Math 361

February 20, 2023

Tomorrow's quiz

See posting at our homepage.

Note: This quiz will contain at least one question from previous weeks.

▶ Definition of Noetherian module and Noetherian ring.

- ▶ Definition of Noetherian module and Noetherian ring.
- Equivalent conditions for the Noetherian property.

- ▶ Definition of Noetherian module and Noetherian ring.
- Equivalent conditions for the Noetherian property.
- Exact sequences of modules.

- Definition of Noetherian module and Noetherian ring.
- Equivalent conditions for the Noetherian property.
- Exact sequences of modules.
- ▶ Behavior of Noetherian property under mappings.

- Definition of Noetherian module and Noetherian ring.
- Equivalent conditions for the Noetherian property.
- Exact sequences of modules.
- ▶ Behavior of Noetherian property under mappings.
- ► Factorization in Noetherian domains.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Examples

▶ If *M* is Noetherian, then it is finitely generated.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Examples

- ▶ If *M* is Noetherian, then it is finitely generated.
- \blacktriangleright A ring *R*, itself, can naturally be considered as an *R*-module.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Examples

- ▶ If *M* is Noetherian, then it is finitely generated.
- ► A ring R, itself, can naturally be considered as an R-module. We say R is a Noetherian ring if is Noetherian as an R-module.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Examples

- ▶ If *M* is Noetherian, then it is finitely generated.
- ► A ring R, itself, can naturally be considered as an R-module. We say R is a Noetherian ring if is Noetherian as an R-module.

The R-submodules of R are

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Examples

- ▶ If *M* is Noetherian, then it is finitely generated.
- ► A ring R, itself, can naturally be considered as an R-module. We say R is a Noetherian ring if is Noetherian as an R-module.

The R-submodules of R are exactly the ideals of R.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Examples

- ▶ If *M* is Noetherian, then it is finitely generated.
- ► A ring R, itself, can naturally be considered as an R-module. We say R is a Noetherian ring if is Noetherian as an R-module.

The R-submodules of R are exactly the ideals of R.

So R is Noetherian if and only if all of its ideals are finitely generated.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Examples

- ▶ If *M* is Noetherian, then it is finitely generated.
- ► A ring R, itself, can naturally be considered as an R-module. We say R is a Noetherian ring if is Noetherian as an R-module.

The R-submodules of R are exactly the ideals of R.

So R is Noetherian if and only if all of its ideals are finitely generated.

• Every PID is a Noetherian ring.

Definition. An *R*-module *M* is *Noetherian* if every submodule of *M* is finitely generated.

Examples

- ▶ If *M* is Noetherian, then it is finitely generated.
- ► A ring R, itself, can naturally be considered as an R-module. We say R is a Noetherian ring if is Noetherian as an R-module.

The R-submodules of R are exactly the ideals of R.

So R is Noetherian if and only if all of its ideals are finitely generated.

► Every PID is a Noetherian ring. For instance, Z is Noetherian, and K[x] is Noetherian when K is a field.

The polynomial ring $\mathbb{Q}[x_1, x_2, x_3, ...]$ in infinitely many variables is non-Noetherian.

The polynomial ring $\mathbb{Q}[x_1, x_2, x_3, ...]$ in infinitely many variables is non-Noetherian.

For example, the ideal $I = (x_1, x_2, x_3...)$ is not finitely generated.

Proposition. The following are equivalent for an *R*-module *M*:

Proposition. The following are equivalent for an *R*-module *M*:

1. *M* is Noetherian.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules:

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules: every chain of submodules of *M*,

$$N_1 \subseteq N_2 \subseteq \cdots,$$

eventually stabilizes.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules: every chain of submodules of *M*,

$$N_1 \subseteq N_2 \subseteq \cdots,$$

eventually *stabilizes*. In other words, there exists k such that $N_k = N_{k+1} = \cdots$.

Proposition. The following are equivalent for an *R*-module *M*:

- 1. *M* is Noetherian.
- 2. *M* satisfies the ascending chain condition on submodules: every chain of submodules of *M*,

$$N_1 \subseteq N_2 \subseteq \cdots,$$

eventually stabilizes. In other words, there exists k such that $N_k = N_{k+1} = \cdots$.

