Math 361

February 13, 2023



Tomorrow's quiz

See posting at our homepage.
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Leftover

Proposition. Let C be an n x n integer matrix. The C is invertible
and its inverse has integer coefficients if and only if det(C) = +1.

Proof. (=) Suppose C is invertible and its inverse has integer
coefficients. Then

1=CC!' = 1=det(C)det(C1).

But det(C) and det(C~!) are integers. So det C = +1.

(<) Suppose det(C) = £1. Then the adjugate formula for C~*
shows that C~! has integer coefficients.



Today

1. Field polynomials
2. Norms and traces.
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Field polynomials

Usual set-up:

K = Q(6) = QU]
min. poly. p(x) =T]71(x — 6))

embeddings o;: 6 — 0;

The field polynomial for @ € K is

n

fo = H(X —oi(a)).

i=1
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Examples

Example. If a = 0, then f, is the minimal polynomial for 6
over Q.

Example. K = Q(v/2), o = 2 + 31/2. Check that
fo =x>—4x — 14,
the minimal polynomial for a over Q.
For another example, let « =5 € Z. Then
s = (x — 01(5))(x — 02(5)) = (x — 5)".

So f5 is the square of the minimal polynomial x — 5 for 5 over Q.
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Field polynomials

Theorem. With notation as above, let p, be the minimal
polynomial for o over Q.

1. The field polynomial has rational coefficients: f, € Q[x].
2. There exists a positive integer k such that f, = pc’;.

3. If « is an algebraic integer, then f, has integer coefficients:
fo € Z[x].
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Claim: The field polynomial has rational coefficients: f, € Q[x].

Proof.
» There exists r € Q[x] such that a = r(9).

> oi(a) =oi(r(0)) = r(oi(0)) = r(6;)
> fo =[Iili(x — oi(a)) = [TiZ1(x — r(6)))
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Proof of theorem

Claim: The field polynomial has rational coefficients: f, € Q[x].

Proof.

>
| 2

>

There exists r € Q[x] such that a = r(0).

oi(a) = 0i(r(0)) = r(oi()) = r(6;)

fo = [1ia(x = oi(a)) = [I7ma (x = r(67))

=x"— (g1(a) + -+ opoa(@))x" L+ 4+ (=1)"01(a) - opo1(@)

The coefficients are symmetric functions in the 6;, hence,
rational.
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Claim. There exists a positive integer k such that f, = pg.

>
>
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Polfo in Q[x].

So we have write £, = pXh for some h € Q[x] relatively prime
to p,. Further, h is monic.

It suffices to show h is constant (i.e., h =1 since monic). For
sake of contradiction, suppose not. We will get the
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Proof of theorem.

Claim. There exists a positive integer k such that f, = pg.

>
>

>

Polfo in Q[x].

So we have write £, = pXh for some h € Q[x] relatively prime
to p,. Further, h is monic.

It suffices to show h is constant (i.e., h =1 since monic). For
sake of contradiction, suppose not. We will get the
contradiction p,|h. Factor in C[x]:

n n

fo = [[(x = 0i(@)) = ][ (x = r(67)) = (pa(x))*h(x),

i=1 i=1

By unique factorization, it follows that there exists j such
that r(6;) is a zero of h, i.e., h(r(6;)) = 0. Define
g(x) := h(r(x)). Then g(¢;) = 0.
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r(0) = «
fo = 71 (x = 0i(@)) = TTa (x = r(0)) = (pa(x))*h(x)
g(x) := h(r(x)), &(6;) = h(r(6;)) =0

» p is the minimal polynomial for all 6;.

» In particular, p is the min. poly. for 6;. Therefore,
g(0j) = 0= plg in Q[x].

» Since plg, all 0; are zeros of g. In particular, letting i = 1, we
have g(0) = 0.

» Hence, h(a) = h(r(0)) = g(f) = 0.

» So po|h. Contradiction. O
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Proof of theorem

Claim: If « is an algebraic integer, the f, has integer coefficients:
fo € Z[x].

Proof. The minimal polynomial for o over Q is p,.
So if « is an algebraic integer, then p, € Z[x].

The result now follows since £, = pkX. O
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Definition. Let o € K. The norm of « is
n
N(a) =[] oi(e),
i=1
and the trace of « is

T(o) = Z oi(a).
i=1

Example. Fora =2 +3V2 e K = Q(ﬂ)
N(a) = 01(2 +3V2)02(2 + 3v2) = (2 +3v2)(2 - 3v2) = —14
and

T(a) = 01(2+3V2) + 02(2+3V2) = (24 3v2) + (2 - 3V2)



Norm and Trace

Definition. Let o € K. The norm of « is
n
N(a) =[] oi(e),
i=1
and the trace of « is

T(o) = Z oi(a).
i=1

Example. Fora =2 +3V2 e K = Q(ﬂ)
N(a) = 01(2 +3V2)02(2 + 3v2) = (2 +3v2)(2 - 3v2) = —14
and

T(a) = 01(2+3V2) +02(2+3v2) = (2+3v2) + (2 3V2) = 4.
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Properties of the norm and trace

1. N(aB) = N(a)N(B) and T(a+ 8) = T(a)+ T(B).

2. The norm and trace appear as coefficients of the corresponding
field polynomial: f, =[] (x — oi(x))

= X" = (01(0) & -+ af@)x™ 4o+ (-1)"01(a) -+ an(a),
————
T(a) N(e)

3. N(a), T(ex) € Q. If @ € O, then N(«), T() € Z (since
fo € Z[x] in this case).
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Properties of norm and trace

4. Suppose that o € Ok. Then « is a unit if and only if
N(a) = £1.

5. Suppose that @ € Ok. If N(«) = g € Z where q is a rational
prime, then « is irreducible.

6. Let p be the minimal polynomial for . Then
A[L,0,...,0" 1 = (=1)""=D2N(p' ()
where p’ is the derivative of p.

7. Let a1,...,a, be a Q-basis for K. Let S be the n x n matrix
with jj-th entry T (o). Then

Alai, ..., a,] = det S = det(( T (aiq)))).
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1. BGKsinceﬁ:iéEK.

2. [ is an algebraic number: Each o;(«) satisfies the minimal
polynomial for a, and the algebraic numbers form a ring. [
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6. Let p be the minimal polynomial for . Then

A[L,0,...,0" Y = (=1)"=D2N(p'(6)).

Proof continued.

N(p'(0) = [T o;(p'(0)) = [T P'(65) = T1 (65— 0.
Jj=1 j=1 ij=1
i#j

On the right-hand side, each 6; — 0; appears twice: once
when j < i, and once when j > i. Grouping these two occurrences
together gives

NE@) = TI (-0-00°) =(0& I © -0y
1<i<j<n 1<i<j<n
where (5) = n(n —1)/2 is the number of pairs i,j with i < j. O
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7. Let a1,..., o, be a Q-basis for K. Let S = (T (wjc;j)). Then
Alag, ..., ap) =det S = det(( T (wi))).

Proof.
Sij = T(ajaj) = Z ok(ajaj) = Z ok(aj)ok(a;)).
k=1 k=1
To compute the discriminant, let A = (0i(c;)). Then
Alay, ..., o, = (det A)? = det(A) det(A) = det(A?) det(A) = det(A’A).

Check that AtA=S. O



