Math 361

February 27, 2023

Tomorrow's quiz

See posting at our homepage.

Today

Catch-up.

- Finish proving basic results about the Noetherian property from last week.
- ▶ Prove the Hilbert basis theorem.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

1. *M* is Noetherian.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules:

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules: every chain of submodules of *M*,

$$N_1 \subseteq N_2 \subseteq \cdots,$$

eventually stabilizes.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules: every chain of submodules of *M*,

$$N_1 \subseteq N_2 \subseteq \cdots,$$

eventually stabilizes.

3. Every nonempty collection of submodules of M has a maximal element under inclusion.

A sequence of *R*-module mappings

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M''$$

is exact at M if im $\phi = \ker \psi$.

A sequence of *R*-module mappings

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M''$$

is exact at M if im $\phi = \ker \psi$.

Examples.

 $0 \rightarrow M' \xrightarrow{\phi} M$ is exact at M' if and only if ϕ is injective.

A sequence of *R*-module mappings

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M''$$

is exact at M if im $\phi = \ker \psi$.

Examples.

 $0 \rightarrow M' \xrightarrow{\phi} M$ is exact at M' if and only if ϕ is injective.

 $M \xrightarrow{\psi} M'' \to 0$ is exact at M'' if and only if ψ is surjective.

A sequence of *R*-module mappings

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M''$$

is exact at M if im $\phi = \ker \psi$.

Examples.

 $0 \rightarrow M' \xrightarrow{\phi} M$ is exact at M' if and only if ϕ is injective.

 $M \xrightarrow{\psi} M'' \to 0$ is exact at M'' if and only if ψ is surjective.

If the s.e.s.

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

is exact, then $M/\operatorname{im}(\phi) \xrightarrow{\sim} M''$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Proof. If n = 0, 1, the result is trivial.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Proof. If n = 0, 1, the result is trivial. Let n > 1, and suppose the statement is true for R^k with $0 \le k < n$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Proof. If n = 0, 1, the result is trivial. Let n > 1, and suppose the statement is true for R^k with $0 \le k < n$.

We have the short exact sequence

$$0 \to R \xrightarrow{\psi} R^n \xrightarrow{\phi} R^{n-1} \to 0.$$

where $\psi(r) = (r, 0, ..., 0)$ and $\phi(r_1, ..., r_n) = (r_2, ..., r_n)$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Proof. If n = 0, 1, the result is trivial. Let n > 1, and suppose the statement is true for R^k with $0 \le k < n$.

We have the short exact sequence

$$0 \to R \xrightarrow{\psi} R^n \xrightarrow{\phi} R^{n-1} \to 0.$$

where $\psi(r) = (r, 0, ..., 0)$ and $\phi(r_1, ..., r_n) = (r_2, ..., r_n)$.

The result now follows by induction and the proposition we just proved.

Corollary. If *R* is Noetherian and *M* is an *R*-module.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow)

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i$

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to R^n \xrightarrow{\psi} M \to 0$.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to \mathbb{R}^n \xrightarrow{\psi} \mathbb{M} \to 0$. Then \mathbb{R} Noetherian \Rightarrow

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to \mathbb{R}^n \xrightarrow{\psi} \mathbb{M} \to 0$. Then \mathbb{R} Noetherian $\Rightarrow \mathbb{R}^n$ Noetherian

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to \mathbb{R}^n \xrightarrow{\psi} \mathbb{M} \to 0.$

Then *R* Noetherian $\Rightarrow R^n$ Noetherian \Rightarrow

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to R^n \xrightarrow{\psi} M \to 0.$

Then R Noetherian $\Rightarrow R^n$ Noetherian $\Rightarrow M$ Noetherian.

Corollary. Let K be a number field. Then its ring of integer \mathfrak{O}_K is Noetherian.

Corollary. Let K be a number field. Then its ring of integer \mathfrak{O}_K is Noetherian.

Proof. This follows since \mathbb{Z} is a PID, hence, Noetherian, and \mathfrak{O}_K is a finitely generated \mathbb{Z} -module.

Factorization in Noetherian domains

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.
Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?).

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible?

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible? No.

So x = yz with y, z non-units.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible? No.

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.)

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible? No.

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.) By maximality of (x), we have $(y), (z) \notin A$.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible? No.

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.) By maximality of (x), we have $(y), (z) \notin A$. So y and z factor into irreducibles.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible? No.

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.) By maximality of (x), we have $(y), (z) \notin A$. So y and z factor into irreducibles. But then x factors into irreducibles since x = yz.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible? No.