3. Every nonempty collection of submodules of M has a maximal element under inclusion.

Proof.

Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Proof.

```
M Noetherian \Rightarrow every ascending chain N_1 \subseteq N_2 \subseteq \cdots stabilizes.
```

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules.

Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules. Let $N := \bigcup_{i \ge 1} N_i$.

Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules. Let $N := \bigcup_{i \ge 1} N_i$. Then *N* is a submodule of *M* (exercise).

Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules. Let $N := \bigcup_{i \ge 1} N_i$. Then *N* is a submodule of *M* (exercise). Since *M* is Noetherian, *N* is finitely generated,

Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules. Let $N := \bigcup_{i \ge 1} N_i$. Then *N* is a submodule of *M* (exercise). Since *M* is Noetherian, *N* is finitely generated, say by n_1, \ldots, n_s .

Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules. Let $N := \bigcup_{i \ge 1} N_i$. Then *N* is a submodule of *M* (exercise). Since *M* is Noetherian, *N* is finitely generated, say by n_1, \ldots, n_s .

Since $N = \bigcup_{i \ge 1} N_i$, for each $i = 1, \ldots, s$,

Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules. Let $N := \bigcup_{i \ge 1} N_i$. Then *N* is a submodule of *M* (exercise). Since *M* is Noetherian, *N* is finitely generated, say by n_1, \ldots, n_s .

Since $N = \bigcup_{i \ge 1} N_i$, for each i = 1, ..., s, we have $n_i \in N_{k_i}$ for some k_i .

Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules. Let $N := \bigcup_{i \ge 1} N_i$. Then *N* is a submodule of *M* (exercise). Since *M* is Noetherian, *N* is finitely generated, say by n_1, \ldots, n_s .

Since $N = \bigcup_{i \ge 1} N_i$, for each i = 1, ..., s, we have $n_i \in N_{k_i}$ for some k_i . Let $k = \max\{k_i\}$.

Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules. Let $N := \bigcup_{i \ge 1} N_i$. Then *N* is a submodule of *M* (exercise). Since *M* is Noetherian, *N* is finitely generated, say by n_1, \ldots, n_s .

Since $N = \bigcup_{i \ge 1} N_i$, for each i = 1, ..., s, we have $n_i \in N_{k_i}$ for some k_i . Let $k = \max\{k_i\}$.

Then $n_i \in N_k$ for all *i*.
Proof.

M Noetherian \Rightarrow every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes.

Suppose *M* is Noetherian and let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of submodules. Let $N := \bigcup_{i \ge 1} N_i$. Then *N* is a submodule of *M* (exercise). Since *M* is Noetherian, *N* is finitely generated, say by n_1, \ldots, n_s .

Since $N = \bigcup_{i \ge 1} N_i$, for each i = 1, ..., s, we have $n_i \in N_{k_i}$ for some k_i . Let $k = \max\{k_i\}$.

Then $n_i \in N_k$ for all *i*. It follows that

$$N = \operatorname{Span}_{R}\{n_1, \ldots, n_s\} = N_k = N_{k+1} = \cdots.$$

Proof.

Proof.

Every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes \Rightarrow every nonempty collection of submodules of M has a maximal element under inclusion.

Proof.

Every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes \Rightarrow every nonempty collection of submodules of M has a maximal element under inclusion.

Suppose every ascending chain of submodules of M stabilizes. Let A be a nonempty of submodules of M.

Proof.

Every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes \Rightarrow every nonempty collection of submodules of M has a maximal element under inclusion.

Suppose every ascending chain of submodules of M stabilizes. Let A be a nonempty of submodules of M.

Pick $N_1 \in \mathcal{A}$.

Proof.

Every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes \Rightarrow every nonempty collection of submodules of M has a maximal element under inclusion.

Suppose every ascending chain of submodules of M stabilizes. Let A be a nonempty of submodules of M.

Pick $N_1 \in \mathcal{A}$. Is N_1 maximal in \mathcal{A} ?

