vβ3

for some units u and v .

Every unit in Z[i ] is a cube. (Check.) Therefore, we have

2 + iy = (a + bi)3

for some a, b ∈ Z. Take conjugates to get

2− iy = (a − bi)3.
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Implications

Add the equations 2 + iy = (a + bi)3 and 2− iy = (a − bi)3:

4 = (a + bi)3 + (a − bi)3

= 2a(a2 − 3b2).

Hence, 2 = a(a2 − 3b2).

Possible solutions: a = 1, b = ±1, and a = 2, b = ±1.

Next, note that

z3 = (2+iy)(2−iy) = (a+bi)3(a−bi)3 = ((a+bi)(a−bi))3 = (a2+b2)3.

So z = a2 + b2. Plugging in possible values for a and b
give z = 2, 5.

To finish the case where y is odd, solve y2 + 4 = z3 in these cases.
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