Math 361

March 3, 2023

Today

- ► Operations on ideals.
- Example of using ideals to recapture uniqueness of factorization.

Motivation: Although integers in a ring do not necessarily factor uniquely into primes, we can recapture unique factorization by replacing integers with ideals.

Motivation: Although integers in a ring do not necessarily factor uniquely into primes, we can recapture unique factorization by replacing integers with ideals.

Recall:

Motivation: Although integers in a ring do not necessarily factor uniquely into primes, we can recapture unique factorization by replacing integers with ideals.

Recall:

Let R be a ring (commutative, with 1).

Motivation: Although integers in a ring do not necessarily factor uniquely into primes, we can recapture unique factorization by replacing integers with ideals.

Recall:

Let R be a ring (commutative, with 1).

A nonempty subset $I \subseteq R$ is an *ideal* if it is closed under addition $(a, b \in I \Rightarrow a + b \in I)$ and

Motivation: Although integers in a ring do not necessarily factor uniquely into primes, we can recapture unique factorization by replacing integers with ideals.

Recall:

Let R be a ring (commutative, with 1).

A nonempty subset $I \subseteq R$ is an *ideal* if it is closed under addition $(a, b \in I \Rightarrow a + b \in I)$ and "inside-out" multiplication $(r \in R, a \in I \Rightarrow ra \in I)$.

Motivation: Although integers in a ring do not necessarily factor uniquely into primes, we can recapture unique factorization by replacing integers with ideals.

Recall:

Let R be a ring (commutative, with 1).

A nonempty subset $I \subseteq R$ is an *ideal* if it is closed under addition $(a, b \in I \Rightarrow a + b \in I)$ and "inside-out" multiplication $(r \in R, a \in I \Rightarrow ra \in I)$.

Equivalently, I is an R-submodule of R.

Motivation: Although integers in a ring do not necessarily factor uniquely into primes, we can recapture unique factorization by replacing integers with ideals.

Recall:

Let R be a ring (commutative, with 1).

A nonempty subset $I \subseteq R$ is an *ideal* if it is closed under addition $(a, b \in I \Rightarrow a + b \in I)$ and "inside-out" multiplication $(r \in R, a \in I \Rightarrow ra \in I)$.

Equivalently, I is an R-submodule of R.

An ideal *I* is *finitely generated* if it is finitely generated as an *R*-module.

Motivation: Although integers in a ring do not necessarily factor uniquely into primes, we can recapture unique factorization by replacing integers with ideals.

Recall:

Let R be a ring (commutative, with 1).

A nonempty subset $I \subseteq R$ is an *ideal* if it is closed under addition $(a, b \in I \Rightarrow a + b \in I)$ and "inside-out" multiplication $(r \in R, a \in I \Rightarrow ra \in I)$.

Equivalently, I is an R-submodule of R.

An ideal *I* is *finitely generated* if it is finitely generated as an *R*-module. This means that there exist $a_1, \ldots, a_k \in R$ for some *k* such that

$$I = (a_1, \ldots, a_k) := \{\sum_{i=1}^k r_i a_i : r_1, \ldots, r_k \in R\}.$$

$$I + J = \{a + b : a \in I \text{ and } b \in J\},\$$

$$I + J = \{a + b : a \in I \text{ and } b \in J\},$$
$$IJ = \{\sum_{i=1}^{k} a_i b_i : k \in \mathbb{Z}_{>0}, a_i \in I, b_i \in J \text{ for all } i\}.$$

$$I + J = \{a + b : a \in I \text{ and } b \in J\},$$
$$IJ = \{\sum_{i=1}^{k} a_i b_i : k \in \mathbb{Z}_{>0}, a_i \in I, b_i \in J \text{ for all } i\}.$$

Exercise: These are ideals.

Proposition. Let I, J and K be ideals of R, and let $a, b \in R$. 1. I(J + K) = IJ + IK,

1.
$$I(J + K) = IJ + IK$$
,
2. $(IJ)K = I(JK)$,

1.
$$I(J + K) = IJ + IK$$
,
2. $(IJ)K = I(JK)$,
3. $IJ = JI$,

1.
$$I(J + K) = IJ + IK$$
,
2. $(IJ)K = I(JK)$,
3. $IJ = JI$,
4. $I(0) = (0)$,

1.
$$I(J + K) = IJ + IK$$
,
2. $(IJ)K = I(JK)$,
3. $IJ = JI$,
4. $I(0) = (0)$,
5. $I(1) = I$,

1.
$$I(J + K) = IJ + IK$$
,
2. $(IJ)K = I(JK)$,
3. $IJ = JI$,
4. $I(0) = (0)$,
5. $I(1) = I$,
6. $(a_1, \dots, a_k) + (b_1, \dots, b_\ell) = (a_i + b_j : 1 \le i \le k, 1 \le j \le \ell)$,

