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Tomorrow’s quiz

See posting at our homepage.



Today

Catch-up.

I Finish proving basic results about the Noetherian property
from last week.

I Prove the Hilbert basis theorem.



Noetherian modules

Definition. An R-module M is Noetherian if every submodule
of M is finitely generated.

Proposition. The following are equivalent for an R-module M:
1. M is Noetherian.
2. M satisfies the ascending chain condition on submodules:

every chain of submodules of M,

N1 ⊆ N2 ⊆ · · · ,

eventually stabilizes.
3. Every nonempty collection of submodules of M has a maximal

element under inclusion.
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Mappings of R-modules

A sequence of R-module mappings

M ′ φ−→ M ψ−→ M ′′

is exact at M if imφ = kerψ.

Examples.

0→ M ′ φ−→ M is exact at M ′ if and only if φ is injective.

M ψ−→ M ′′ → 0 is exact at M ′′ if and only if ψ is surjective.

If the s.e.s.
0→ M ′ φ−→ M ψ−→ M ′′ → 0

is exact, then M/ im(φ) ∼−→ M ′′.
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Noetherian property and mappings of R-modules
Proposition. Let

0→ M ′ φ−→ M ψ−→ M ′′ → 0

be a short exact sequence of R-modules.

Then M is Noetherian if
and only if M ′ and M ′′ are Noetherian.

Corollary. If R is a Noetherian ring, then so is Rn for all n ∈ N.

Proof. If n = 0, 1, the result is trivial. Let n > 1, and suppose the
statement is true for Rk with 0 ≤ k < n.

We have the short exact sequence

0→ R ψ−→ Rn φ−→ Rn−1 → 0.

where ψ(r) = (r , 0, . . . , 0) and φ(r1, . . . , rn) = (r2, . . . , rn).

The result now follows by induction and the proposition we just
proved. �
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Noetherian property and mappings of R-modules

Corollary. If R is Noetherian and M is an R-module.

Then M is
Noetherian if and only if M is finitely generated. In other words, a
finitely generated module over a Noetherian ring is Noetherian.

Proof. (⇒) Duh. (⇐) Now suppose that M is finitely generated.
Say M = SpanR{m1, . . . ,mn}. We then have a surjective
homomorphism

ψ : Rn → M

(r1, . . . , rn) 7→
n∑

i=1
ri mi .

We have a short exact sequence: 0→ ker(ψ)→ Rn ψ−→ M → 0.

Then R Noetherian ⇒ Rn Noetherian ⇒ M Noetherian. �
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Noetherian property and mappings of R-modules

Corollary. Let K be a number field. Then its ring of integer OK is
Noetherian.

Proof. This follows since Z is a PID, hence, Noetherian, and OK
is a finitely generated Z-module. �
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Factorization in Noetherian domains

Theorem. Let R be a Noetherian domain. Then every nonzero
non-unit element of R can be factored into irreducibles.

Proof. Let A be the set of principal ideals (x) ⊆ R such that
x 6= 0, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show A = ∅. Suppose not. Let (x) be a maximal element
of A (why possible?). Is x irreducible? No.

So x = yz with y , z non-units. We have (x) ( (y) and (x) ( (z).
(See blackboard.) By maximality of (x), we have (y), (z) 6∈ A. So
y and z factor into irreducibles. But then x factors into
irreducibles since x = yz . Contradiction. �
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Hilbert basis theorem

Hilbert basis theorem. Let R and S be rings with R ⊆ S.
Suppose that S is finitely generated as a ring over R and R is
Noetherian. Then S is a Noetherian ring.

Remarks.
I For S to be finitely generated as a ring over R, we mean that

there exist s1, . . . , sn ∈ S such that
S = {f (s1, . . . , sn) : f ∈ R[x1, . . . , xn]}.

Example: R[x1, . . . , xn] is finitely generated as a ring over R
but not as a module over R.

I Recall that a ring R is Noetherian, if and only if all of its
ideals are finitely generated.

