Math 361

February 20, 2023



Tomorrow's quiz

See posting at our homepage.

Note: This quiz will contain at least one question from previous
weeks.
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Noetherian property

Definition of Noetherian module and Noetherian ring.

Equivalent conditions for the Noetherian property.

>

>

» Exact sequences of modules.

» Behavior of Noetherian property under mappings.
>

Factorization in Noetherian domains.
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Noetherian modules

Definition. An R-module M is Noetherian if every submodule
of M is finitely generated.

Examples
» If M is Noetherian, then it is finitely generated.

» A ring R, itself, can naturally be considered as an R-module.
We say R is a Noetherian ring if is Noetherian as an
R-module.

The R-submodules of R are exactly the ideals of R.

So R is Noetherian if and only if all of its ideals are finitely
generated.

» Every PID is a Noetherian ring. For instance, Z is Noetherian,
and K|[x] is Noetherian when K is a field.



Noetherian modules

The polynomial ring Q[x1, x2, X3, ...] in infinitely many variables is
non-Noetherian.



Noetherian modules

The polynomial ring Q[x1, x2, X3, ...] in infinitely many variables is
non-Noetherian.

For example, the ideal | = (x1,x2, x3...) is not finitely generated.
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Proposition. The following are equivalent for an R-module M:

1. M is Noetherian.

2. M satisfies the ascending chain condition on submodules:
every chain of submodules of M,

Ni TNy C-ov g

eventually stabilizes. In other words, there exists k such that
Nk = Niky1=---.

3. Every nonempty collection of submodules of M has a maximal
element under inclusion.
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Noetherian modules: equivalent conditions

Proof.
M Noetherian = every ascending chain Ny C N, C --- stabilizes.

Suppose M is Noetherian and let Ny C N> C --- be a chain of
submodules. Let N :=U;>1N;. Then N is a submodule of M
(exercise). Since M is Noetherian, N is finitely generated, say
by ni,...,ns.

Since N = Uj>1N;, for each i =1,...,s, we have n; € Ny, for
some k;. Let k = max{k;}.

Then n; € Ny for all i. It follows that

N = Spang{ni,...,ns} = Nx = N1 = -+ - .
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Proof.

Every ascending chain Ny C N, C - - stabilizes = every nonempty
collection of submodules of M has a maximal element under
inclusion.

Suppose every ascending chain of submodules of M stabilizes.
Let A be a nonempty of submodules of M.

Pick Ny € A. Is N; maximal in A?

If not, there exists N, € A with Ny C N».

Is No maximal in A?

If not, then there exists N3 € A such that Ny C Ny € Ns.

Repeat. Since every ascending chain eventually stabilizes, we must
eventually reach a maximal element of A.
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Proof.

Every nonempty collection of submodules of M has a maximal
element under inclusion = M Noetherian.

Suppose that every nonempty collection of submodules of M has a
maximal element, and let N be a submodule of M.

Let A be the collection of all finitely generated submodules of N.
Then A is nonempty since it contains the zero module. Take a
maximal element N/ € A. So N’ C N. For sake of contradiction,
suppose that N’ # N, and take n € N\ N’. Consider the module
N" := N+ Rn.
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Proof.

Every nonempty collection of submodules of M has a maximal
element under inclusion = M Noetherian.

Suppose that every nonempty collection of submodules of M has a
maximal element, and let N be a submodule of M.

Let A be the collection of all finitely generated submodules of N.
Then A is nonempty since it contains the zero module. Take a
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Noetherian modules: equivalent conditions

Proof.

Every nonempty collection of submodules of M has a maximal
element under inclusion = M Noetherian.

Suppose that every nonempty collection of submodules of M has a
maximal element, and let N be a submodule of M.

Let A be the collection of all finitely generated submodules of N.
Then A is nonempty since it contains the zero module. Take a
maximal element N/ € A. So N’ C N. For sake of contradiction,
suppose that N’ # N, and take n € N\ N’. Consider the module
N"” .= N’'+ Rn. Since n ¢ N’, we have N’ C N”.

However, N € A, too, contradicting the maximality of N, O
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Mappings of R-modules

A sequence of R-module mappings

M LML M
is exact at M if im ¢ = ker 1.
Examples.

0— M & Mis exact at M’ if and only if ¢ is injective.

M L M” = 0is exact at M" if and only if 1) is surjective.
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Mappings of R-modules

A short exact sequence of R-modules is a sequence of R-module
mappings

0o=MEME M 0
if it is exact at M/, M, and M".

So ¢ is injective, 1 is surjective, and im(¢) = ker(2)).

Identify M" with im(¢) C M.



Mappings of R-modules

A short exact sequence of R-modules is a sequence of R-module
mappings

0M S ML M =0
if it is exact at M/, M, and M".
So ¢ is injective, 1 is surjective, and im(¢) = ker(1)).
Identify M with im(¢) € M. Then 1) induces an isomorphism

o M/M — M
m — (m).
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be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Proof. (=) Suppose M is Noetherian. We may assume M’ C M.
Is M’ Noetherian?
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Proposition. Let
0-MEME M S0

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Proof. (=) Suppose M is Noetherian. We may assume M’ C M.
Is M’ Noetherian? Every submodule of M’ is a submodule of M,
and hence is finitely generated. Therefore, M’ is Noetherian.

Next, suppose that N is a submodule of M”.
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Next, suppose that N is a submodule of M”. Then ~1(N) is a
submodule of M (exercise). Since M is Noetherian, 1)~1(N) is
finitely generated, say by n, ..., ng.
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generate N.
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Proposition. Let
0-MEME M S0

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Proof. (=) Suppose M is Noetherian. We may assume M’ C M.
Is M’ Noetherian? Every submodule of M’ is a submodule of M,
and hence is finitely generated. Therefore, M’ is Noetherian.