Proof.

Every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes \Rightarrow every nonempty collection of submodules of M has a maximal element under inclusion.

Suppose every ascending chain of submodules of M stabilizes. Let A be a nonempty of submodules of M.

Pick $N_1 \in \mathcal{A}$. Is N_1 maximal in \mathcal{A} ?

If not, there exists $N_2 \in \mathcal{A}$ with $N_1 \subsetneq N_2$.

Proof.

Every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes \Rightarrow every nonempty collection of submodules of M has a maximal element under inclusion.

Suppose every ascending chain of submodules of M stabilizes. Let A be a nonempty of submodules of M.

Pick $N_1 \in \mathcal{A}$. Is N_1 maximal in \mathcal{A} ?

If not, there exists $N_2 \in \mathcal{A}$ with $N_1 \subsetneq N_2$.

Is N_2 maximal in \mathcal{A} ?

Proof.

Every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes \Rightarrow every nonempty collection of submodules of M has a maximal element under inclusion.

Suppose every ascending chain of submodules of M stabilizes. Let A be a nonempty of submodules of M.

Pick $N_1 \in \mathcal{A}$. Is N_1 maximal in \mathcal{A} ?

If not, there exists $N_2 \in \mathcal{A}$ with $N_1 \subsetneq N_2$.

Is N_2 maximal in \mathcal{A} ?

If not, then there exists $N_3 \in \mathcal{A}$ such that $N_1 \subsetneq N_2 \subsetneq N_3$.

Proof.

Every ascending chain $N_1 \subseteq N_2 \subseteq \cdots$ stabilizes \Rightarrow every nonempty collection of submodules of M has a maximal element under inclusion.

Suppose every ascending chain of submodules of M stabilizes. Let A be a nonempty of submodules of M.

Pick $N_1 \in \mathcal{A}$. Is N_1 maximal in \mathcal{A} ?

If not, there exists $N_2 \in \mathcal{A}$ with $N_1 \subsetneq N_2$.

Is N_2 maximal in \mathcal{A} ?

If not, then there exists $N_3 \in \mathcal{A}$ such that $N_1 \subsetneq N_2 \subsetneq N_3$.

Repeat. Since every ascending chain eventually stabilizes, we must eventually reach a maximal element of A.

Proof.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Let \mathcal{A} be the collection of all finitely generated submodules of N.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Let A be the collection of all finitely generated submodules of N. Then A is nonempty since it contains the zero module.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Let \mathcal{A} be the collection of all finitely generated submodules of N. Then \mathcal{A} is nonempty since it contains the zero module. Take a maximal element $N' \in \mathcal{A}$.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Let \mathcal{A} be the collection of all finitely generated submodules of N. Then \mathcal{A} is nonempty since it contains the zero module. Take a maximal element $N' \in \mathcal{A}$. So $N' \subseteq N$.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Let \mathcal{A} be the collection of all finitely generated submodules of N. Then \mathcal{A} is nonempty since it contains the zero module. Take a maximal element $N' \in \mathcal{A}$. So $N' \subseteq N$. For sake of contradiction, suppose that $N' \neq N$,

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Let \mathcal{A} be the collection of all finitely generated submodules of N. Then \mathcal{A} is nonempty since it contains the zero module. Take a maximal element $N' \in \mathcal{A}$. So $N' \subseteq N$. For sake of contradiction, suppose that $N' \neq N$, and take $n \in N \setminus N'$.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Let \mathcal{A} be the collection of all finitely generated submodules of N. Then \mathcal{A} is nonempty since it contains the zero module. Take a maximal element $N' \in \mathcal{A}$. So $N' \subseteq N$. For sake of contradiction, suppose that $N' \neq N$, and take $n \in N \setminus N'$. Consider the module N'' := N' + Rn.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Let \mathcal{A} be the collection of all finitely generated submodules of N. Then \mathcal{A} is nonempty since it contains the zero module. Take a maximal element $N' \in \mathcal{A}$. So $N' \subseteq N$. For sake of contradiction, suppose that $N' \neq N$, and take $n \in N \setminus N'$. Consider the module N'' := N' + Rn. Since $n \notin N'$, we have $N' \subsetneq N''$.

