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Quiz

Let K be a number field.

1. Let K be a number field. How would you describe all of the
field embeddings K — C using the primitive element theorem
and minimal polynomials?

2. Let (a1,...,,) be a Q-basis for K. Define the discriminant,
Alaq, ..., ap).
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Leftover

See the slides from last time.
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Introduction to cyclotomic fields.

Theorem for degree and basis for ring of integers.

>
>
» Begin proof in special case (primes).
» Eisenstein’s criterion.

>

Some useful norm and trace calculations.
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Primitive m-th root of unity:
Cm = €™M = cos(2m/m) + isin(21/m),

The powers of (,, are the m-th roots of unity:

Since (, satisfies a monic polynomial with integer coefficients, it is
an algebraic integer.

A cyclotomic field is a number field of the form K = Q((p).
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Examples

1. Case m=2. We have (, = -1 and K = Q.
2. Case m = 3. We have

G = cos(an/3) + fsn2n/3) = 4 %5 = T

3 —1=(x—-1)(x®+x+1),

and the minimal polynomial for (3 is x> + x + 1. So

[Q(¢3) : Q] = 2.
3. Case m = 4. We have

(s = cos(2m/4) + isin(2m/4) =i
1= -1)P+1)=(x-1)x+1)(x>+1)

and the minimal polynomial for ¢4 is x2 +1. So [Q(¢3): Q] = 2,
also.
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Theorem

Theorem We have

[Q(¢m) - Q] = ¢(m)

where ¢ is the Euler totient function:

p(m)=|{a:1<a<mand gcd(a,m) =1} =m H <1—I1)).
plm
p prime

Further, Og(c,) has integral basis L¢m G2, ,?7('")71, ie.,

O0(¢m) = Z[Cm]-

Example If m =4, then ¢(4) =2=14 (1 - %) The ring of
integers in Q(i) is Z[i] = Span;{1,i}.
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Goal

Let p be an odd prime, and let ¢ = (,. We have ¢(p) =p — 1.
Our goal is to prove the theorem for this case:

Theorem. Let K = Q(¢). Then
» [K:Q=p—1, and

> DK — @[C] = SpanZ{]-vCa .. pr_l}'

We will prove the first part today and the second on Friday.
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Eisenstein’s criterion

Theorem. Let

1

f=anx"+ap1x" "+ -+ a1x+ ap € Z[x].

Suppose there is a prime g € Z such that
(i) glaj for i=0,1,...,n—1; (ii) g1 an; and (iii) q° 1 ap.

Then up to a constant factor, f is irreducible in Z[x] and, hence,
is irreducible in Q[x].
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Minimal polynomial for ¢

Proposition. The minimal polynomial for ( is
f(x) =xP L4 xP72 ... 4 x4 1.

Proof. Since

xP -1

Xp_1+Xp_2+“'+X+1: ,
x—1

all of the p-th roots of unity except 1 are zeros of f.

It remains to show that f is irreducible over Q.

It suffices to show f(x + 1) is irreducible (f(x) = g(x)h(x) if and
only if f(x+1) = g(x+ 1)h(x + 1)).

Idea: apply Eisenstein’s criterion to f(x + 1).
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Minimal polynomial for ¢

Proposition. The minimal polynomial for ( is
f(x)=xP L4 xP2 4. 4 x+1.

Proof continued.

We have

(x+1)P -1

f(x—l—l):m

XP4 (P)xP 2+ (B)x+1-1

X

:XP—1+< p1>xp—2+< p2)xp—3+...
p— p—



Minimal polynomial for ¢

Proposition. The minimal polynomial for ( is
f(x)=xP L4 xP72 ... x4+ 1.

Proof continued.

We have

(x+1)P -1

f(x—l—l):m

XP4 (P)xP 2+ (B)x+1-1

X

— p—1 p p—2 p p—3 p
X +<p_1>x +<p_2)x + +<1).

Eisenstein’s criterion now applies. Note that (}) = Wik)! is
divisible by p for 1 < k < p—1.
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Corollary. We have [K: Q] =p—1and {1,(,...,(P%} isa
Q-basis for K.

The second part of the theorem is to show that {1,(,...,(P72} is
also a Z-basis for O.

We will do that next time. For now, we will calculate some needed
norms and traces.



Some norms and traces

The minimal polynomial for ¢ factors as f(x) = Hf-’z_ll(x —¢h.



Some norms and traces

The minimal polynomial for ¢ factors as f(x) = Hf-’z_ll( —¢h.

So the embeddings of K are given by ¢;(¢) = ¢’ for
i=1,...,p—1.



Some norms and traces

The minimal polynomial for ¢ factors as f(x) = Hf-’z_ll( —¢h.
So the embeddings of K are given by ¢;(¢) = ¢’ for
i=1,...,p—1.

