Math 361

February 13, 2023

Tomorrow's quiz

See posting at our homepage.

Proposition. Let C be an $n \times n$ integer matrix. The C is invertible and its inverse has integer coefficients if and only if det $(C) = \pm 1$.

Proposition. Let C be an $n \times n$ integer matrix. The C is invertible and its inverse has integer coefficients if and only if $det(C) = \pm 1$.

Proof. (\Rightarrow) Suppose *C* is invertible and its inverse has integer coefficients.

Proposition. Let C be an $n \times n$ integer matrix. The C is invertible and its inverse has integer coefficients if and only if $det(C) = \pm 1$.

Proof. (\Rightarrow) Suppose *C* is invertible and its inverse has integer coefficients. Then

$$1 = CC^{-1} \quad \Rightarrow \quad 1 = \det(C)\det(C^{-1}).$$

Proposition. Let C be an $n \times n$ integer matrix. The C is invertible and its inverse has integer coefficients if and only if $det(C) = \pm 1$.

Proof. (\Rightarrow) Suppose *C* is invertible and its inverse has integer coefficients. Then

$$1 = CC^{-1} \quad \Rightarrow \quad 1 = \det(C)\det(C^{-1}).$$

But det(C) and det(C^{-1}) are integers.

Proposition. Let C be an $n \times n$ integer matrix. The C is invertible and its inverse has integer coefficients if and only if $det(C) = \pm 1$.

Proof. (\Rightarrow) Suppose *C* is invertible and its inverse has integer coefficients. Then

$$1 = CC^{-1} \quad \Rightarrow \quad 1 = \det(C)\det(C^{-1}).$$

But det(C) and det(C⁻¹) are integers. So det $C = \pm 1$.

Proposition. Let C be an $n \times n$ integer matrix. The C is invertible and its inverse has integer coefficients if and only if $det(C) = \pm 1$.

Proof. (\Rightarrow) Suppose *C* is invertible and its inverse has integer coefficients. Then

$$1 = CC^{-1} \quad \Rightarrow \quad 1 = \det(C)\det(C^{-1}).$$

But det(C) and det(C^{-1}) are integers. So det $C = \pm 1$.

(\Leftarrow) Suppose det(C) = ± 1 . Then the adjugate formula for C^{-1} shows that C^{-1} has integer coefficients.

- 1. Field polynomials
- 2. Norms and traces.

Usual set-up:

Usual set-up:

$$\mathcal{K} = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$$

Usual set-up:

 $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ min. poly. $p(x) = \prod_{i=1}^{n} (x - \theta_i)$

Usual set-up:

 $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ min. poly. $p(x) = \prod_{i=1}^{n} (x - \theta_i)$ embeddings $\sigma_i : \theta \mapsto \theta_i$

Usual set-up:

 $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ min. poly. $p(x) = \prod_{i=1}^{n} (x - \theta_i)$ embeddings $\sigma_i : \theta \mapsto \theta_i$

The field polynomial for $\alpha \in K$ is

$$f_{\alpha} := \prod_{i=1}^{n} (x - \sigma_i(\alpha)).$$

Example. If $\alpha = \theta$, then f_{α}

Example. If $\alpha = \theta$, then f_{α} is the minimal polynomial for θ over \mathbb{Q} .

Example. If $\alpha = \theta$, then f_{α} is the minimal polynomial for θ over \mathbb{Q} .

Example. $K = \mathbb{Q}(\sqrt{2})$, $\alpha = 2 + 3\sqrt{2}$. Check that

$$f_{\alpha}=x^2-4x-14,$$

Example. If $\alpha = \theta$, then f_{α} is the minimal polynomial for θ over \mathbb{Q} .

Example. $K = \mathbb{Q}(\sqrt{2}), \ \alpha = 2 + 3\sqrt{2}$. Check that

$$f_{\alpha} = x^2 - 4x - 14,$$

the minimal polynomial for α over \mathbb{Q} .

Example. If $\alpha = \theta$, then f_{α} is the minimal polynomial for θ over \mathbb{Q} .

