Math 361

February 27, 2023



Tomorrow's quiz

See posting at our homepage.



Today

Catch-up.

» Finish proving basic results about the Noetherian property
from last week.

» Prove the Hilbert basis theorem.
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Noetherian modules

Definition. An R-module M is Noetherian if every submodule
of M is finitely generated.

Proposition. The following are equivalent for an R-module M:

1. M is Noetherian.

2. M satisfies the ascending chain condition on submodules:
every chain of submodules of M,

N TNy C-oe g

eventually stabilizes.

3. Every nonempty collection of submodules of M has a maximal
element under inclusion.



Mappings of R-modules

A sequence of R-module mappings
M ML m

is exact at M if im ¢ = ker ).



Mappings of R-modules

A sequence of R-module mappings
M ML m
is exact at M if im ¢ = ker .

Examples.

0— M % Mis exact at M’ if and only if ¢ is injective.



Mappings of R-modules

A sequence of R-module mappings

M LML M
is exact at M if im ¢ = ker .
Examples.

0— M % Mis exact at M’ if and only if ¢ is injective.

M Yy M” =5 0is exact at M" if and only if v is surjective.



Mappings of R-modules

A sequence of R-module mappings
M ML m
is exact at M if im ¢ = ker .
Examples.
0— M % Mis exact at M’ if and only if ¢ is injective.
M Yy M” =5 0is exact at M" if and only if v is surjective.

If the s.e.s.
0=M &ML M o

is exact, then M/im(¢) = M".



Noetherian property and mappings of R-modules
Proposition. Let
oM AEME M o

be a short exact sequence of R-modules.



Noetherian property and mappings of R-modules
Proposition. Let
oM AEME M o

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.



Noetherian property and mappings of R-modules
Proposition. Let
oM AEME M o

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Corollary. If R is a Noetherian ring, then so is R" for all n € N.



Noetherian property and mappings of R-modules
Proposition. Let
oM AEME M o

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.
Corollary. If R is a Noetherian ring, then so is R" for all n € N.

Proof. If n =0,1, the result is trivial.



Noetherian property and mappings of R-modules

Proposition. Let

oM AEME M o
be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Corollary. If R is a Noetherian ring, then so is R" for all n € N.

Proof. If n = 0,1, the result is trivial. Let n > 1, and suppose the
statement is true for R¥ with 0 < k < n.



Noetherian property and mappings of R-modules
Proposition. Let
oM AEME M o

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.
Corollary. If R is a Noetherian ring, then so is R" for all n € N.

Proof. If n = 0,1, the result is trivial. Let n > 1, and suppose the
statement is true for R¥ with 0 < k < n.

We have the short exact sequence
0 RS RS R0,

where 9(r) = (r,0,...,0) and ¢(r1,...,r) = (r2,..., ).



Noetherian property and mappings of R-modules

Proposition. Let

oM AEME M o
be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Corollary. If R is a Noetherian ring, then so is R" for all n € N.

Proof. If n = 0,1, the result is trivial. Let n > 1, and suppose the
statement is true for R¥ with 0 < k < n.

We have the short exact sequence
0 RS RS R0,

where 9(r) = (r,0,...,0) and ¢(r1,...,r) = (r2,..., ).

The result now follows by induction and the proposition we just
proved. O
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Noetherian property and mappings of R-modules

Corollary. If R is Noetherian and M is an R-module. Then M is
Noetherian if and only if M is finitely generated. In other words, a
finitely generated module over a Noetherian ring is Noetherian.

Proof. (=) Duh. (<) Now suppose that M is finitely generated.
Say M = Spang{my, ..., my}. We then have a surjective
homomorphism

v R" > M

n
(riy .o rm) — Z rim;.
i=1

We have a short exact sequence: 0 — ker(¢)) — R" Y M 0.

Then R Noetherian = R"™ Noetherian = M Noetherian. O
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Noetherian property and mappings of R-modules

Corollary. Let K be a number field. Then its ring of integer O is
Noetherian.

Proof. This follows since Z is a PID, hence, Noetherian, and Ok
is a finitely generated Z-module. O
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irreducibles since x = yz. Contradiction. O
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Factorization in Noetherian domains

Theorem. Let R be a Noetherian domain. Then every nonzero
element of R can be factored into irreducibles.

Corollary. Let K be a number field. Then every element of its ring
of integers, Ok, can be factored into irreducibles in k.

Proof. We have seen that O is finitely generated over the
Noetherian ring Z. O

In homework, we've seen that Q(v/—5) is not a UFD:
6=2-3=(1++v-5)(1—-v-5H).

Does this contradict the Corollary?
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Hilbert basis theorem. Let R and S be rings with R C S.
Suppose that S is finitely generated as a ring over R and R is
Noetherian. Then S is a Noetherian ring.

Remarks.

» For S to be finitely generated as a ring over R, we mean that
there exist s1,...,s, € S such that
S={f(s1,...,5n): f € R[x1,...,xn]}.
Example: R[x1,...,xs] is finitely generated as a ring over R
but not as a module over R.

» Recall that a ring R is Noetherian, if and only if all of its
ideals are finitely generated.

» Letting R = K be a field and S = K|[x1, ..., xp], the Hilbert
basis theorem says that every ideal in S finitely generated.
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Proof of Hilbert basis theorem

Suppose that s1,...,s, generate S as a ring over R.

We need to show that S is Noetherian. Then there exists an
R-module surjection

R[x1,...,xn] = S
f(Xl,...,X,,) — f(Sl,...,S,,).
Since the image of a Noetherian R-module is Noetherian, it

suffices to prove that the polynomial ring R[x1,...,xs] is a
Noetherian R-module.
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Proof of the Hilbert basis theorem

To show: R Noetherian = R[xi, ..., xp] Noetherian.

We do this by induction on n. The base case is n = 0, which is
just R, itself, which is Noetherian.

Note that R[xi,...,xn] = R[x1,...,Xn—1][xa]. For instance,

Zx,y] > xy3 + 5xy2 + 7x5y3 + 9X6y2 + 15 =
(x +7x°)y> + (5x + 9x°)y? + 15 € Z[x][y].

By induction, it suffices to show that R Noetherian = R|[x]
Noetherian.
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Proof of the Hilbert basis theorem

To show: R Noetherian = R[x]| Noetherian.

Let / C R[x] be an ideal.

We must show that
I=(f,...,f)

for some f1,...,f € I.

What is wrong with the following argument? In fact, / = (f) for
some f since R[x] is a PID (from the division algorithm).

Answer: The division algorithm assumes R is a field.
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Finally, given a, as above, and r € R, we have rf € [ so its leading
term, ra, is in A. Hence, A is closed under “outside-in"
multiplication. O
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Since R is Noetherian, A = (a1,..., as) for some s. Pick g; € R[x]
with leading coefficient a; for each i.

Scaling by appropriate powers of x, we may assume all g; have the
same degree d. Define

l.qg ={f €l:deg(f) <d} CIC R[x].
Then Iy is an R-submodule of M := Spang{1,x,x?,...,x971}.

Since R is Noetherian, and M is a finitely generated R-module, M
is Noetherian. Hence, /-4 is a finitely generated R-module. Say

I<d = SpanR{hb SRR ht}

Claim: I =(g1,...,8s,h1,..., ht).
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