Math 361

February 22, 2023

- 1. What does Gauss's lemma say about factorization of polynomials with integer coefficients?
- 2. Why is it the case that if $\alpha \in \mathfrak{O}_{K}$, then $N(\alpha), T(\alpha) \in \mathbb{Z}$? (Appeal to known properties of the field polynomial f_{α} .)

▶ Review some of last lecture.

Today

- Review some of last lecture.
- ▶ State and prove the Hilbert basis theorem.

Today

- Review some of last lecture.
- ▶ State and prove the Hilbert basis theorem.
- Finish the last lecture.

An R-module M is *Noetherian* if every submodule of M is finitely generated.

An R-module M is *Noetherian* if every submodule of M is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

An R-module M is *Noetherian* if every submodule of M is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

1. *M* is Noetherian.

An R-module M is *Noetherian* if every submodule of M is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules:

An R-module M is *Noetherian* if every submodule of M is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules: every chain of submodules of *M*,

$$N_1 \subseteq N_2 \subseteq \cdots,$$

eventually stabilizes.

An R-module M is *Noetherian* if every submodule of M is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules: every chain of submodules of *M*,

$$N_1 \subseteq N_2 \subseteq \cdots,$$

eventually stabilizes. In other words, there exists k such that $N_k = N_{k+1} = \cdots$.

An R-module M is *Noetherian* if every submodule of M is finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules: every chain of submodules of *M*,

$$N_1 \subseteq N_2 \subseteq \cdots,$$

eventually *stabilizes*. In other words, there exists k such that $N_k = N_{k+1} = \cdots$.

3. Every nonempty collection of submodules of M has a maximal element under inclusion.

$\mathsf{Review}+$

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of *R*-modules.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Corollary. The image of a Noetherian module (under an *R*-linear mapping) is Noetherian.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Corollary. The image of a Noetherian module (under an *R*-linear mapping) is Noetherian.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Corollary. The image of a Noetherian module (under an *R*-linear mapping) is Noetherian.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Corollary. If R is Noetherian and M is an R-module, then M is Noetherian if and only if M is finitely generated.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Corollary. The image of a Noetherian module (under an *R*-linear mapping) is Noetherian.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Corollary. If R is Noetherian and M is an R-module, then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Consider the parametrized curve in \mathbb{R}^3 :

$$c(t)=(t,t^2,t^3).$$

Consider the parametrized curve in \mathbb{R}^3 :

$$c(t)=(t,t^2,t^3).$$

Which polynomials $f(x, y, z) \in \mathbb{R}[x, y, z]$ vanish on the image of *c*?

Consider the parametrized curve in \mathbb{R}^3 :

$$c(t)=(t,t^2,t^3).$$

Which polynomials $f(x, y, z) \in \mathbb{R}[x, y, z]$ vanish on the image of c?

$$x=t, \quad y=t^2, \quad z=t^3.$$

Consider the parametrized curve in \mathbb{R}^3 :

$$c(t)=(t,t^2,t^3).$$

Which polynomials $f(x, y, z) \in \mathbb{R}[x, y, z]$ vanish on the image of c?

$$x = t, \quad y = t^2, \quad z = t^3.$$

We need $f(t, t^2, t^3) = 0$ for all t.

Consider the parametrized curve in \mathbb{R}^3 :

$$c(t)=(t,t^2,t^3).$$

Which polynomials $f(x, y, z) \in \mathbb{R}[x, y, z]$ vanish on the image of c?

$$x = t, \quad y = t^2, \quad z = t^3.$$

We need $f(t, t^2, t^3) = 0$ for all t.

Let t be an indeterminate, and define the ideal

$$I = \{ f \in \mathbb{R}[x, y, z] : f(t, t^2, t^3) = 0 \}.$$

Consider the parametrized curve in \mathbb{R}^3 :

$$c(t)=(t,t^2,t^3).$$

Which polynomials $f(x, y, z) \in \mathbb{R}[x, y, z]$ vanish on the image of c?

$$x = t$$
, $y = t^2$, $z = t^3$.

We need $f(t, t^2, t^3) = 0$ for all t.

Let t be an indeterminate, and define the ideal

$$I = \{ f \in \mathbb{R}[x, y, z] : f(t, t^2, t^3) = 0 \}.$$

Is *I* finitely generated?

Theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Remarks.