Example. $\mathcal{K} = \mathbb{Q}(\sqrt{2}), \ \alpha = 2 + 3\sqrt{2}.$ Check that

$$f_{\alpha} = x^2 - 4x - 14,$$

the minimal polynomial for α over \mathbb{Q} .

For another example, let $\alpha = 5 \in \mathbb{Z}$.

Example. If $\alpha = \theta$, then f_{α} is the minimal polynomial for θ over \mathbb{Q} .

Example. $K = \mathbb{Q}(\sqrt{2}), \ \alpha = 2 + 3\sqrt{2}$. Check that

$$f_{\alpha}=x^2-4x-14,$$

the minimal polynomial for α over \mathbb{Q} .

For another example, let $\alpha = 5 \in \mathbb{Z}$. Then

$$f_5 = (x - \sigma_1(5))(x - \sigma_2(5))$$

Example. If $\alpha = \theta$, then f_{α} is the minimal polynomial for θ over \mathbb{Q} .

Example. $K = \mathbb{Q}(\sqrt{2}), \ \alpha = 2 + 3\sqrt{2}$. Check that

$$f_{\alpha}=x^2-4x-14,$$

the minimal polynomial for α over \mathbb{Q} .

For another example, let $\alpha = 5 \in \mathbb{Z}$. Then

$$f_5 = (x - \sigma_1(5))(x - \sigma_2(5)) = (x - 5)^2.$$

Example. If $\alpha = \theta$, then f_{α} is the minimal polynomial for θ over \mathbb{Q} .

Example. $K = \mathbb{Q}(\sqrt{2}), \ \alpha = 2 + 3\sqrt{2}$. Check that

$$f_{\alpha} = x^2 - 4x - 14,$$

the minimal polynomial for α over \mathbb{Q} .

For another example, let $\alpha = 5 \in \mathbb{Z}$. Then

$$f_5 = (x - \sigma_1(5))(x - \sigma_2(5)) = (x - 5)^2.$$

So f_5 is the square of the minimal polynomial x - 5 for 5 over \mathbb{Q} .

1. The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$.

- 1. The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$.
- 2. There exists a positive integer k such that $f_{\alpha} = p_{\alpha}^{k}$.

- 1. The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$.
- 2. There exists a positive integer k such that $f_{\alpha} = p_{\alpha}^{k}$.
- 3. If α is an algebraic integer, then f_{α} has integer coefficients: $f_{\alpha} \in \mathbb{Z}[x]$.

Claim: The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$.

Claim: The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$. **Proof.**

Claim: The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$. **Proof.**

$$\blacktriangleright \sigma_i(\alpha) = \sigma_i(r(\theta))$$

Claim: The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$. **Proof.**

$$\blacktriangleright \sigma_i(\alpha) = \sigma_i(r(\theta)) = r(\sigma_i(\theta))$$

Claim: The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$. **Proof.**

•
$$\sigma_i(\alpha) = \sigma_i(r(\theta)) = r(\sigma_i(\theta)) = r(\theta_i)$$

Claim: The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$. **Proof.**

•
$$\sigma_i(\alpha) = \sigma_i(r(\theta)) = r(\sigma_i(\theta)) = r(\theta_i)$$

•
$$f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_i))$$

Claim: The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$. **Proof.**

There exists r∈ Q[x] such that α = r(θ).
σ_i(α) = σ_i(r(θ)) = r(σ_i(θ)) = r(θ_i)
f_α = Πⁿ_{i=1}(x - σ_i(α)) = Πⁿ_{i=1}(x - r(θ_i)) = xⁿ - (σ₁(α) + ··· + σ_{p-2}(α))xⁿ⁻¹ + ··· + (-1)ⁿσ₁(α) ··· σ_{p-1}(α)

Claim: The field polynomial has rational coefficients: $f_{\alpha} \in \mathbb{Q}[x]$. **Proof.**

• The coefficients are symmetric functions in the θ_i , hence, rational.

Claim. There exists a positive integer k such that $f_{\alpha} = p_{\alpha}^{k}$.

Claim. There exists a positive integer k such that $f_{\alpha} = p_{\alpha}^{k}$.

 $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- ▶ So we have write $f_{\alpha} = p_{\alpha}^{k}h$ for some $h \in \mathbb{Q}[x]$ relatively prime to p_{α} .

- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- So we have write f_α = p^k_αh for some h ∈ Q[x] relatively prime to p_α. Further, h is monic.

- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- So we have write f_α = p^k_αh for some h ∈ Q[x] relatively prime to p_α. Further, h is monic.
- ▶ It suffices to show h is constant (i.e., h = 1 since monic).

- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- So we have write f_α = p^k_αh for some h ∈ Q[x] relatively prime to p_α. Further, h is monic.
- It suffices to show h is constant (i.e., h = 1 since monic). For sake of contradiction, suppose not.

- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- So we have write f_α = p^k_αh for some h ∈ Q[x] relatively prime to p_α. Further, h is monic.
- It suffices to show h is constant (i.e., h = 1 since monic). For sake of contradiction, suppose not. We will get the contradiction p_α|h.

- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- So we have write f_α = p^k_αh for some h ∈ Q[x] relatively prime to p_α. Further, h is monic.
- It suffices to show h is constant (i.e., h = 1 since monic). For sake of contradiction, suppose not. We will get the contradiction p_α|h. Factor in C[x]:

$$f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_i)) = (p_{\alpha}(x))^k h(x),$$

Claim. There exists a positive integer k such that $f_{\alpha} = p_{\alpha}^{k}$.

- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- So we have write f_α = p^k_αh for some h ∈ Q[x] relatively prime to p_α. Further, h is monic.
- It suffices to show h is constant (i.e., h = 1 since monic). For sake of contradiction, suppose not. We will get the contradiction p_α|h. Factor in C[x]:

$$f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_i)) = (p_{\alpha}(x))^k h(x),$$

By unique factorization, it follows that there exists j such that $r(\theta_j)$ is a zero of h,

Claim. There exists a positive integer k such that $f_{\alpha} = p_{\alpha}^{k}$.

- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- So we have write f_α = p^k_αh for some h ∈ Q[x] relatively prime to p_α. Further, h is monic.
- It suffices to show h is constant (i.e., h = 1 since monic). For sake of contradiction, suppose not. We will get the contradiction p_α|h. Factor in C[x]:

$$f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_i)) = (p_{\alpha}(x))^k h(x),$$

By unique factorization, it follows that there exists j such that $r(\theta_j)$ is a zero of h, i.e., $h(r(\theta_j)) = 0$.

Claim. There exists a positive integer k such that $f_{\alpha} = p_{\alpha}^{k}$.

- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- So we have write f_α = p^k_αh for some h ∈ Q[x] relatively prime to p_α. Further, h is monic.
- It suffices to show h is constant (i.e., h = 1 since monic). For sake of contradiction, suppose not. We will get the contradiction p_α|h. Factor in C[x]:

$$f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_i)) = (p_{\alpha}(x))^k h(x),$$

By unique factorization, it follows that there exists j such that $r(\theta_j)$ is a zero of h, i.e., $h(r(\theta_j)) = 0$. Define g(x) := h(r(x)).

Claim. There exists a positive integer k such that $f_{\alpha} = p_{\alpha}^{k}$.

- $\blacktriangleright p_{\alpha}|f_{\alpha} \text{ in } \mathbb{Q}[x].$
- So we have write f_α = p^k_αh for some h ∈ Q[x] relatively prime to p_α. Further, h is monic.
- It suffices to show h is constant (i.e., h = 1 since monic). For sake of contradiction, suppose not. We will get the contradiction p_α|h. Factor in C[x]:

$$f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_i)) = (p_{\alpha}(x))^k h(x),$$

By unique factorization, it follows that there exists j such that $r(\theta_j)$ is a zero of h, i.e., $h(r(\theta_j)) = 0$. Define g(x) := h(r(x)). Then $g(\theta_j) = 0$.

$$r(\theta) = \alpha$$

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \end{aligned}$$

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_i(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_i)) = (p_{\alpha}(x))^k h(x) \\ g(x) &:= h(r(x)), \end{aligned}$$

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_i(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_i)) = (p_{\alpha}(x))^k h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_j) = h(r(\theta_j)) = 0 \end{aligned}$$

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

▶ *p* is the minimal polynomial for all θ_i .

