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Tomorrow’s quiz

See posting at our homepage.



Leftover

Proposition. Let C be an n× n integer matrix. The C is invertible
and its inverse has integer coefficients if and only if det(C) = ±1.

Proof. (⇒) Suppose C is invertible and its inverse has integer
coefficients. Then

1 = CC−1 ⇒ 1 = det(C) det(C−1).

But det(C) and det(C−1) are integers. So det C = ±1.

(⇐) Suppose det(C) = ±1. Then the adjugate formula for C−1

shows that C−1 has integer coefficients.
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Today

1. Field polynomials
2. Norms and traces.



Field polynomials

Usual set-up:

K OK

Q Z

K = Q(θ) = Q[θ]

min. poly. p(x) =
∏n

i=1(x − θi )

embeddings σi : θ 7→ θi

The field polynomial for α ∈ K is

fα :=
n∏

i=1
(x − σi (α)).
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Field polynomials

Usual set-up:

K OK

Q Z

K = Q(θ) = Q[θ]

min. poly. p(x) =
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Examples

Example. If α = θ, then fα

is the minimal polynomial for θ
over Q.

Example. K = Q(
√

2), α = 2 + 3
√

2. Check that

fα = x2 − 4x − 14,

the minimal polynomial for α over Q.

For another example, let α = 5 ∈ Z. Then

f5 = (x − σ1(5))(x − σ2(5)) = (x − 5)2.

So f5 is the square of the minimal polynomial x − 5 for 5 over Q.
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Field polynomials

Theorem. With notation as above, let pα be the minimal
polynomial for α over Q.

1. The field polynomial has rational coefficients: fα ∈ Q[x ].
2. There exists a positive integer k such that fα = pk

α.
3. If α is an algebraic integer, then fα has integer coefficients:

fα ∈ Z[x ].
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Proof of theorem

Claim: The field polynomial has rational coefficients: fα ∈ Q[x ].

Proof.
I There exists r ∈ Q[x ] such that α = r(θ).
I σi (α) = σi (r(θ)) = r(σi (θ)) = r(θi )

I fα =
∏n

i=1(x − σi (α)) =
∏n

i=1(x − r(θi ))

= xn − (σ1(α) + · · ·+ σp−2(α))xn−1 + · · ·+ (−1)nσ1(α) · · ·σp−1(α)

I The coefficients are symmetric functions in the θi , hence,
rational. �
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Proof of theorem.

Claim. There exists a positive integer k such that fα = pk
α.

I pα|fα in Q[x ].
I So we have write fα = pk

αh for some h ∈ Q[x ] relatively prime
to pα. Further, h is monic.

I It suffices to show h is constant (i.e., h = 1 since monic). For
sake of contradiction, suppose not. We will get the
contradiction pα|h. Factor in C[x ]:

fα =
n∏

i=1
(x − σi (α)) =

n∏
i=1

(x − r(θi )) = (pα(x))kh(x),

By unique factorization, it follows that there exists j such
that r(θj) is a zero of h, i.e., h(r(θj)) = 0. Define
g(x) := h(r(x)). Then g(θj) = 0.
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I In particular, p is the min. poly. for θj . Therefore,
g(θj) = 0⇒ p|g in Q[x ].

I Since p|g , all θi are zeros of g . In particular, letting i = 1, we
have g(θ) = 0.

I Hence, h(α) = h(r(θ)) = g(θ) = 0.

I So pα|h. Contradiction. �
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Proof of theorem

Claim: If α is an algebraic integer, the fα has integer coefficients:
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The result now follows since fα = pk
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Properties of the norm and trace

1. N(αβ) = N(α)N(β) and T (α + β) = T (α) + T (β).

2. The norm and trace appear as coefficients of the corresponding
field polynomial: fα =

∏n
i=1(x − σi (x))

= xn − (σ1(α) + · · ·+ σn(α)︸ ︷︷ ︸
T (α)

)xn−1 + · · ·+ (−1)n σ1(α) · · ·σn(α)︸ ︷︷ ︸
N(α)

.

