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Today

I Operations on ideals.
I Example of using ideals to recapture uniqueness of

factorization.



Review

Motivation: Although integers in a ring do not necessarily factor
uniquely into primes, we can recapture unique factorization by
replacing integers with ideals.

Recall:

Let R be a ring (commutative, with 1).

A nonempty subset I ⊆ R is an ideal if it is closed under addition
(a, b ∈ I ⇒ a + b ∈ I) and “inside-out” multiplication
(r ∈ R, a ∈ I ⇒ ra ∈ I).

Equivalently, I is an R-submodule of R.

An ideal I is finitely generated if it is finitely generated as
an R-module. This means that there exist a1, . . . , ak ∈ R for
some k such that

I = (a1, . . . , ak) := {
∑k

i=1 ri ai : r1, . . . , rk ∈ R}.
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Operations on ideals

Definition. The sum and product of ideals I and J of R are
defined as follows:

I + J = {a + b : a ∈ I and b ∈ J},

IJ = {
∑k

i=1 ai bi : k ∈ Z>0, ai ∈ I, bi ∈ J for all i}.

Exercise: These are ideals.
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Operations on ideals

Proposition. Let I, J and K be ideals of R, and let a, b ∈ R.

1. I(J + K ) = IJ + IK ,
2. (IJ)K = I(JK ),
3. IJ = JI,
4. I(0) = (0),
5. I(1) = I,
6. (a1, . . . , ak) + (b1, . . . , b`) = (ai + bj : 1 ≤ i ≤ k, 1 ≤ j ≤ `),
7. (a1, . . . , ak)(b1, . . . , b`) = (ai bj : 1 ≤ i ≤ k, 1 ≤ j ≤ `),
8. (a) ⊆ (b) if and only if b|a, (to contain is to divide) and
9. if R is a domain, then (a) = (b) if and only if a = ub for some

unit u.
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Prime ideals

Definition. Let P be an ideal of R. Then

1. P is prime if P 6= R and ab ∈ P implies a ∈ P or b ∈ P, and
2. P is maximal if P 6= R and if Q is an ideal of R and P ( Q,

then Q = R.
Proposition.

1. P is prime if and only if for all ideals I and J such IJ ⊆ P, we
have I ⊆ P or J ⊆ P.

2. If P is maximal, then P is prime.
3. P is prime if and only if R/P is a domain.
4. P is maximal if and only if R/P is a field.

We will prove 2 and 3.
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Proposition. Suppose P is maximal. Then P is prime.
Proof. Let a, b ∈ R. Suppose ab ∈ P with a 6∈ P.

Then P ( (a) + P.

By maximality, (a) + P = R.

Thus, 1 ∈ (a) + P.

Take r ∈ R and p ∈ P such that 1 = ra + p.

Multiplying by b, we find b = rab + bp ∈ P. �
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a 6= 0. Then ab ∈ P and a 6∈ P. Since P is prime, b ∈ P, and
hence b = 0 ∈ R/P. We have shown that R/P is a domain.

(⇐) Suppose that R/P is a domain and that ab ∈ P with a 6∈ P.
It follows that ab = a b = 0 ∈ R/P and a 6= 0. Since R/P is a
domain, b = 0 ∈ R/P. Hence, b ∈ P. We have shown that P is
prime.
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Recapturing unique factorization using ideals

Let K = Q(
√
−5). Then in OK we have seen

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

where 2, 3, 1±
√
−5 are non-associated irreducibles, and none are

prime.

Define

P1 = (2, 1 +
√
−5), P2 = (3, 1 +

√
−5), P3 = (3, 1−

√
−5).

These ideals are prime, and

P2
1 = (2), P2P3 = (3), P1P2 = (1+

√
−5), P1P3 = (1−

√
−5).
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