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

▶ *p* is the minimal polynomial for all θ_i .

▶ In particular, p is the min. poly. for θ_j .

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

▶ *p* is the minimal polynomial for all θ_i .

▶ In particular, p is the min. poly. for θ_j . Therefore, $g(\theta_j) = 0 \Rightarrow p|g$ in $\mathbb{Q}[x]$.

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

▶ *p* is the minimal polynomial for all θ_i .

▶ In particular, p is the min. poly. for θ_j . Therefore, $g(\theta_j) = 0 \Rightarrow p|g$ in $\mathbb{Q}[x]$.

Since
$$p|g$$
, all θ_i are zeros of g .

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

- ▶ In particular, p is the min. poly. for θ_j . Therefore, $g(\theta_j) = 0 \Rightarrow p|g$ in $\mathbb{Q}[x]$.
- Since p|g, all θ_i are zeros of g. In particular, letting i = 1, we have g(θ) = 0.

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

- ▶ In particular, p is the min. poly. for θ_j . Therefore, $g(\theta_j) = 0 \Rightarrow p|g$ in $\mathbb{Q}[x]$.
- Since p|g, all θ_i are zeros of g. In particular, letting i = 1, we have g(θ) = 0.

• Hence,
$$h(\alpha) = h(r(\theta)) =$$

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

- ▶ In particular, p is the min. poly. for θ_j . Therefore, $g(\theta_j) = 0 \Rightarrow p|g$ in $\mathbb{Q}[x]$.
- Since p|g, all θ_i are zeros of g. In particular, letting i = 1, we have g(θ) = 0.

• Hence,
$$h(\alpha) = h(r(\theta)) = g(\theta)$$

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

- ▶ In particular, p is the min. poly. for θ_j . Therefore, $g(\theta_j) = 0 \Rightarrow p|g$ in $\mathbb{Q}[x]$.
- Since p|g, all θ_i are zeros of g. In particular, letting i = 1, we have g(θ) = 0.

• Hence,
$$h(\alpha) = h(r(\theta)) = g(\theta) = 0$$
.

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

- ▶ In particular, p is the min. poly. for θ_j . Therefore, $g(\theta_j) = 0 \Rightarrow p|g$ in $\mathbb{Q}[x]$.
- Since p|g, all θ_i are zeros of g. In particular, letting i = 1, we have g(θ) = 0.

• Hence,
$$h(\alpha) = h(r(\theta)) = g(\theta) = 0$$
.

$$\begin{aligned} r(\theta) &= \alpha \\ f_{\alpha} &= \prod_{i=1}^{n} (x - \sigma_{i}(\alpha)) = \prod_{i=1}^{n} (x - r(\theta_{i})) = (p_{\alpha}(x))^{k} h(x) \\ g(x) &:= h(r(x)), \quad g(\theta_{j}) = h(r(\theta_{j})) = 0 \end{aligned}$$

 \triangleright p is the minimal polynomial for all θ_i .

- ▶ In particular, p is the min. poly. for θ_j . Therefore, $g(\theta_j) = 0 \Rightarrow p|g$ in $\mathbb{Q}[x]$.
- Since p|g, all θ_i are zeros of g. In particular, letting i = 1, we have g(θ) = 0.

• Hence,
$$h(\alpha) = h(r(\theta)) = g(\theta) = 0$$
.

▶ So $p_{\alpha}|h$. Contradiction.

Claim: If α is an algebraic integer, the f_{α} has integer coefficients: $f_{\alpha} \in \mathbb{Z}[x]$.

Claim: If α is an algebraic integer, the f_{α} has integer coefficients: $f_{\alpha} \in \mathbb{Z}[x]$.

Proof. The minimal polynomial for α over \mathbb{Q} is p_{α} .

- **Claim:** If α is an algebraic integer, the f_{α} has integer coefficients: $f_{\alpha} \in \mathbb{Z}[x]$.
- **Proof.** The minimal polynomial for α over \mathbb{Q} is p_{α} . So if α is an algebraic integer, then $p_{\alpha} \in \mathbb{Z}[x]$.

Claim: If α is an algebraic integer, the f_{α} has integer coefficients: $f_{\alpha} \in \mathbb{Z}[x]$.