3. N(α),T (α) ∈ Q. If α ∈ OK , then N(α),T (α) ∈ Z (since
fα ∈ Z[x ] in this case).
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Properties of norm and trace

4. Suppose that α ∈ OK . Then α is a unit if and only if
N(α) = ±1.

5. Suppose that α ∈ OK . If N(α) = q ∈ Z where q is a rational
prime, then α is irreducible.

6. Let p be the minimal polynomial for θ. Then

∆[1, θ, . . . , θn−1] = (−1)n(n−1)/2N(p′(θ))

where p′ is the derivative of p.

7. Let α1, . . . , αn be a Q-basis for K . Let S be the n × n matrix
with ij-th entry T (αiαj). Then

∆[α1, . . . , αn] = det S = det((T (αiαj))).
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Properties of norm and trace
4. Suppose that α ∈ OK . Then α is a unit if and only if
N(α) = ±1.

Proof. (⇒) Suppose there exist β ∈ OK such that αβ = 1. Then

1 = N(1) = N(αβ) = N(α)N(β).

But N(α),N(β) ∈ Z. So N(α) = ±1.

(⇐) Suppose that N(α) = ±1:

±1 =
n∏

i=1
σi (α) = ασ2(α) · · ·σn(α)︸ ︷︷ ︸

β

.

We claim β ∈ OK .
1. β ∈ K since β = ± 1

α ∈ K .
2. β is an algebraic number: Each σi (α) satisfies the minimal

polynomial for α, and the algebraic numbers form a ring. �
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Properties of norm and trace

5. Suppose that α ∈ OK . If N(α) = q ∈ Z where q is a rational
prime, then α is irreducible.

Proof. Suppose that α = βγ for some β, γ ∈ OK . Then

q = N(α) = N(βγ) = N(β)N(γ).

Since N(β),N(γ) ∈ Z and q is prime, one of N(β) or N(γ) is ±1.
Without loss of generality, say N(β) = ±1. It follows that β is a
unit. Thus, α is irreducible. �
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Properties of norm and trace
6. Let p be the minimal polynomial for θ. Then

∆[1, θ, . . . , θn−1] = (−1)n(n−1)/2N(p′(θ)).

Proof. ∆[1, θ, . . . , θn−1] =
∏

1≤i<j≤n(θj − θi )2, where θi = σi (θ).
For each j = 1, . . . , n,

p(x) =
n∏

i=1
(x − θi )⇒ p′(x) =

n∑
k=1

∏
i :i 6=k

(x − θi )

⇒ p′(θj) =
∏

i :i 6=j
(θj − θi ).

So
N(p′(θ)) =

n∏
j=1

σj(p′(θ)) =
n∏

j=1
p′(θj) =

n∏
i ,j
i 6=j

(θj − θi ).
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Properties of norm and trace

6. Let p be the minimal polynomial for θ. Then

∆[1, θ, . . . , θn−1] = (−1)n(n−1)/2N(p′(θ)).

Proof continued.
N(p′(θ)) =

n∏
j=1

σj(p′(θ)) =
n∏

j=1
p′(θj) =

n∏
i ,j=1
i 6=j

(θj − θi ).

On the right-hand side, each θj − θi appears twice: once
when j < i , and once when j > i . Grouping these two occurrences
together gives

N(p′(θ)) =
n∏

1≤i<j≤n

(
−(θj − θi )2

)
= (−1)(n

2)
∏

1≤i<j≤n
(θj − θi )2,

where
(n

2
)

= n(n − 1)/2 is the number of pairs i , j with i < j . �
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Properties of norm and trace

7. Let α1, . . . , αn be a Q-basis for K .

Let S = (T (αiαj)). Then
∆[α1, . . . , αn] = det S = det((T (αiαj))).

Proof.

Sij = T (αiαj) =
n∑

k=1
σk(αiαj) =

n∑
k=1

σk(αi )σk(αj).

To compute the discriminant, let A = (σi (αj)). Then

∆[α1, . . . , αn] = (det A)2 = det(A) det(A) = det(At) det(A) = det(AtA).
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