For S to be *finitely generated as a ring* over R, we mean that there exist s₁,..., s_n ∈ S such that $S = \{f(s_1,...,s_n) : f ∈ R[x_1,...,x_n]\}.$

Theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Remarks.

- For S to be *finitely generated as a ring* over R, we mean that there exist s₁,..., s_n ∈ S such that S = {f(s₁,...,s_n) : f ∈ R[x₁,...,x_n]}.
- Recall that a ring R is Noetherian, if and only if all of its ideals are finitely generated.

Theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Remarks.

- For S to be *finitely generated as a ring* over R, we mean that there exist s₁,..., s_n ∈ S such that S = {f(s₁,..., s_n) : f ∈ R[x₁,..., x_n]}.
- Recall that a ring R is Noetherian, if and only if all of its ideals are finitely generated.
- ▶ Letting R = K be a field and S = K[x₁,...,x_n], the Hilbert basis theorem says

Theorem. Let *R* and *S* be rings with $R \subseteq S$. Suppose that *S* is finitely generated as a ring over *R* and *R* is Noetherian. Then *S* is a Noetherian ring.

Remarks.

- For S to be *finitely generated as a ring* over R, we mean that there exist s₁,..., s_n ∈ S such that S = {f(s₁,..., s_n) : f ∈ R[x₁,..., x_n]}.
- Recall that a ring R is Noetherian, if and only if all of its ideals are finitely generated.
- ▶ Letting R = K be a field and $S = K[x_1, ..., x_n]$, the Hilbert basis theorem says that every ideal in S finitely generated.

Proof of Hilbert basis theorem

Suppose that s_1, \ldots, s_n generate S as a ring over R.

Suppose that s_1, \ldots, s_n generate S as a ring over R. We need to show that S is Noetherian. Suppose that s_1, \ldots, s_n generate S as a ring over R.

We need to show that S is Noetherian. Then there exists an R-module surjection

$$R[x_1,\ldots,x_n] \to S$$

$$f(x_1,\ldots,x_n) \mapsto f(s_1,\ldots,s_n).$$

Suppose that s_1, \ldots, s_n generate S as a ring over R.

We need to show that S is Noetherian. Then there exists an R-module surjection

$$R[x_1,\ldots,x_n] \to S$$

 $f(x_1,\ldots,x_n) \mapsto f(s_1,\ldots,s_n).$

Since the image of a Noetherian ring is Noetherian, it suffices to prove that the polynomial ring $R[x_1, \ldots, x_n]$ is Noetherian.

Proof of the Hilbert basis theorem

To show: R Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

Proof of the Hilbert basis theorem

To show: R Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian. We do this by induction on n.

Proof of the Hilbert basis theorem

To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.
To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.

Note that $R[x_1, ..., x_n] = R[x_1, ..., x_{n-1}][x_n].$

To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.

Note that $R[x_1, \ldots, x_n] = R[x_1, \ldots, x_{n-1}][x_n]$. For instance,

 $\mathbb{Z}[x, y] \ni xy^3 + 5xy^2 + 7x^5y^3 + 9x^6y^2 + 15 =$

To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.

Note that $R[x_1, \ldots, x_n] = R[x_1, \ldots, x_{n-1}][x_n]$. For instance,

$$\mathbb{Z}[x, y] \ni xy^3 + 5xy^2 + 7x^5y^3 + 9x^6y^2 + 15 = (x + 7x^5)y^3 + (5x + 9x^6)y^2 + 15 \in \mathbb{Z}[x][y].$$

To show: *R* Noetherian $\Rightarrow R[x_1, \ldots, x_n]$ Noetherian.

We do this by induction on *n*. The base case is n = 0, which is just *R*, itself, which is Noetherian.

Note that $R[x_1, \ldots, x_n] = R[x_1, \ldots, x_{n-1}][x_n]$. For instance,

$$\mathbb{Z}[x,y] \ni xy^3 + 5xy^2 + 7x^5y^3 + 9x^6y^2 + 15 = (x+7x^5)y^3 + (5x+9x^6)y^2 + 15 \in \mathbb{Z}[x][y].$$

By induction, it suffices to show that R Noetherian $\Rightarrow R[x]$ Noetherian.

To show: *R* Noetherian $\Rightarrow R[x]$ Noetherian.

To show: *R* Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.

To show: R Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.