Proof.

Every nonempty collection of submodules of M has a maximal element under inclusion $\Rightarrow M$ Noetherian.

Suppose that every nonempty collection of submodules of M has a maximal element, and let N be a submodule of M.

Let \mathcal{A} be the collection of all finitely generated submodules of N. Then \mathcal{A} is nonempty since it contains the zero module. Take a maximal element $N' \in \mathcal{A}$. So $N' \subseteq N$. For sake of contradiction, suppose that $N' \neq N$, and take $n \in N \setminus N'$. Consider the module N'' := N' + Rn. Since $n \notin N'$, we have $N' \subsetneq N''$.

However, $N'' \in A$, too, contradicting the maximality of N'.

A sequence of *R*-module mappings

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M''$$

is exact at M if im $\phi = \ker \psi$.

A sequence of *R*-module mappings

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M''$$

is exact at M if im $\phi = \ker \psi$.

Examples.

 $0
ightarrow M' \xrightarrow{\phi} M$ is exact at M' if and only if

A sequence of *R*-module mappings

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M''$$

is exact at M if im $\phi = \ker \psi$.

Examples.

 $0 \rightarrow M' \xrightarrow{\phi} M$ is exact at M' if and only if ϕ is injective.

A sequence of *R*-module mappings

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M''$$

is exact at M if im $\phi = \ker \psi$.

Examples.

 $0 \rightarrow M' \xrightarrow{\phi} M$ is exact at M' if and only if ϕ is injective.

 $M \xrightarrow{\psi} M'' \to 0$ is exact at M''

A sequence of *R*-module mappings

$$M' \xrightarrow{\phi} M \xrightarrow{\psi} M''$$

is exact at M if im $\phi = \ker \psi$.

Examples.

 $0 \rightarrow M' \xrightarrow{\phi} M$ is exact at M' if and only if ϕ is injective.

 $M \xrightarrow{\psi} M'' \to 0$ is exact at M'' if and only if ψ is surjective.

A *short exact sequence* of *R*-modules is a sequence of *R*-module mappings

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

if it is exact at M', M, and M''.

A *short exact sequence* of *R*-modules is a sequence of *R*-module mappings

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

if it is exact at M', M, and M''.

So ϕ is injective,

A *short exact sequence* of *R*-modules is a sequence of *R*-module mappings

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

if it is exact at M', M, and M''.

So ϕ is injective, ψ is surjective,

A *short exact sequence* of *R*-modules is a sequence of *R*-module mappings

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

if it is exact at M', M, and M''.

So ϕ is injective, ψ is surjective, and $\operatorname{im}(\phi) = \operatorname{ker}(\psi)$.

A *short exact sequence* of *R*-modules is a sequence of *R*-module mappings

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

if it is exact at M', M, and M''.

So ϕ is injective, ψ is surjective, and $\operatorname{im}(\phi) = \operatorname{ker}(\psi)$.

Identify M' with $im(\phi) \subseteq M$.

A *short exact sequence* of *R*-modules is a sequence of *R*-module mappings

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

if it is exact at M', M, and M''.

So ϕ is injective, ψ is surjective, and $\operatorname{im}(\phi) = \operatorname{ker}(\psi)$.

Identify M' with $im(\phi) \subseteq M$. Then ψ induces an isomorphism

$$\overline{\psi} \colon M/M' \to M''$$

 $\overline{m} \mapsto \psi(m).$

Noetherian property and mappings of *R*-modules

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of *R*-modules.

Noetherian property and mappings of *R*-modules

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Noetherian property and mappings of *R*-modules

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Rightarrow) Suppose *M* is Noetherian.
Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Rightarrow) Suppose *M* is Noetherian. We may assume $M' \subseteq M$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Rightarrow) Suppose *M* is Noetherian. We may assume $M' \subseteq M$. Is *M'* Noetherian?