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.) By maximality of (x), we have $(y), (z) \notin A$. So y and z factor into irreducibles. But then x factors into irreducibles since x = yz. Contradiction.

Theorem. Let R be a Noetherian domain. Then every nonzero element of R can be factored into irreducibles.

Theorem. Let R be a Noetherian domain. Then every nonzero element of R can be factored into irreducibles.

Corollary. Let K be a number field. Then every element of its ring of integers, \mathfrak{O}_K , can be factored into irreducibles in \mathfrak{O}_K .

Theorem. Let R be a Noetherian domain. Then every nonzero element of R can be factored into irreducibles.

Corollary. Let *K* be a number field. Then every element of its ring of integers, \mathfrak{O}_K , can be factored into irreducibles in \mathfrak{O}_K . **Proof.** We have seen that \mathfrak{O}_K is finitely generated over the Noetherian ring \mathbb{Z} .

Theorem. Let R be a Noetherian domain. Then every nonzero element of R can be factored into irreducibles.

Corollary. Let *K* be a number field. Then every element of its ring of integers, \mathfrak{O}_K , can be factored into irreducibles in \mathfrak{O}_K . **Proof.** We have seen that \mathfrak{O}_K is finitely generated over the Noetherian ring \mathbb{Z} .

In homework, we've seen that $\mathbb{Q}(\sqrt{-5})$ is not a UFD:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

Theorem. Let R be a Noetherian domain. Then every nonzero element of R can be factored into irreducibles.

Corollary. Let *K* be a number field. Then every element of its ring of integers, \mathfrak{O}_K , can be factored into irreducibles in \mathfrak{O}_K . **Proof.** We have seen that \mathfrak{O}_K is finitely generated over the Noetherian ring \mathbb{Z} .

In homework, we've seen that $\mathbb{Q}(\sqrt{-5})$ is not a UFD:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

Does this contradict the Corollary?

Hilbert basis theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Hilbert basis theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Remarks.

For S to be *finitely generated as a ring* over R, we mean that there exist s₁,..., s_n ∈ S such that $S = \{f(s_1,...,s_n) : f ∈ R[x_1,...,x_n]\}.$

Hilbert basis theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Remarks.

For S to be *finitely generated as a ring* over R, we mean that there exist s₁,..., s_n ∈ S such that S = {f(s₁,...,s_n) : f ∈ R[x₁,...,x_n]}.

Example: $R[x_1, \ldots, x_n]$ is finitely generated as a ring over R but not as a module over R.

Hilbert basis theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Remarks.

For S to be *finitely generated as a ring* over R, we mean that there exist s₁,..., s_n ∈ S such that $S = \{f(s_1,...,s_n) : f ∈ R[x_1,...,x_n]\}.$

Example: $R[x_1, \ldots, x_n]$ is finitely generated as a ring over R but not as a module over R.

 Recall that a ring R is Noetherian, if and only if all of its ideals are finitely generated.

Hilbert basis theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Remarks.

For S to be *finitely generated as a ring* over R, we mean that there exist s₁,..., s_n ∈ S such that $S = \{f(s_1,...,s_n) : f ∈ R[x_1,...,x_n]\}.$

Example: $R[x_1, \ldots, x_n]$ is finitely generated as a ring over R but not as a module over R.

- Recall that a ring R is Noetherian, if and only if all of its ideals are finitely generated.
- ▶ Letting R = K be a field and S = K[x₁,...,x_n], the Hilbert basis theorem says

Hilbert basis theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Remarks.

For S to be *finitely generated as a ring* over R, we mean that there exist s₁,..., s_n ∈ S such that $S = \{f(s_1,...,s_n) : f ∈ R[x_1,...,x_n]\}.$

Example: $R[x_1, \ldots, x_n]$ is finitely generated as a ring over R but not as a module over R.

- Recall that a ring R is Noetherian, if and only if all of its ideals are finitely generated.
- ▶ Letting R = K be a field and $S = K[x_1, ..., x_n]$, the Hilbert basis theorem says that every ideal in S finitely generated.

Suppose that s_1, \ldots, s_n generate S as a ring over R.

Suppose that s_1, \ldots, s_n generate S as a ring over R. We need to show that S is Noetherian. Suppose that s_1, \ldots, s_n generate S as a ring over R.

We need to show that S is Noetherian. Then there exists an R-module surjection

$$R[x_1,\ldots,x_n] \to S$$

$$f(x_1,\ldots,x_n) \mapsto f(s_1,\ldots,s_n).$$

Suppose that s_1, \ldots, s_n generate S as a ring over R.