We must show that

$$I=(f_1,\ldots,f_k)$$

for some $f_1, \ldots, f_k \in I$.

To show: R Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.

We must show that

$$I=(f_1,\ldots,f_k)$$

for some $f_1, \ldots, f_k \in I$.

What is wrong with the following argument?

To show: R Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.

We must show that

$$I=(f_1,\ldots,f_k)$$

for some $f_1, \ldots, f_k \in I$.

What is wrong with the following argument? In fact, I = (f) for some f since R[x] is a PID (from the division algorithm).

To show: *R* Noetherian $\Rightarrow R[x]$ Noetherian.

Let $I \subseteq R[x]$ be an ideal.

We must show that

$$I=(f_1,\ldots,f_k)$$

for some $f_1, \ldots, f_k \in I$.

What is wrong with the following argument? In fact, I = (f) for some f since R[x] is a PID (from the division algorithm).

Answer: The division algorithm assumes R is a field.

If $f = a_d x^d + a_{d-1} x^{d-1} + \dots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R. **Proof.** First, $0 \in A$,

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R. **Proof.** First, $0 \in A$, so $A \neq \emptyset$.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R. **Proof.** First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$,

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given a, as above, and $r \in R$,

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given *a*, as above, and $r \in R$, we have $rf \in I$

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given *a*, as above, and $r \in R$, we have $rf \in I$ so its leading term, *ra*, is in *A*.

If $f = a_d x^d + a_{d-1} x^{d-1} + \cdots + a_0$ with $a_d \neq 0$, then call a_d the *leading coefficient* of f.

Let $A \subseteq R$ be the set of leading coefficients of elements of *I*. Is *A* and ideal of *R*?

Claim. A is an ideal of R.

Proof. First, $0 \in A$, so $A \neq \emptyset$. Next suppose $a, b \in A$. Say they are leading coefficients of f, g, respectively. Without loss of generality $\deg(f) \leq \deg(g)$. Let $d = \deg(g) - \deg(f)$. Then $x^d f + g \in I$, so its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given *a*, as above, and $r \in R$, we have $rf \in I$ so its leading term, *ra*, is in *A*. Hence, *A* is closed under "outside-in" multiplication.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*. Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I.$$

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I.$$

Then $I_{\leq d}$ is an *R*-submodule of $M := \operatorname{Span}_{R}\{1, x, x^{2}, \dots, x^{d-1}\}$.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I.$$

Then $I_{<d}$ is an *R*-submodule of $M := \text{Span}_R\{1, x, x^2, \dots, x^{d-1}\}$. Since *R* is Noetherian, and *M* is a finitely generated *R*-module,

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I.$$

Then $I_{\leq d}$ is an *R*-submodule of $M := \operatorname{Span}_R\{1, x, x^2, \dots, x^{d-1}\}$.

Since R is Noetherian, and M is a finitely generated R-module, M is Noetherian.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I.$$

Then $I_{\leq d}$ is an *R*-submodule of $M := \operatorname{Span}_R\{1, x, x^2, \dots, x^{d-1}\}$.

Since *R* is Noetherian, and *M* is a finitely generated *R*-module, *M* is Noetherian. Hence, $I_{< d}$ is a finitely generated *R*-module.

Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I.$$

Then $I_{\leq d}$ is an *R*-submodule of $M := \operatorname{Span}_R\{1, x, x^2, \dots, x^{d-1}\}$. Since *R* is Noetherian, and *M* is a finitely generated *R*-module, *M*

is Noetherian. Hence, $I_{< d}$ is a finitely generated *R*-module. Say

$$I_{< d} = \operatorname{Span}_R\{h_1, \ldots, h_t\}.$$
Let $A \subseteq R$ be the ideal of leading coefficients of elements of *I*.

Since *R* is Noetherian, $A = (a_1, \ldots, a_s)$ for some *s*. Pick $g_i \in R[x]$ with leading coefficient a_i for each *i*.