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Rightarrow) Suppose *M* is Noetherian. We may assume $M' \subseteq M$. Is *M'* Noetherian? Every submodule of *M'* is a submodule of *M*, and hence is finitely generated. Therefore, *M'* is Noetherian.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Rightarrow) Suppose *M* is Noetherian. We may assume $M' \subseteq M$. Is *M'* Noetherian? Every submodule of *M'* is a submodule of *M*, and hence is finitely generated. Therefore, *M'* is Noetherian.

Next, suppose that N is a submodule of M''.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Rightarrow) Suppose *M* is Noetherian. We may assume $M' \subseteq M$. Is *M'* Noetherian? Every submodule of *M'* is a submodule of *M*, and hence is finitely generated. Therefore, *M'* is Noetherian.

Next, suppose that N is a submodule of M''. Then $\psi^{-1}(N)$ is a submodule of M (exercise).

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Rightarrow) Suppose *M* is Noetherian. We may assume $M' \subseteq M$. Is *M'* Noetherian? Every submodule of *M'* is a submodule of *M*, and hence is finitely generated. Therefore, *M'* is Noetherian.

Next, suppose that N is a submodule of M''. Then $\psi^{-1}(N)$ is a submodule of M (exercise). Since M is Noetherian, $\psi^{-1}(N)$ is finitely generated, say by n_1, \ldots, n_k .

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Rightarrow) Suppose *M* is Noetherian. We may assume $M' \subseteq M$. Is *M'* Noetherian? Every submodule of *M'* is a submodule of *M*, and hence is finitely generated. Therefore, *M'* is Noetherian.

Next, suppose that N is a submodule of M''. Then $\psi^{-1}(N)$ is a submodule of M (exercise). Since M is Noetherian, $\psi^{-1}(N)$ is finitely generated, say by n_1, \ldots, n_k . Then $\psi(n_1), \ldots, \psi(n_k)$ generate N.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Rightarrow) Suppose *M* is Noetherian. We may assume $M' \subseteq M$. Is *M'* Noetherian? Every submodule of *M'* is a submodule of *M*, and hence is finitely generated. Therefore, *M'* is Noetherian.

Next, suppose that N is a submodule of M''. Then $\psi^{-1}(N)$ is a submodule of M (exercise). Since M is Noetherian, $\psi^{-1}(N)$ is finitely generated, say by n_1, \ldots, n_k . Then $\psi(n_1), \ldots, \psi(n_k)$ generate N. Hence, M'' Noetherian.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated:

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \text{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \text{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$. Since M' is Noetherian, $N \cap M'$ is finitely generated by, say, v_1, \ldots, v_ℓ .

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \text{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$. Since M' is Noetherian, $N \cap M'$ is finitely generated by, say, v_1, \ldots, v_ℓ . We claim that $\{v_1, \ldots, v_\ell, n_1, \ldots, n_k\}$ generate N.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \text{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$. Since M' is Noetherian, $N \cap M'$ is finitely generated by, say, v_1, \ldots, v_ℓ . We claim that $\{v_1, \ldots, v_\ell, n_1, \ldots, n_k\}$ generate N. To see this, let $n \in N$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \text{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$. Since M' is Noetherian, $N \cap M'$ is finitely generated by, say, v_1, \ldots, v_ℓ . We claim that $\{v_1, \ldots, v_\ell, n_1, \ldots, n_k\}$ generate N. To see this, let $n \in N$. Write $\psi(n) = \sum_{i=1}^k r_i \psi(n_i)$ for some $r_i \in R$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \operatorname{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$. Since M' is Noetherian, $N \cap M'$ is finitely generated by, say, v_1, \ldots, v_ℓ . We claim that $\{v_1, \ldots, v_\ell, n_1, \ldots, n_k\}$ generate N. To see this, let $n \in N$. Write $\psi(n) = \sum_{i=1}^k r_i \psi(n_i)$ for some $r_i \in R$. Then $\psi(n - \sum_{i=1}^k r_i n_i) =$

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \operatorname{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$. Since M' is Noetherian, $N \cap M'$ is finitely generated by, say, v_1, \ldots, v_ℓ . We claim that $\{v_1, \ldots, v_\ell, n_1, \ldots, n_k\}$ generate N. To see this, let $n \in N$. Write $\psi(n) = \sum_{i=1}^k r_i \psi(n_i)$ for some $r_i \in R$. Then $\psi(n - \sum_{i=1}^k r_i n_i) = 0$

