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Quiz

1. What does Gauss’s lemma say about factorization of
polynomials with integer coefficients?

2. Why is it the case that if α ∈ OK , then N(α),T (α) ∈ Z?
(Appeal to known properties of the field polynomial fα.)



Today

I Review some of last lecture.

I State and prove the Hilbert basis theorem.
I Finish the last lecture.
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Review+

An R-module M is Noetherian if every submodule of M is finitely
generated.

Proposition. The following are equivalent for an R-module M:
1. M is Noetherian.
2. M satisfies the ascending chain condition on submodules:

every chain of submodules of M,

N1 ⊆ N2 ⊆ · · · ,

eventually stabilizes. In other words, there exists k such that
Nk = Nk+1 = · · · .

3. Every nonempty collection of submodules of M has a maximal
element under inclusion.
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Review+

Proposition. Let

0→ M ′ φ−→ M ψ−→ M ′′ → 0

be a short exact sequence of R-modules.

Then M is Noetherian if
and only if M ′ and M ′′ are Noetherian.

Corollary. The image of a Noetherian module (under an R-linear
mapping) is Noetherian.

Corollary. If R is a Noetherian ring, then so is Rn for all n ∈ N.

Corollary. If R is Noetherian and M is an R-module, then M is
Noetherian if and only if M is finitely generated. In other words, a
finitely generated module over a Noetherian ring is Noetherian.
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Hilbert basis theorem

Consider the parametrized curve in R3:

c(t) = (t, t2, t3).

Which polynomials f (x , y , z) ∈ R[x , y , z ] vanish on the image of c?

x = t, y = t2, z = t3.

We need f (t, t2, t3) = 0 for all t.

Let t be an indeterminate, and define the ideal

I = {f ∈ R[x , y , z ] : f (t, t2, t3) = 0}.

Is I finitely generated?
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Hilbert basis theorem

Theorem. Let R and S be rings with R ⊆ S. Suppose that S is
finitely generated as a ring over R and R is Noetherian. Then S is
a Noetherian ring.

Remarks.
I For S to be finitely generated as a ring over R, we mean that

there exist s1, . . . , sn ∈ S such that
S = {f (s1, . . . , sn) : f ∈ R[x1, . . . , xn]}.

I Recall that a ring R is Noetherian, if and only if all of its
ideals are finitely generated.

I Letting R = K be a field and S = K [x1, . . . , xn], the Hilbert
basis theorem says that every ideal in S finitely generated.
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Proof of Hilbert basis theorem

Suppose that s1, . . . , sn generate S as a ring over R.

We need to show that S is Noetherian. Then there exists an
R-module surjection

R[x1, . . . , xn]→ S
f (x1, . . . , xn) 7→ f (s1, . . . , sn).

Since the image of a Noetherian ring is Noetherian, it suffices to
prove that the polynomial ring R[x1, . . . , xn] is Noetherian.
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Proof of the Hilbert basis theorem

To show: R Noetherian ⇒ R[x1, . . . , xn] Noetherian.

We do this by induction on n. The base case is n = 0, which is
just R, itself, which is Noetherian.

Note that R[x1, . . . , xn] = R[x1, . . . , xn−1][xn]. For instance,

Z[x , y ] 3 xy3 + 5xy2 + 7x5y3 + 9x6y2 + 15 =
(x + 7x5)y3 + (5x + 9x6)y2 + 15 ∈ Z[x ][y ].

By induction, it suffices to show that R Noetherian ⇒ R[x ]
Noetherian.
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Proof of the Hilbert basis theorem

To show: R Noetherian ⇒ R[x ] Noetherian.

Let I ⊆ R[x ] be an ideal.

We must show that
I = (f1, . . . , fk)

for some f1, . . . , fk ∈ I.

What is wrong with the following argument? In fact, I = (f ) for
some f since R[x ] is a PID (from the division algorithm).

Answer: The division algorithm assumes R is a field.
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Proof of the Hilbert basis theorem

If f = ad xd + ad−1xd−1 + · · ·+ a0 with ad 6= 0, then call ad the
leading coefficient of f .

Let A ⊆ R be the set of leading coefficients of elements of I.

Is A and ideal of R?

Claim. A is an ideal of R.
Proof. First, 0 ∈ A, so A 6= ∅. Next suppose a, b ∈ A. Say they are
leading coefficients of f , g , respectively. Without loss of generality
deg(f ) ≤ deg(g). Let d = deg(g)− deg(f ). Then xd f + g ∈ I, so
its leading coefficient, a + b is in A. So A is closed under addition.

Finally, given a, as above, and r ∈ R, we have rf ∈ I so its leading
term, ra, is in A. Hence, A is closed under “outside-in”
multiplication. �
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Proof of the Hilbert basis theorem

Let A ⊆ R be the ideal of leading coefficients of elements of I.

Since R is Noetherian, A = (a1, . . . , as) for some s. Pick gi ∈ R[x ]
with leading coefficient ai for each i .

Scaling by appropriate powers of x , we may assume all gi have the
same degree d . Define

I<d = {f ∈ I : deg(f ) < d} ⊆ I.

Then I<d is an R-submodule of M := SpanR{1, x , x2, . . . , xd−1}.

Since R is Noetherian, and M is a finitely generated R-module, M
is Noetherian. Hence, I<d is a finitely generated R-module. Say

I<d = SpanR{h1, . . . , ht}.

Claim: I = (g1, . . . , gs , h1, . . . , ht).
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Proof of the Hilbert basis theorem

A = (a1, . . . , as) ⊆ R, ideal of leading coeffs. of elements of I.

g1, . . . , gs ∈ I polys of degree d with leading coeffs. a1, . . . , as .

I<d = Span{h1, . . . , ht} = all elements of I of degree < d .

Claim: I = (g1, . . . , gs , . . . , h1, . . . , hs).
Proof. Let f ∈ I. If deg(f ) < d , no problem. (Why?)

Suppose deg(f ) = e ≥ d , and let the leading coefficient of f
be a ∈ A. We have a =

∑s
i=1 ri ai for some ri ∈ R.

Then f −
∑s

i=1 ri x e−d gi ∈ I, and has degree < e.

We are done by induction on the degree of f . (Why?) �
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Previous lecture

If time, finish the last lecture.