We need to show that S is Noetherian. Then there exists an R-module surjection

$$R[x_1,\ldots,x_n] \to S$$

$$f(x_1,\ldots,x_n) \mapsto f(s_1,\ldots,s_n).$$

Since the image of a Noetherian *R*-module is Noetherian, it suffices to prove that the polynomial ring $R[x_1, \ldots, x_n]$ is a Noetherian *R*-module.

To show: R Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

To show: R Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian. We do this by induction on n.

To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.

To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.

Note that $R[x_1, ..., x_n] = R[x_1, ..., x_{n-1}][x_n].$

To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.

Note that $R[x_1, \ldots, x_n] = R[x_1, \ldots, x_{n-1}][x_n]$. For instance,

 $\mathbb{Z}[x, y] \ni xy^3 + 5xy^2 + 7x^5y^3 + 9x^6y^2 + 15 =$

To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.

Note that $R[x_1, \ldots, x_n] = R[x_1, \ldots, x_{n-1}][x_n]$. For instance,

$$\mathbb{Z}[x,y] \ni xy^3 + 5xy^2 + 7x^5y^3 + 9x^6y^2 + 15 = (x+7x^5)y^3 + (5x+9x^6)y^2 + 15 \in \mathbb{Z}[x][y].$$

To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.

Note that $R[x_1, \ldots, x_n] = R[x_1, \ldots, x_{n-1}][x_n]$. For instance,

$$\mathbb{Z}[x, y] \ni xy^3 + 5xy^2 + 7x^5y^3 + 9x^6y^2 + 15 = (x + 7x^5)y^3 + (5x + 9x^6)y^2 + 15 \in \mathbb{Z}[x][y].$$

By induction, it suffices to show that R Noetherian $\Rightarrow R[x]$ Noetherian.

To show: *R* Noetherian $\Rightarrow R[x]$ Noetherian.

To show: *R* Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.
To show: *R* Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.

We must show that

$$I=(f_1,\ldots,f_k)$$

for some $f_1, \ldots, f_k \in I$.

To show: *R* Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.

We must show that

$$I=(f_1,\ldots,f_k)$$

for some $f_1, \ldots, f_k \in I$.

What is wrong with the following argument?

To show: *R* Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.

We must show that

$$I=(f_1,\ldots,f_k)$$

for some $f_1, \ldots, f_k \in I$.

What is wrong with the following argument? In fact, I = (f) for some f since R[x] is a PID (from the division algorithm).

To show: *R* Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.

We must show that

$$I=(f_1,\ldots,f_k)$$

for some $f_1, \ldots, f_k \in I$.

What is wrong with the following argument? In fact, I = (f) for some f since R[x] is a PID (from the division algorithm).

Answer: The division algorithm assumes R is a field.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R. **Proof.** First, $0 \in A$,

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R. **Proof.** First, $0 \in A$, so $A \neq \emptyset$.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R. **Proof.** First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$,

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given *a*, as above, and $r \in R$,

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given *a*, as above, and $r \in R$, we have $rf \in I$

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given *a*, as above, and $r \in R$, we have $rf \in I$ so its leading term, *ra*, is in *A*.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f. (For completeness, say the zero polynomial has leading coefficient 0.)

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given *a*, as above, and $r \in R$, we have $rf \in I$ so its leading term, *ra*, is in *A*. Hence, *A* is closed under "outside-in" multiplication.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*. Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{\leq d} = \{f \in I : \deg(f) < d\} \subseteq I \subseteq R[x].$$

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{\leq d} = \{f \in I : \deg(f) < d\} \subseteq I \subseteq R[x].$$

Then $I_{\leq d}$ is an *R*-submodule of $M := \operatorname{Span}_{R}\{1, x, x^{2}, \dots, x^{d-1}\}$.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I \subseteq R[x].$$

Then $I_{<d}$ is an *R*-submodule of $M := \text{Span}_R\{1, x, x^2, \dots, x^{d-1}\}$. Since *R* is Noetherian, and *M* is a finitely generated *R*-module,

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I \subseteq R[x].$$

Then $I_{< d}$ is an *R*-submodule of $M := \operatorname{Span}_R \{1, x, x^2, \dots, x^{d-1}\}$. Since *R* is Noetherian and *M* is a finitely generated *R*-module *M*.

