
Math 361

February 20, 2023



Tomorrow’s quiz

See posting at our homepage.

Note: This quiz will contain at least one question from previous
weeks.



Today

Noetherian property

I Definition of Noetherian module and Noetherian ring.
I Equivalent conditions for the Noetherian property.
I Exact sequences of modules.
I Behavior of Noetherian property under mappings.
I Factorization in Noetherian domains.
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Noetherian modules

Definition. An R-module M is Noetherian if every submodule
of M is finitely generated.

Examples
I If M is Noetherian, then it is finitely generated.
I A ring R, itself, can naturally be considered as an R-module.

We say R is a Noetherian ring if is Noetherian as an
R-module.

The R-submodules of R are exactly the ideals of R.

So R is Noetherian if and only if all of its ideals are finitely
generated.

I Every PID is a Noetherian ring. For instance, Z is Noetherian,
and K [x ] is Noetherian when K is a field.
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Noetherian modules

The polynomial ring Q[x1, x2, x3, . . .] in infinitely many variables is
non-Noetherian.

For example, the ideal I = (x1, x2, x3 . . .) is not finitely generated.
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Noetherian modules: equivalent conditions

Proposition. The following are equivalent for an R-module M:

1. M is Noetherian.
2. M satisfies the ascending chain condition on submodules:

every chain of submodules of M,

N1 ⊆ N2 ⊆ · · · ,

eventually stabilizes. In other words, there exists k such that
Nk = Nk+1 = · · · .

3. Every nonempty collection of submodules of M has a maximal
element under inclusion.
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Noetherian modules: equivalent conditions

Proof.

M Noetherian ⇒ every ascending chain N1 ⊆ N2 ⊆ · · · stabilizes.

Suppose M is Noetherian and let N1 ⊆ N2 ⊆ · · · be a chain of
submodules. Let N := ∪i≥1Ni . Then N is a submodule of M
(exercise). Since M is Noetherian, N is finitely generated, say
by n1, . . . , ns .

Since N = ∪i≥1Ni , for each i = 1, . . . , s, we have ni ∈ Nki for
some ki . Let k = max{ki}.

Then ni ∈ Nk for all i . It follows that

N = SpanR{n1, . . . , ns} = Nk = Nk+1 = · · · .
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Noetherian modules: equivalent conditions

Proof.

Every ascending chain N1 ⊆ N2 ⊆ · · · stabilizes ⇒ every nonempty
collection of submodules of M has a maximal element under
inclusion.

Suppose every ascending chain of submodules of M stabilizes.
Let A be a nonempty of submodules of M.

Pick N1 ∈ A. Is N1 maximal in A?

If not, there exists N2 ∈ A with N1 ( N2.

Is N2 maximal in A?

If not, then there exists N3 ∈ A such that N1 ( N2 ( N3.

Repeat. Since every ascending chain eventually stabilizes, we must
eventually reach a maximal element of A.
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Proof.

Every nonempty collection of submodules of M has a maximal
element under inclusion ⇒ M Noetherian.

Suppose that every nonempty collection of submodules of M has a
maximal element, and let N be a submodule of M.

Let A be the collection of all finitely generated submodules of N.
Then A is nonempty since it contains the zero module. Take a
maximal element N ′ ∈ A. So N ′ ⊆ N. For sake of contradiction,
suppose that N ′ 6= N, and take n ∈ N \ N ′. Consider the module
N ′′ := N ′ + Rn. Since n 6∈ N ′, we have N ′ ( N ′′.

However, N ′′ ∈ A, too, contradicting the maximality of N ′. �
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Mappings of R-modules

A sequence of R-module mappings

M ′ φ−→ M ψ−→ M ′′

is exact at M if imφ = kerψ.

Examples.

0→ M ′ φ−→ M is exact at M ′ if and only if φ is injective.

M ψ−→ M ′′ → 0 is exact at M ′′ if and only if ψ is surjective.
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Mappings of R-modules

A short exact sequence of R-modules is a sequence of R-module
mappings

0→ M ′ φ−→ M ψ−→ M ′′ → 0

if it is exact at M ′, M, and M ′′.

So φ is injective, ψ is surjective, and im(φ) = ker(ψ).

Identify M ′ with im(φ) ⊆ M. Then ψ induces an isomorphism

ψ : M/M ′ → M ′′

m 7→ ψ(m).
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Noetherian property and mappings of R-modules

Proposition. Let

0→ M ′ φ−→ M ψ−→ M ′′ → 0

be a short exact sequence of R-modules.

Then M is Noetherian if
and only if M ′ and M ′′ are Noetherian.

Proof. (⇒) Suppose M is Noetherian. We may assume M ′ ⊆ M.
Is M ′ Noetherian? Every submodule of M ′ is a submodule of M,
and hence is finitely generated. Therefore, M ′ is Noetherian.

Next, suppose that N is a submodule of M ′′. Then ψ−1(N) is a
submodule of M (exercise). Since M is Noetherian, ψ−1(N) is
finitely generated, say by n1, . . . , nk . Then ψ(n1), . . . , ψ(nk)
generate N. Hence, M ′′ Noetherian.
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Noetherian property and mappings of R-modules

Corollary. If R is a Noetherian ring, then so is Rn for all n ∈ N.

Proof. If n = 0, 1, the result is trivial. Let n > 1, and suppose the
statement is true for Rk with 0 ≤ k < n.

We have the short exact sequence

0→ R ψ−→ Rn φ−→ Rn−1 → 0.

where φ(r) = (r , 0, . . . , 0) and ψ(r1, . . . , rn) = (r2, . . . , rn).

The result now follows by induction and the proposition we just
proved. �
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Noetherian property and mappings of R-modules

Corollary. If R is Noetherian and M is an R-module.

Then M is
Noetherian if and only if M is finitely generated. In other words, a
finitely generated module over a Noetherian ring is Noetherian.

Proof. (⇒) Duh. (⇐) Now suppose that M is finitely generated.
Say M = SpanR{m1, . . . ,mn}. We then have a surjective
homomorphism

ψ : Rn → M

(r1, . . . , rn) 7→
n∑

i=1
rimi .

We have a short exact sequence: 0→ ker(ψ)→ Rn ψ−→ M → 0.

Then R Noetherian ⇒ Rn Noetherian ⇒ M Noetherian. �
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Noetherian property and mappings of R-modules

Corollary. Let K be a number field. Then its ring of integer OK is
Noetherian.

Proof. This follows since Z is a PID, hence, Noetherian, and OK
is a finitely generated Z-module. �
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Factorization in Noetherian domains

Theorem. Let R be a Noetherian domain. Then every nonzero
non-unit element of R can be factored into irreducibles.

Proof. Let A be the set of principal ideals (x) ⊆ R such that
x 6= 0, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show A = ∅. Suppose not. Let (x) be a maximal element
of A (why possible?). Is x irreducible?

So x = yz with y , z non-units. We have (x) ( (y) and (x) ( (z).
(See blackboard.) By maximality of (x), we have (y), (z) 6∈ A. So
y and z factor into irreducibles. But then x factors into
irreducibles since x = yz . Contradiction. �
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(See blackboard.) By maximality of (x), we have (y), (z) 6∈ A.

So
y and z factor into irreducibles. But then x factors into
irreducibles since x = yz . Contradiction. �
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Factorization in Noetherian domains

Theorem. Let R be a Noetherian domain. Then every nonzero
element of R can be factored into irreducibles.

Corollary. Let K be a number field. Then every element of its ring
of integers, OK , can be factored into irreducibles in OK .

In homework, we’ve seen that Q(
√
−5) is not a UFD:

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Does this contradict the Corollary?
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