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Quiz

Let K be a number field.

1. Let K be a number field. How would you describe all of the
field embeddings K → C using the primitive element theorem
and minimal polynomials?

2. Let (α1, . . . , αn) be a Q-basis for K . Define the discriminant,
∆[α1, . . . , αn].



Announce math talk

Announce math talk!



Leftover

See the slides from last time.



Today

I Introduction to cyclotomic fields.

I Theorem for degree and basis for ring of integers.
I Begin proof in special case (primes).
I Eisenstein’s criterion.
I Some useful norm and trace calculations.
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Cyclotomic fields

Primitive m-th root of unity:

ζm = e2πi/m = cos(2π/m) + i sin(2π/m),

The powers of ζm are the m-th roots of unity:

xm − 1 =
m∏

k=1
(x − ζk).

Since ζm satisfies a monic polynomial with integer coefficients, it is
an algebraic integer.

A cyclotomic field is a number field of the form K = Q(ζm).
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Examples

1. Case m = 2. We have ζ2 = −1 and K = Q.

2. Case m = 3. We have

ζ3 = cos(2π/3) + i sin(2π/3) = 1
2 + i

√
3

2 = 1 + i
√

3
2

x3 − 1 = (x − 1)(x2 + x + 1),

and the minimal polynomial for ζ3 is x2 + x + 1. So
[Q(ζ3) : Q] = 2.

3. Case m = 4. We have

ζ4 = cos(2π/4) + i sin(2π/4) = i
x4 − 1

= (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x2 + 1)

and the minimal polynomial for ζ4 is x2 + 1. So [Q(ζ3) : Q] = 2,
also.
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Theorem

Theorem We have

[Q(ζm) : Q] = φ(m)

where φ is the Euler totient function:

φ(m) = |{a : 1 ≤ a < m and gcd(a,m) = 1}| = m
∏
p|m

p prime

(
1− 1

p

)
.

Further, OQ(ζm) has integral basis 1, ζm, ζ
2
m, . . . , ζ

φ(m)−1
m , i.e.,

OQ(ζm) = Z[ζm].

Example If m = 4, then φ(4) = 2 = 4
(

1− 1
2

)
. The ring of

integers in Q(i) is Z[i ] = SpanZ{1, i}.
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Goal

Let p be an odd prime, and let ζ = ζp.

We have φ(p) = p − 1.
Our goal is to prove the theorem for this case:

Theorem. Let K = Q(ζ). Then
I [K : Q] = p − 1, and

I OK = Q[ζ] = SpanZ{1, ζ, . . . , ζp−1}.

We will prove the first part today and the second on Friday.
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Eisenstein’s criterion

Theorem. Let

f = anxn + an−1xn−1 + · · ·+ a1x + a0 ∈ Z[x ].

Suppose there is a prime q ∈ Z such that

(i) q|ai for i = 0, 1, . . . , n − 1; (ii) q - an; and (iii) q2 - a0.

Then up to a constant factor, f is irreducible in Z[x ] and, hence, f
is irreducible in Q[x ].
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Minimal polynomial for ζ

Proposition. The minimal polynomial for ζ is
f (x) = xp−1 + xp−2 + · · ·+ x + 1.

Proof. Since

xp−1 + xp−2 + · · ·+ x + 1 = xp − 1
x − 1 ,

all of the p-th roots of unity except 1 are zeros of f .

It remains to show that f is irreducible over Q.

It suffices to show f (x + 1) is irreducible (f (x) = g(x)h(x) if and
only if f (x + 1) = g(x + 1)h(x + 1)).

Idea: apply Eisenstein’s criterion to f (x + 1).
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Eisenstein’s criterion now applies. Note that
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k
)

= p!
k!(p−k)! is

divisible by p for 1 ≤ k ≤ p − 1.
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First part of theorem

Corollary. We have [K : Q] = p − 1 and
{

1, ζ, . . . , ζp−2} is a
Q-basis for K .

The second part of the theorem is to show that
{

1, ζ, . . . , ζp−2} is
also a Z-basis for OK .