Since R is Noetherian, and M is a finitely generated R-module, M is Noetherian.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I \subseteq R[x].$$

Then $I_{\leq d}$ is an *R*-submodule of $M := \operatorname{Span}_R\{1, x, x^2, \dots, x^{d-1}\}.$

Since *R* is Noetherian, and *M* is a finitely generated *R*-module, *M* is Noetherian. Hence, $I_{< d}$ is a finitely generated *R*-module.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I \subseteq R[x].$$

Then $I_{\leq d}$ is an *R*-submodule of $M := \operatorname{Span}_R\{1, x, x^2, \dots, x^{d-1}\}$. Since *R* is Noetherian, and *M* is a finitely generated *R*-module, *M* is Noetherian. Hence, $I_{\leq d}$ is a finitely generated *R*-module. Say

$$I_{< d} = \operatorname{Span}_R\{h_1, \ldots, h_t\}.$$

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I \subseteq R[x].$$

Then $I_{\leq d}$ is an *R*-submodule of $M := \operatorname{Span}_R\{1, x, x^2, \dots, x^{d-1}\}$. Since *R* is Noetherian, and *M* is a finitely generated *R*-module, *M* is Noetherian. Hence, $I_{\leq d}$ is a finitely generated *R*-module. Say

$$I_{< d} = \operatorname{Span}_{R} \{h_1, \ldots, h_t\}.$$

Claim: $I = (g_1, ..., g_s, h_1, ..., h_t).$

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of I.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s .

$$\begin{split} A &= (a_1, \ldots, a_s) \subseteq R \text{, ideal of leading coeffs. of elements of } I.\\ g_1, \ldots, g_s \in I \text{ polys of degree } d \text{ with leading coeffs. } a_1, \ldots, a_s.\\ I_{< d} &= \operatorname{Span}_R\{h_1, \ldots, h_t\} = \text{ all elements of } I \text{ of degree } < d. \end{split}$$

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \operatorname{Span}_R\{h_1, \ldots, h_t\} =$ all elements of *I* of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$.
$A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \text{Span}_R\{h_1, \ldots, h_t\} = \text{all elements of } I$ of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \operatorname{Span}_R\{h_1, \ldots, h_t\} =$ all elements of *I* of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?)

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \operatorname{Span}_R\{h_1, \ldots, h_t\} =$ all elements of *I* of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg $(f) = e \ge d$,

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \operatorname{Span}_R\{h_1, \ldots, h_t\} =$ all elements of *I* of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg $(f) = e \ge d$, and let the leading coefficient of *f* be *a*

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \operatorname{Span}_R\{h_1, \ldots, h_t\} =$ all elements of *I* of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg $(f) = e \ge d$, and let the leading coefficient of *f* be $a \in A$.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \operatorname{Span}_R\{h_1, \ldots, h_t\} =$ all elements of *I* of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg $(f) = e \ge d$, and let the leading coefficient of *f* be $a \in A$. We have $a = \sum_{i=1}^s r_i a_i$ for some $r_i \in R$.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree d with leading coeffs. a_1, \ldots, a_s . $I_{\leq d} = \operatorname{Span}_{R} \{h_1, \dots, h_t\} =$ all elements of I of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s).$ **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg(f) = $e \ge d$, and let the leading coefficient of f be $a \in A$. We have $a = \sum_{i=1}^{s} r_i a_i$ for some $r_i \in R$. Then $f - \sum_{i=1}^{s} r_i x^{e-d} g_i \in I$.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree d with leading coeffs. a_1, \ldots, a_s . $I_{\leq d} = \operatorname{Span}_{R} \{h_1, \dots, h_t\} =$ all elements of I of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s).$ **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg(f) = $e \ge d$, and let the leading coefficient of f be $a \in A$. We have $a = \sum_{i=1}^{s} r_i a_i$ for some $r_i \in R$. Then $f - \sum_{i=1}^{s} r_i x^{e-d} g_i \in I$, and has degree < e.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree d with leading coeffs. a_1, \ldots, a_s . $I_{\leq d} = \operatorname{Span}_{R} \{h_1, \dots, h_t\} =$ all elements of I of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s).$ **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg(f) = $e \ge d$, and let the leading coefficient of f be $a \in A$. We have $a = \sum_{i=1}^{s} r_i a_i$ for some $r_i \in R$. Then $f - \sum_{i=1}^{s} r_i x^{e-d} g_i \in I$, and has degree < e. We are done by induction on the degree of f. (Why?)

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree d with leading coeffs. a_1, \ldots, a_s . $I_{\leq d} = \operatorname{Span}_{R} \{h_1, \dots, h_t\} =$ all elements of I of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s).$ **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg(f) = $e \ge d$, and let the leading coefficient of f be $a \in A$. We have $a = \sum_{i=1}^{s} r_i a_i$ for some $r_i \in R$. Then $f - \sum_{i=1}^{s} r_i x^{e-d} g_i \in I$, and has degree < e. We are done by induction on the degree of f. (Why?)