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \operatorname{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$. Since M' is Noetherian, $N \cap M'$ is finitely generated by, say, v_1, \ldots, v_ℓ . We claim that $\{v_1, \ldots, v_\ell, n_1, \ldots, n_k\}$ generate N. To see this, let $n \in N$. Write $\psi(n) = \sum_{i=1}^k r_i \psi(n_i)$ for some $r_i \in R$. Then $\psi(n - \sum_{i=1}^k r_i n_i) = 0 \Rightarrow n - \sum_{i=1}^k r_i n_i \in N \cap M'$.

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \operatorname{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$. Since M' is Noetherian, $N \cap M'$ is finitely generated by, say, v_1, \ldots, v_ℓ . We claim that $\{v_1, \ldots, v_\ell, n_1, \ldots, n_k\}$ generate N. To see this, let $n \in N$. Write $\psi(n) = \sum_{i=1}^k r_i \psi(n_i)$ for some $r_i \in R$. Then $\psi(n - \sum_{i=1}^k r_i n_i) = 0 \Rightarrow n - \sum_{i=1}^k r_i n_i \in N \cap M'$. Hence,

$$n-\sum_{i=1}^k r_i v_i = \sum_{j=1}^\ell s_j v_j.$$

Proposition. Let

$$0 \to M' \xrightarrow{\phi} M \xrightarrow{\psi} M'' \to 0$$

be a short exact sequence of R-modules. Then M is Noetherian if and only if M' and M'' are Noetherian.

Proof. (\Leftarrow) Suppose that M' and M'' are Noetherian, and let N be a submodule of M. Now $\psi(N)$ is a submodule of M'', hence finitely generated: $\psi(N) = \operatorname{Span}_R\{\psi(n_1), \ldots, \psi(n_k)\}$ where $n_1, \ldots, n_k \in N$. Since M' is Noetherian, $N \cap M'$ is finitely generated by, say, v_1, \ldots, v_ℓ . We claim that $\{v_1, \ldots, v_\ell, n_1, \ldots, n_k\}$ generate N. To see this, let $n \in N$. Write $\psi(n) = \sum_{i=1}^k r_i \psi(n_i)$ for some $r_i \in R$. Then $\psi(n - \sum_{i=1}^k r_i n_i) = 0 \Rightarrow n - \sum_{i=1}^k r_i n_i \in N \cap M'$. Hence,

$$n-\sum_{i=1}^k r_i v_i=\sum_{j=1}^\ell s_j v_j.$$

So $n \in \operatorname{Span}_{R}\{v_1, \ldots, v_{\ell}, n_1, \ldots, n_k\}$, as claimed.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$. **Proof.** If n = 0, 1, the result is trivial.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$. **Proof.** If n = 0, 1, the result is trivial. Let n > 1, and suppose the statement is true for R^k with $0 \le k \le n$.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Proof. If n = 0, 1, the result is trivial. Let n > 1, and suppose the statement is true for R^k with $0 \le k < n$.

We have the short exact sequence

$$0 \to R \xrightarrow{\psi} R^n \xrightarrow{\phi} R^{n-1} \to 0.$$

where $\phi(r) = (r, 0, ..., 0)$ and $\psi(r_1, ..., r_n) = (r_2, ..., r_n)$.

Corollary. If *R* is a Noetherian ring, then so is R^n for all $n \in \mathbb{N}$.

Proof. If n = 0, 1, the result is trivial. Let n > 1, and suppose the statement is true for R^k with $0 \le k < n$.

We have the short exact sequence

$$0 \to R \xrightarrow{\psi} R^n \xrightarrow{\phi} R^{n-1} \to 0.$$

where $\phi(r) = (r, 0, ..., 0)$ and $\psi(r_1, ..., r_n) = (r_2, ..., r_n)$.

The result now follows by induction and the proposition we just proved.