1.
$$I(J + K) = IJ + IK$$
,
2. $(IJ)K = I(JK)$,
3. $IJ = JI$,
4. $I(0) = (0)$,
5. $I(1) = I$,
6. $(a_1, \dots, a_k) + (b_1, \dots, b_\ell) = (a_i + b_j : 1 \le i \le k, 1 \le j \le \ell)$,
7. $(a_1, \dots, a_k)(b_1, \dots, b_\ell) = (a_i b_j : 1 \le i \le k, 1 \le j \le \ell)$,

1.
$$I(J + K) = IJ + IK$$
,
2. $(IJ)K = I(JK)$,
3. $IJ = JI$,
4. $I(0) = (0)$,
5. $I(1) = I$,
6. $(a_1, \dots, a_k) + (b_1, \dots, b_\ell) = (a_i + b_j : 1 \le i \le k, 1 \le j \le \ell)$,
7. $(a_1, \dots, a_k)(b_1, \dots, b_\ell) = (a_i b_j : 1 \le i \le k, 1 \le j \le \ell)$,
8. $(a) \subseteq (b)$ if and only if $b|a$,

1.
$$I(J + K) = IJ + IK$$
,
2. $(IJ)K = I(JK)$,
3. $IJ = JI$,
4. $I(0) = (0)$,
5. $I(1) = I$,
6. $(a_1, \dots, a_k) + (b_1, \dots, b_\ell) = (a_i + b_j : 1 \le i \le k, 1 \le j \le \ell)$,
7. $(a_1, \dots, a_k)(b_1, \dots, b_\ell) = (a_i b_j : 1 \le i \le k, 1 \le j \le \ell)$,
8. $(a) \subseteq (b)$ if and only if $b|a$, (to contain is to divide) and

1.
$$I(J + K) = IJ + IK$$
,
2. $(IJ)K = I(JK)$,
3. $IJ = JI$,
4. $I(0) = (0)$,
5. $I(1) = I$,
6. $(a_1, ..., a_k) + (b_1, ..., b_\ell) = (a_i + b_j : 1 \le i \le k, 1 \le j \le \ell)$,
7. $(a_1, ..., a_k)(b_1, ..., b_\ell) = (a_i b_j : 1 \le i \le k, 1 \le j \le \ell)$,
8. $(a) \subseteq (b)$ if and only if $b|a$, (to contain is to divide) and
9. if *R* is a domain, then $(a) = (b)$ if and only if $a = ub$ for some unit *u*.

Definition. Let P be an ideal of R. Then

Definition. Let *P* be an ideal of *R*. Then 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition.

1. *P* is prime if and only if for all ideals *I* and *J* such $IJ \subseteq P$, we have $I \subseteq P$ or $J \subseteq P$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition.

- 1. *P* is prime if and only if for all ideals *I* and *J* such $IJ \subseteq P$, we have $I \subseteq P$ or $J \subseteq P$.
- 2. If P is maximal, then P is prime.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition.

- 1. *P* is prime if and only if for all ideals *I* and *J* such $IJ \subseteq P$, we have $I \subseteq P$ or $J \subseteq P$.
- 2. If P is maximal, then P is prime.
- 3. *P* is prime if and only if R/P is a domain.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition.

- 1. *P* is prime if and only if for all ideals *I* and *J* such $IJ \subseteq P$, we have $I \subseteq P$ or $J \subseteq P$.
- 2. If P is maximal, then P is prime.
- 3. *P* is prime if and only if R/P is a domain.
- 4. P is maximal if and only if R/P is a field.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition.

- 1. *P* is prime if and only if for all ideals *I* and *J* such $IJ \subseteq P$, we have $I \subseteq P$ or $J \subseteq P$.
- 2. If P is maximal, then P is prime.
- 3. *P* is prime if and only if R/P is a domain.
- 4. *P* is maximal if and only if R/P is a field.

We will prove 2 and 3.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. Suppose *P* is maximal. Then *P* is prime.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. Suppose *P* is maximal. Then *P* is prime.

Proof. Let $a, b \in R$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. Suppose *P* is maximal. Then *P* is prime.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. Suppose *P* is maximal. Then *P* is prime.

Proof. Let $a, b \in R$. Suppose $ab \in P$ with $a \notin P$.

Then $P \subsetneq (a) + P$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. Suppose *P* is maximal. Then *P* is prime.