We will do that next time. For now, we will calculate some needed
norms and traces.
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Some norms and traces

The minimal polynomial for ζ factors as f (x) =
∏p−1

i=1 (x − ζ i ).

So the embeddings of K are given by σi (ζ) = ζ i for
i = 1, . . . , p − 1.

The field polynomial for ζ is its minimal polynomial:

f (x) = fζ(x) =
p−1∏
i=1

(x − σi (ζ)) =

= xp−1 − (σ1(ζ) + · · ·+ σp−1(ζ)︸ ︷︷ ︸
T (ζ)

)xp−2 + · · ·+ (−1)p−1 σ1(ζ) · · ·σp−1(ζ)︸ ︷︷ ︸
N(ζ)

But f (x) = xp−1 + xp−2 + · · ·+ x + 1. So T (ζ) = −1, and
N(ζ) = 1 since p is odd.
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Some norms and traces

We have just seen that N(ζ) = 1 and T (ζ) = −1.

By multiplicativity, N(ζ i ) = 1 for all i .

What about traces? First note if 1 ≤ i < k ≤ p − 1,

σi (ζ j) = σk(ζ j)⇐⇒ ζ ij = ζkj ⇐⇒ ζ(i−k)j = 1
⇐⇒ (i − k)j = 0 mod p ⇐⇒ j = 0 mod p.

Therefore, for j 6= 0 mod p,

{σ1(ζ j), . . . , σp−1(ζ j)} = {ζ, ζ2, . . . , ζp−1},

from which it follows that

T (ζ j) =
p−1∑
i=1

σi (ζ j) = ζ + ζ2 + · · ·+ ζp−1 = −1.
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Some norms and traces

If j = 0 mod p, then ζ j = 1,

and

T (1) =
p−1∑
i=1

σi (1) =
p−1∑
i=1

1 = p − 1.

One last norm:

N(1− ζ) =
p−1∏
i=1

σi (1− ζ) =
p−1∏
i=1

(1− ζ i ) = f (1) = 1 + · · ·+ 1︸ ︷︷ ︸
p times

= p.
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Some norms and traces

Summary:

Let ζ = e2πi/p. Then

N(ζ j) = 1 for all i ∈ Z
N(1− ζ) = p

and

T (ζ j) =
{
−1 if j 6= 0 mod p
p − 1 if j = 0 mod p.



A useful lemma

Given α ∈ K = OK , write

α = a0 + a1ζ + · · ·+ ap−2ζ
p−2

for some unique ai ∈ Q. (Why is this possible?)

Lemma. For 0 ≤ k ≤ p − 2,

T (αζ−k − αζ) = pak ∈ Z.

Proof. First step: why is T (αζ−k − αζ) ∈ Z?



A useful lemma

Given α ∈ K = OK , write

α = a0 + a1ζ + · · ·+ ap−2ζ
p−2

for some unique ai ∈ Q. (Why is this possible?)

Lemma. For 0 ≤ k ≤ p − 2,

T (αζ−k − αζ) = pak ∈ Z.

Proof. First step: why is T (αζ−k − αζ) ∈ Z?



A useful lemma

Given α ∈ K = OK , write

α = a0 + a1ζ + · · ·+ ap−2ζ
p−2

for some unique ai ∈ Q. (Why is this possible?)

Lemma. For 0 ≤ k ≤ p − 2,

T (αζ−k − αζ) = pak ∈ Z.

Proof. First step: why is T (αζ−k − αζ) ∈ Z?



A useful lemma
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p−2 ∈ OK , ai ∈ Q

Lemma. For 0 ≤ k ≤ p − 2,

T (αζ−k − αζ) = pak ∈ Z.

Proof continued. We then calculate T (αζ−k − αζ)

= T (αζ−k)− T (αζ)
= T (a0ζ

−k + a1ζ
−k+1 + · · ·+ ak + · · ·+ ap−2ζ

−k+p−2)
− T (a0ζ + a1ζ

2 + · · ·+ ap−2ζ
p−1)

= −a0 − a1 − · · · − ak−1 + (p − 1)ak − ak+1 − · · · − ap−2

− (−a0 − a1 − · · · − ap−2)
= pak .
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