I Letting R = K be a field and S = K [x1, . . . , xn], the Hilbert
basis theorem says that every ideal in S finitely generated.
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Proof of Hilbert basis theorem

Suppose that s1, . . . , sn generate S as a ring over R.

We need to show that S is Noetherian. Then there exists an
R-module surjection

R[x1, . . . , xn]→ S
f (x1, . . . , xn) 7→ f (s1, . . . , sn).

Since the image of a Noetherian R-module is Noetherian, it
suffices to prove that the polynomial ring R[x1, . . . , xn] is a
Noetherian R-module.
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Proof of the Hilbert basis theorem

To show: R Noetherian ⇒ R[x1, . . . , xn] Noetherian.

We do this by induction on n. The base case is n = 0, which is
just R, itself, which is Noetherian.

Note that R[x1, . . . , xn] = R[x1, . . . , xn−1][xn]. For instance,

Z[x , y ] 3 xy3 + 5xy2 + 7x5y3 + 9x6y2 + 15 =
(x + 7x5)y3 + (5x + 9x6)y2 + 15 ∈ Z[x ][y ].

By induction, it suffices to show that R Noetherian ⇒ R[x ]
Noetherian.
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Proof of the Hilbert basis theorem

To show: R Noetherian ⇒ R[x ] Noetherian.

Let I ⊆ R[x ] be an ideal.

We must show that
I = (f1, . . . , fk)

for some f1, . . . , fk ∈ I.

What is wrong with the following argument? In fact, I = (f ) for
some f since R[x ] is a PID (from the division algorithm).

Answer: The division algorithm assumes R is a field.
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Proof of the Hilbert basis theorem

If f = ad xd + ad−1xd−1 + · · ·+ a0 with ad 6= 0, then call ad the
leading coefficient of f .

(For completeness, say the zero
polynomial has leading coefficient 0.)

Let A ⊆ R be the set of leading coefficients of elements of I.

Is A and ideal of R?

Claim. A is an ideal of R.
Proof. First, 0 ∈ A, so A 6= ∅. Next suppose a, b ∈ A. Say they are
leading coefficients of f , g , respectively. Without loss of generality
deg(f ) ≤ deg(g). Let d = deg(g)− deg(f ). Then xd f + g ∈ I, so
its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given a, as above, and r ∈ R, we have rf ∈ I so its leading
term, ra, is in A. Hence, A is closed under “outside-in”
multiplication. �
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Proof of the Hilbert basis theorem

Let A ⊆ R be the ideal of leading coefficients of elements of I.

Since R is Noetherian, A = (a1, . . . , as) for some s. Pick gi ∈ R[x ]
with leading coefficient ai for each i .

Scaling by appropriate powers of x , we may assume all gi have the
same degree d . Define

I<d = {f ∈ I : deg(f ) < d} ⊆ I ⊆ R[x ].

Then I<d is an R-submodule of M := SpanR{1, x , x2, . . . , xd−1}.

Since R is Noetherian, and M is a finitely generated R-module, M
is Noetherian. Hence, I<d is a finitely generated R-module. Say

I<d = SpanR{h1, . . . , ht}.

Claim: I = (g1, . . . , gs , h1, . . . , ht).
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Proof of the Hilbert basis theorem

A = (a1, . . . , as) ⊆ R, ideal of leading coeffs. of elements of I.

g1, . . . , gs ∈ I polys of degree d with leading coeffs. a1, . . . , as .

I<d = SpanR{h1, . . . , ht} = all elements of I of degree < d .

Claim: I = (g1, . . . , gs , . . . , h1, . . . , hs).
Proof. Let f ∈ I. If deg(f ) < d , no problem. (Why?)

Suppose deg(f ) = e ≥ d , and let the leading coefficient of f
be a ∈ A. We have a =

∑s
i=1 ri ai for some ri ∈ R.

Then f −
∑s

i=1 ri x e−d gi ∈ I, and has degree < e.

We are done by induction on the degree of f . (Why?) �
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