Proof. Let $a, b \in R$. Suppose $ab \in P$ with $a \notin P$.

```
Then P \subsetneq (a) + P.
```

By maximality, (a) + P = R.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. Suppose *P* is maximal. Then *P* is prime.

```
Then P \subsetneq (a) + P.
By maximality, (a) + P = R.
Thus, 1 \in (a) + P.
```

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. Suppose *P* is maximal. Then *P* is prime.

```
Then P \subsetneq (a) + P.
By maximality, (a) + P = R.
Thus, 1 \in (a) + P.
Take r \in R and p \in P such that 1 = ra + p.
```

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. Suppose *P* is maximal. Then *P* is prime.

```
Then P \subsetneq (a) + P.
By maximality, (a) + P = R.
Thus, 1 \in (a) + P.
Take r \in R and p \in P such that 1 = ra + p.
Multiplying by b, we find b = rab + bp \in P.
```

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Proof. (\Rightarrow) Suppose that *P* is prime and that $\overline{a} \, \overline{b} = 0 \in R/P$ with $\overline{a} \neq 0$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Proof. (\Rightarrow) Suppose that *P* is prime and that $\overline{a} \, \overline{b} = 0 \in R/P$ with $\overline{a} \neq 0$. Then $ab \in P$ and $a \notin P$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Proof. (\Rightarrow) Suppose that *P* is prime and that $\overline{a} \, \overline{b} = 0 \in R/P$ with $\overline{a} \neq 0$. Then $ab \in P$ and $a \notin P$. Since *P* is prime, $b \in P$, and hence $\overline{b} = 0 \in R/P$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Proof. (\Rightarrow) Suppose that *P* is prime and that $\overline{a} \, \overline{b} = 0 \in R/P$ with $\overline{a} \neq 0$. Then $ab \in P$ and $a \notin P$. Since *P* is prime, $b \in P$, and hence $\overline{b} = 0 \in R/P$. We have shown that R/P is a domain.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Proof. (\Rightarrow) Suppose that *P* is prime and that $\overline{a} \, \overline{b} = 0 \in R/P$ with $\overline{a} \neq 0$. Then $ab \in P$ and $a \notin P$. Since *P* is prime, $b \in P$, and hence $\overline{b} = 0 \in R/P$. We have shown that R/P is a domain.

(\Leftarrow) Suppose that R/P is a domain and that $ab \in P$ with $a \notin P$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Proof. (\Rightarrow) Suppose that *P* is prime and that $\overline{a} \, \overline{b} = 0 \in R/P$ with $\overline{a} \neq 0$. Then $ab \in P$ and $a \notin P$. Since *P* is prime, $b \in P$, and hence $\overline{b} = 0 \in R/P$. We have shown that R/P is a domain.

(\Leftarrow) Suppose that R/P is a domain and that $ab \in P$ with $a \notin P$. It follows that $\overline{ab} = \overline{a} \overline{b} = 0 \in R/P$ and $\overline{a} \neq 0$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Proof. (\Rightarrow) Suppose that *P* is prime and that $\overline{a} \, \overline{b} = 0 \in R/P$ with $\overline{a} \neq 0$. Then $ab \in P$ and $a \notin P$. Since *P* is prime, $b \in P$, and hence $\overline{b} = 0 \in R/P$. We have shown that R/P is a domain.

(\Leftarrow) Suppose that R/P is a domain and that $ab \in P$ with $a \notin P$. It follows that $\overline{ab} = \overline{a} \overline{b} = 0 \in R/P$ and $\overline{a} \neq 0$. Since R/P is a domain, $\overline{b} = 0 \in R/P$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is *maximal* if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Proof. (\Rightarrow) Suppose that *P* is prime and that $\overline{a} \, \overline{b} = 0 \in R/P$ with $\overline{a} \neq 0$. Then $ab \in P$ and $a \notin P$. Since *P* is prime, $b \in P$, and hence $\overline{b} = 0 \in R/P$. We have shown that R/P is a domain.

(\Leftarrow) Suppose that R/P is a domain and that $ab \in P$ with $a \notin P$. It follows that $\overline{ab} = \overline{a} \overline{b} = 0 \in R/P$ and $\overline{a} \neq 0$. Since R/P is a domain, $\overline{b} = 0 \in R/P$. Hence, $b \in P$.

Definition. Let P be an ideal of R. Then

- 1. *P* is *prime* if $P \neq R$ and $ab \in P$ implies $a \in P$ or $b \in P$, and
- 2. *P* is maximal if $P \neq R$ and if *Q* is an ideal of *R* and $P \subsetneq Q$, then Q = R.

Proposition. The ideal *P* is prime if and only if R/P is a domain.

Proof. (\Rightarrow) Suppose that *P* is prime and that $\overline{a} \, \overline{b} = 0 \in R/P$ with $\overline{a} \neq 0$. Then $ab \in P$ and $a \notin P$. Since *P* is prime, $b \in P$, and hence $\overline{b} = 0 \in R/P$. We have shown that R/P is a domain.