The field polynomial for  is its minimal polynomial:

p—1

f(x) = f(x) = [[(x = 0i(¢)) =

i=1



Some norms and traces

The minimal polynomial for ¢ factors as f(x) = Hf-’z_ll( —¢h.
So the embeddings of K are given by ¢;(¢) = ¢’ for
i=1,...,p—1.

The field polynomial for  is its minimal polynomial:

p—1

f(x) = f(x) = [[(x = 0i(¢)) =

i=1

=P (1(Q) 7y a(QPP e (<P 1(Q) ()
R Y ——
7() N(¢)




Some norms and traces

The minimal polynomial for ¢ factors as f(x) = Hf-’z_ll( —¢h.
So the embeddings of K are given by ¢;(¢) = ¢’ for
i=1,...,p—1.

The field polynomial for  is its minimal polynomial:

p—1
f(x) = fe(x) = [] (x = 0i(Q)) =
i=1
=xP 71— (1(0) + - + 0 a (PP + (1P 01(() - op-a(C)
N— —
7(0) N(G)
But f(x) =xP 1+ xP2 4.+ x+ 1.




Some norms and traces

The minimal polynomial for ¢ factors as f(x) = Hf-’z_ll( —¢h.
So the embeddings of K are given by ¢;(¢) = ¢’ for
i=1,...,p—1.

The field polynomial for  is its minimal polynomial:

p—1
f(x) = fe(x) = [[(x = 0i(¢)) =
i=1
=xPt—(01(Q) + -+ op1(O)XP 24+ (=1)P L 01(¢) - 0p-1(C)
S———
T() N(C)
But f(x) =xP 1 +xP2 4+ .. +x+1. So T(¢) = -1,




Some norms and traces

The minimal polynomial for ¢ factors as f(x) = Hf-’z_ll( —¢h.
So the embeddings of K are given by ¢;(¢) = ¢’ for
i=1,...,p—1.

The field polynomial for  is its minimal polynomial:

p—1
F(x) = f(x) = [[(x = 0i(¢)) =
i=1
=P = (@1(Q) + (O 4+ (1P r(0) - poa(()
R Y ——
7() N(¢)

But f(x) =xP"1+xP2+ ...+ x+1. So T(¢) = —1, and
N(¢) = 1 since p is odd.
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We have just seen that N(¢) =1 and T(¢) = —1.
By multiplicativity, N(¢') = 1 for all i.
What about traces? First noteif 1l <ji< k<p-—1,

oi() = o) = (T = (= (TR =1
<= (i—k)j =0mod p < j =0 mod p.

Therefore, for j £ 0 mod p,
{o1(¢)s v opa (@) = {¢ o P,

from which it follows that

p—1

T(@) = o) =¢+ P+ +¢P =-1

i=1
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Some norms and traces

If j =0 mod p, then ¢/ =1, and

p—1 p—1
T()=> oi(1)=> 1=p-1
i=1 i=1

One last norm:

p—1 p—1 .
N1-¢)=]]o1-¢)=]]-¢)="(1)
i=1

i=1
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If j =0 mod p, then ¢/ =1, and

p—1 -1

T(1) = Zl—p—l

I¥
N

One last norm:

p—1 p—1
—O0=[lo-Q=Tl0-)=F1) =1+ +1=p.
i=1 i=1

p times



Some norms and traces

Summary:
Let ¢ = e*™/P. Then
N(Z) =1 forall i€ Z
N1-¢)=p
and

T(Cj):{_l if j 20 mod p

p—1 if j=0mod p.
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Given o € K = O, write

a=a+al+--+ ap_gcpfz
for some unique a; € Q. (Why is this possible?)
Lemma. For 0 < k < p—2,

T(a(’_k —al) = pak € Z.

Proof. First step: why is T(a(™% — a() € Z7?
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Lemma. For 0 < k < p—2,

T(aC ™% — af) = pay € Z.

Proof continued. We then calculate T(a¢™* — a()

= T(a¢™) = T(aQ)

— T(ao(—k TaH gt apizg—k—f—p—Q)
— T(aoC + 31<2 I ap_2<p—1)

=—a—a— - —a1+(p—1)ax—ak1— - —ap-2

_(_ao_al_"'_apf2)



A useful lemma
a:a0+a1C+~-+ap_2§”_2EDK, a,eQ

Lemma. For 0 < k < p—2,

T(aC ™% — af) = pay € Z.

Proof continued. We then calculate T(a¢™* — a()

= T(a(™") = T()

_ —k —k+1 —k+p—2

= T(ao¢ K+ aC a4 apaC )
— T(aol + a1+ -+ + ap_2(P 1)

=-a—a— - —ak1t(p—Lax—ak1—— a2
— (_ao — al I i — apiz)

= pagk.