Next, suppose that N is a submodule of M”. Then ~1(N) is a
submodule of M (exercise). Since M is Noetherian, 1)~1(N) is
finitely generated, say by ni,...,nk. Then ¥(ny),...,¥(nk)
generate N. Hence, M" Noetherian.
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Noetherian property and mappings of R-modules
Proposition. Let
0MEME M S0

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Proof. (<) Suppose that M’ and M” are Noetherian, and let N
be a submodule of M.
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Proposition. Let
0 M S ML M S0
be a short exact sequence of R-modules. Then M is Noetherian if

and only if M’ and M” are Noetherian.

Proof. (<) Suppose that M’ and M” are Noetherian, and let N
be a submodule of M. Now ¥ (N) is a submodule of M”, hence

finitely generated: ¢(N) = Spang{y(n1),...,¥(nk)} where
n,...,ng €N.



Noetherian property and mappings of R-modules
Proposition. Let
0o=M &ML M 0
be a short exact sequence of R-modules. Then M is Noetherian if

and only if M’ and M” are Noetherian.

Proof. (<) Suppose that M’ and M” are Noetherian, and let N
be a submodule of M. Now ¥ (N) is a submodule of M”, hence
finitely generated: ¢(N) = Spang{y(n1),...,¥(nk)} where
ni,...,ng € N. Since M" is Noetherian, N N M’ is finitely
generated by, say, vq, ..., v.



Noetherian property and mappings of R-modules

Proposition. Let
0o=M &ML M 0

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Proof. (<) Suppose that M’ and M” are Noetherian, and let N
be a submodule of M. Now ¥ (N) is a submodule of M”, hence
finitely generated: ¢(N) = Spang{y(n1),...,¥(nk)} where
ni,...,ng € N. Since M" is Noetherian, N N M’ is finitely
generated by, say, vi,...,vy. We claim that
{vi,...,vg,n1,...,ng} generate N.
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Proposition. Let
0o=M &ML M 0

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Proof. (<) Suppose that M’ and M” are Noetherian, and let N
be a submodule of M. Now ¥ (N) is a submodule of M”, hence
finitely generated: ¢(N) = Spang{y(n1),...,¥(nk)} where
ni,...,ng € N. Since M" is Noetherian, N N M’ is finitely
generated by, say, vi,...,vy. We claim that
{vi,...,ve,n,...,ng} generate N. To see this, let n € N.
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Proposition. Let
0o=M &ML M 0

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Proof. (<) Suppose that M’ and M” are Noetherian, and let N
be a submodule of M. Now ¥ (N) is a submodule of M”, hence
finitely generated: ¢(N) = Spang{y(n1),...,¥(nk)} where
ni,...,ng € N. Since M" is Noetherian, N N M’ is finitely
generated by, say, vi,...,vy. We claim that
{vi,...,ve,n,...,ng} generate N. To see this, let n € N.
Write 9(n) = 2K, rip(n;) for some r; € R.



Noetherian property and mappings of R-modules
Proposition. Let
0o=M &ML M 0

be a short exact sequence of R-modules. Then M is Noetherian if
and only if M’ and M” are Noetherian.

Proof. (<) Suppose that M’ and M” are Noetherian, and let N
be a submodule of M. Now ¥ (N) is a submodule of M”, hence
finitely generated: ¢(N) = Spang{y(n1),...,¥(nk)} where
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and only if M’ and M” are Noetherian.

Proof. (<) Suppose that M’ and M” are Noetherian, and let N
be a submodule of M. Now ¥ (N) is a submodule of M”, hence
finitely generated: ¢(N) = Spang{y(n1),...,¥(nk)} where
ni,...,ng € N. Since M" is Noetherian, N N M’ is finitely
generated by, say, vi,...,vy. We claim that
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So n € Spang{vi,...,vp, n1,...,nk}, as claimed. O
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Corollary. If R is a Noetherian ring, then so is R” for all n € N.

Proof. If n = 0,1, the result is trivial. Let n > 1, and suppose the
statement is true for R¥ with 0 < k < n.

We have the short exact sequence
05 RY RS R0,

where ¢(r) = (r,0,...,0) and ¥(r1,...,rm) = (r2,..., rn).

The result now follows by induction and the proposition we just
proved. O
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Corollary. If R is Noetherian and M is an R-module. Then M is
Noetherian if and only if M is finitely generated. In other words, a
finitely generated module over a Noetherian ring is Noetherian.

Proof. (=) Duh. (<) Now suppose that M is finitely generated.
Say M = Spang{my, ..., my}. We then have a surjective
homomorphism

v R" > M

n
(riy .o rm) — Z rim;.
i=1

We have a short exact sequence: 0 — ker(¢)) — R" Y M 0.

Then R Noetherian = R"™ Noetherian = M Noetherian. O
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Noetherian property and mappings of R-modules

Corollary. Let K be a number field. Then its ring of integer O is
Noetherian.

Proof. This follows since Z is a PID, hence, Noetherian, and Ok
is a finitely generated Z-module. O
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Goal: show A = (). Suppose not. Let (x) be a maximal element
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So x = yz with y, z non-units. We have (x) C (y) and (x) C (2).
(See blackboard.) By maximality of (x), we have (y),(z) € A. So
y and z factor into irreducibles. But then x factors into

irreducibles since x = yz. Contradiction. O
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Factorization in Noetherian domains

Theorem. Let R be a Noetherian domain. Then every nonzero
element of R can be factored into irreducibles.

Corollary. Let K be a number field. Then every element of its ring
of integers, Ok, can be factored into irreducibles in k.

In homework, we've seen that Q(1/—5) is not a UFD:
6=2-3=(1+v=5)(1—v=5).

Does this contradict the Corollary?