П

Corollary. If *R* is Noetherian and *M* is an *R*-module.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow)

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i$

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to R^n \xrightarrow{\psi} M \to 0$.

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to \mathbb{R}^n \xrightarrow{\psi} \mathbb{M} \to 0$. Then \mathbb{R} Noetherian \Rightarrow
Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to \mathbb{R}^n \xrightarrow{\psi} \mathbb{M} \to 0$. Then \mathbb{R} Noetherian $\Rightarrow \mathbb{R}^n$ Noetherian

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to \mathbb{R}^n \xrightarrow{\psi} \mathbb{M} \to 0.$

Then R Noetherian $\Rightarrow R^n$ Noetherian \Rightarrow

Corollary. If R is Noetherian and M is an R-module. Then M is Noetherian if and only if M is finitely generated. In other words, a finitely generated module over a Noetherian ring is Noetherian.

Proof. (\Rightarrow) Duh. (\Leftarrow) Now suppose that *M* is finitely generated. Say $M = \text{Span}_R\{m_1, \ldots, m_n\}$. We then have a surjective homomorphism

$$\psi \colon \mathbb{R}^n \to M$$

 $(r_1, \ldots, r_n) \mapsto \sum_{i=1}^n r_i m_i.$

We have a short exact sequence: $0 \to \ker(\psi) \to R^n \xrightarrow{\psi} M \to 0.$

Then R Noetherian $\Rightarrow R^n$ Noetherian $\Rightarrow M$ Noetherian.

Corollary. Let K be a number field. Then its ring of integer \mathfrak{O}_K is Noetherian.

Corollary. Let K be a number field. Then its ring of integer \mathfrak{O}_K is Noetherian.

Proof. This follows since \mathbb{Z} is a PID, hence, Noetherian, and \mathfrak{O}_K is a finitely generated \mathbb{Z} -module.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?).

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible?

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible?

So x = yz with y, z non-units.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible?

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.)

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible?

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.) By maximality of (x), we have $(y), (z) \notin A$.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible?

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.) By maximality of (x), we have $(y), (z) \notin A$. So y and z factor into irreducibles.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible?

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.) By maximality of (x), we have $(y), (z) \notin A$. So y and z factor into irreducibles. But then x factors into irreducibles since x = yz.

Theorem. Let R be a Noetherian domain. Then every nonzero non-unit element of R can be factored into irreducibles.

Proof. Let \mathcal{A} be the set of principal ideals $(x) \subseteq R$ such that $x \neq 0$, x is a non-unit, and x cannot be factored into irreducibles.

Goal: show $\mathcal{A} = \emptyset$. Suppose not. Let (x) be a maximal element of \mathcal{A} (why possible?). Is x irreducible?

So x = yz with y, z non-units. We have $(x) \subsetneq (y)$ and $(x) \subsetneq (z)$. (See blackboard.) By maximality of (x), we have $(y), (z) \notin A$. So y and z factor into irreducibles. But then x factors into irreducibles since x = yz. Contradiction.

Theorem. Let R be a Noetherian domain. Then every nonzero element of R can be factored into irreducibles.

Theorem. Let R be a Noetherian domain. Then every nonzero element of R can be factored into irreducibles.

Corollary. Let K be a number field. Then every element of its ring of integers, \mathfrak{O}_K , can be factored into irreducibles in \mathfrak{O}_K .

Theorem. Let R be a Noetherian domain. Then every nonzero element of R can be factored into irreducibles.

Corollary. Let K be a number field. Then every element of its ring of integers, \mathfrak{O}_K , can be factored into irreducibles in \mathfrak{O}_K .

In homework, we've seen that $\mathbb{Q}(\sqrt{-5})$ is not a UFD:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

Theorem. Let R be a Noetherian domain. Then every nonzero element of R can be factored into irreducibles.

Corollary. Let K be a number field. Then every element of its ring of integers, \mathfrak{O}_K , can be factored into irreducibles in \mathfrak{O}_K .

In homework, we've seen that $\mathbb{Q}(\sqrt{-5})$ is not a UFD:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

Does this contradict the Corollary?