Scaling by appropriate powers of x, we may assume all g_i have the same degree d. Define

$$I_{< d} = \{f \in I : \deg(f) < d\} \subseteq I.$$

Then $I_{\leq d}$ is an *R*-submodule of $M := \text{Span}_R\{1, x, x^2, \dots, x^{d-1}\}$. Since *R* is Noetherian, and *M* is a finitely generated *R*-module, *M*

is Noetherian. Hence, $I_{< d}$ is a finitely generated *R*-module. Say

$$I_{< d} = \operatorname{Span}_R\{h_1, \ldots, h_t\}.$$

Claim: $I = (g_1, ..., g_s, h_1, ..., h_t).$

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of I.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s .

$$\begin{split} &A = (a_1, \ldots, a_s) \subseteq R \text{, ideal of leading coeffs. of elements of } I.\\ &g_1, \ldots, g_s \in I \text{ polys of degree } d \text{ with leading coeffs. } a_1, \ldots, a_s.\\ &I_{< d} = \operatorname{Span}\{h_1, \ldots, h_t\} = \text{ all elements of } I \text{ of degree } < d. \end{split}$$

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \text{Span}\{h_1, \ldots, h_t\} = \text{all elements of } I$ of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \text{Span}\{h_1, \ldots, h_t\} = \text{all elements of } I$ of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \text{Span}\{h_1, \ldots, h_t\} = \text{all elements of } I$ of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?)

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \text{Span}\{h_1, \ldots, h_t\} = \text{all elements of } I$ of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg $(f) = e \ge d$,

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \text{Span}\{h_1, \ldots, h_t\} = \text{all elements of } I$ of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg $(f) = e \ge d$, and let the leading coefficient of fbe a

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \text{Span}\{h_1, \ldots, h_t\} = \text{all elements of } I$ of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg $(f) = e \ge d$, and let the leading coefficient of fbe $a \in A$.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree *d* with leading coeffs. a_1, \ldots, a_s . $I_{<d} = \text{Span}\{h_1, \ldots, h_t\} = \text{all elements of } I$ of degree < d. **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s)$. **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg $(f) = e \ge d$, and let the leading coefficient of fbe $a \in A$. We have $a = \sum_{i=1}^s r_i a_i$ for some $r_i \in R$.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1,\ldots,g_s\in I$ polys of degree d with leading coeffs. $a_1,\ldots,a_s.$ $I_{< d} = \text{Span}\{h_1, \dots, h_t\} = \text{all elements of } I \text{ of degree} < d.$ **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s).$ **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg(f) = $e \ge d$, and let the leading coefficient of f be $a \in A$. We have $a = \sum_{i=1}^{s} r_i a_i$ for some $r_i \in R$. Then $f - \sum_{i=1}^{s} r_i x^{e-d} g_i \in I$,

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree d with leading coeffs. a_1, \ldots, a_s . $I_{< d} = \text{Span}\{h_1, \dots, h_t\} = \text{all elements of } I \text{ of degree} < d.$ **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s).$ **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg(f) = $e \ge d$, and let the leading coefficient of f be $a \in A$. We have $a = \sum_{i=1}^{s} r_i a_i$ for some $r_i \in R$. Then $f - \sum_{i=1}^{s} r_i x^{e-d} g_i \in I$, and has degree < e.

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree d with leading coeffs. a_1, \ldots, a_s . $I_{< d} = \text{Span}\{h_1, \dots, h_t\} = \text{all elements of } I \text{ of degree} < d.$ **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s).$ **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg(f) = $e \ge d$, and let the leading coefficient of f be $a \in A$. We have $a = \sum_{i=1}^{s} r_i a_i$ for some $r_i \in R$. Then $f - \sum_{i=1}^{s} r_i x^{e-d} g_i \in I$, and has degree < e. We are done by induction on the degree of f. (Why?)

 $A = (a_1, \ldots, a_s) \subseteq R$, ideal of leading coeffs. of elements of *I*. $g_1, \ldots, g_s \in I$ polys of degree d with leading coeffs. a_1, \ldots, a_s . $I_{< d} = \text{Span}\{h_1, \dots, h_t\} = \text{all elements of } I \text{ of degree} < d.$ **Claim:** $I = (g_1, \ldots, g_s, \ldots, h_1, \ldots, h_s).$ **Proof.** Let $f \in I$. If deg(f) < d, no problem. (Why?) Suppose deg(f) = $e \ge d$, and let the leading coefficient of f be $a \in A$. We have $a = \sum_{i=1}^{s} r_i a_i$ for some $r_i \in R$. Then $f - \sum_{i=1}^{s} r_i x^{e-d} g_i \in I$, and has degree < e. We are done by induction on the degree of f. (Why?)

Previous lecture

If time, finish the last lecture.