(\Leftarrow) Suppose that R/P is a domain and that $ab \in P$ with $a \notin P$. It follows that $\overline{ab} = \overline{a} \overline{b} = 0 \in R/P$ and $\overline{a} \neq 0$. Since R/P is a domain, $\overline{b} = 0 \in R/P$. Hence, $b \in P$. We have shown that P is prime.

Let $\mathcal{K} = \mathbb{Q}(\sqrt{-5})$. Then in $\mathfrak{O}_{\mathcal{K}}$ we have seen

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

where $2,3,1\pm\sqrt{-5}$ are non-associated irreducibles, and none are prime.

Let $\mathcal{K} = \mathbb{Q}(\sqrt{-5})$. Then in $\mathfrak{O}_{\mathcal{K}}$ we have seen

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

where $2,3,1\pm\sqrt{-5}$ are non-associated irreducibles, and none are prime.

Define

$$P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (3, 1 + \sqrt{-5}), \quad P_3 = (3, 1 - \sqrt{-5}).$$

Let $\mathcal{K} = \mathbb{Q}(\sqrt{-5})$. Then in $\mathfrak{O}_{\mathcal{K}}$ we have seen

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

where $2,3,1\pm\sqrt{-5}$ are non-associated irreducibles, and none are prime.

Define

$$P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (3, 1 + \sqrt{-5}), \quad P_3 = (3, 1 - \sqrt{-5}).$$

These ideals are prime, and

 $P_1^2 = (2), \quad P_2P_3 = (3), \quad P_1P_2 = (1+\sqrt{-5}), \quad P_1P_3 = (1-\sqrt{-5}).$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Define

$$P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (3, 1 + \sqrt{-5}), \quad P_3 = (3, 1 - \sqrt{-5}).$$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Define

$$P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (3, 1 + \sqrt{-5}), \quad P_3 = (3, 1 - \sqrt{-5}).$$

$$P_1^2 = (2), \quad P_2P_3 = (3), \quad P_1P_2 = (1+\sqrt{-5}), \quad P_1P_3 = (1-\sqrt{-5}).$$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Define

$$P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (3, 1 + \sqrt{-5}), \quad P_3 = (3, 1 - \sqrt{-5}).$$

$$P_1^2 = (2), \quad P_2P_3 = (3), \quad P_1P_2 = (1+\sqrt{-5}), \quad P_1P_3 = (1-\sqrt{-5}).$$

$$(6) = (2)(3)$$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Define

$$P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (3, 1 + \sqrt{-5}), \quad P_3 = (3, 1 - \sqrt{-5}).$$

$$P_1^2 = (2), \quad P_2 P_3 = (3), \quad P_1 P_2 = (1 + \sqrt{-5}), \quad P_1 P_3 = (1 - \sqrt{-5}).$$

$$(6) = (2)(3) = (P_1)^2 (P_2 P_3) = P_1^2 P_2 P_3$$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Define

$$P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (3, 1 + \sqrt{-5}), \quad P_3 = (3, 1 - \sqrt{-5}).$$

$$P_1^2 = (2), \quad P_2P_3 = (3), \quad P_1P_2 = (1+\sqrt{-5}), \quad P_1P_3 = (1-\sqrt{-5}).$$

$$(6) = (2)(3) = (P_1)^2 (P_2 P_3) = P_1^2 P_2 P_3$$
$$= (1 + \sqrt{-5})(1 - \sqrt{-5})$$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Define

$$P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (3, 1 + \sqrt{-5}), \quad P_3 = (3, 1 - \sqrt{-5}).$$

$$P_1^2 = (2), \quad P_2P_3 = (3), \quad P_1P_2 = (1+\sqrt{-5}), \quad P_1P_3 = (1-\sqrt{-5}).$$

$$(6) = (2)(3) = (P_1)^2 (P_2 P_3) = P_1^2 P_2 P_3$$
$$= (1 + \sqrt{-5})(1 - \sqrt{-5}) = (P_1 P_2)(P_1 P_3)$$

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Define

$$P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (3, 1 + \sqrt{-5}), \quad P_3 = (3, 1 - \sqrt{-5}).$$

$$P_1^2 = (2), \quad P_2 P_3 = (3), \quad P_1 P_2 = (1 + \sqrt{-5}), \quad P_1 P_3 = (1 - \sqrt{-5}).$$

$$(6) = (2)(3) = (P_1)^2 (P_2 P_3) = P_1^2 P_2 P_3$$
$$= (1 + \sqrt{-5})(1 - \sqrt{-5}) = (P_1 P_2)(P_1 P_3) = P_1^2 P_2 P_3.$$