Proof. The minimal polynomial for α over \mathbb{Q} is p_{α} . So if α is an algebraic integer, then $p_{\alpha} \in \mathbb{Z}[x]$.

The result now follows since $f_{\alpha} = p_{\alpha}^k$.

Definition. Let $\alpha \in K$. The *norm* of α is

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha),$$

Definition. Let $\alpha \in K$. The *norm* of α is

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha),$$

and the trace of α is

$$T(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha).$$

Definition. Let $\alpha \in K$. The *norm* of α is

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha),$$

and the trace of α is

$$T(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha).$$

Example. For $\alpha = 2 + 3\sqrt{2} \in K = \mathbb{Q}(\sqrt{2})$,

Definition. Let $\alpha \in K$. The *norm* of α is

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha),$$

and the trace of α is

$$T(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha).$$

Example. For $\alpha = 2 + 3\sqrt{2} \in K = \mathbb{Q}(\sqrt{2})$,

$$N(\alpha) = \sigma_1(2 + 3\sqrt{2})\sigma_2(2 + 3\sqrt{2})$$

Definition. Let $\alpha \in K$. The *norm* of α is

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha),$$

and the trace of α is

$$T(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha).$$

Example. For $\alpha = 2 + 3\sqrt{2} \in K = \mathbb{Q}(\sqrt{2})$,

 $N(\alpha) = \sigma_1(2 + 3\sqrt{2})\sigma_2(2 + 3\sqrt{2}) = (2 + 3\sqrt{2})(2 - 3\sqrt{2})$

Definition. Let $\alpha \in K$. The *norm* of α is

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha),$$

and the trace of α is

$$T(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha).$$

Example. For $\alpha = 2 + 3\sqrt{2} \in K = \mathbb{Q}(\sqrt{2})$,

 $N(\alpha) = \sigma_1(2 + 3\sqrt{2})\sigma_2(2 + 3\sqrt{2}) = (2 + 3\sqrt{2})(2 - 3\sqrt{2}) = -14$

Definition. Let $\alpha \in K$. The *norm* of α is

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha),$$

and the trace of α is

$$T(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha).$$

Example. For $\alpha = 2 + 3\sqrt{2} \in K = \mathbb{Q}(\sqrt{2})$,

$$N(\alpha) = \sigma_1(2+3\sqrt{2})\sigma_2(2+3\sqrt{2}) = (2+3\sqrt{2})(2-3\sqrt{2}) = -14$$

and

$$T(\alpha) = \sigma_1(2+3\sqrt{2}) + \sigma_2(2+3\sqrt{2})$$

Definition. Let $\alpha \in K$. The *norm* of α is

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha),$$

and the trace of α is

$$T(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha).$$

Example. For $\alpha = 2 + 3\sqrt{2} \in K = \mathbb{Q}(\sqrt{2})$,

$$N(\alpha) = \sigma_1(2+3\sqrt{2})\sigma_2(2+3\sqrt{2}) = (2+3\sqrt{2})(2-3\sqrt{2}) = -14$$

and

$$T(\alpha) = \sigma_1(2+3\sqrt{2}) + \sigma_2(2+3\sqrt{2}) = (2+3\sqrt{2}) + (2-3\sqrt{2})$$
Norm and Trace

Definition. Let $\alpha \in K$. The *norm* of α is

$$N(\alpha) = \prod_{i=1}^{n} \sigma_i(\alpha),$$

and the trace of α is

$$T(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha).$$

Example. For $\alpha = 2 + 3\sqrt{2} \in K = \mathbb{Q}(\sqrt{2})$,

$$N(\alpha) = \sigma_1(2+3\sqrt{2})\sigma_2(2+3\sqrt{2}) = (2+3\sqrt{2})(2-3\sqrt{2}) = -14$$

and

$$T(\alpha) = \sigma_1(2+3\sqrt{2}) + \sigma_2(2+3\sqrt{2}) = (2+3\sqrt{2}) + (2-3\sqrt{2}) = 4.$$

1.
$$N(\alpha\beta) = N(\alpha)N(\beta)$$
 and $T(\alpha + \beta) = T(\alpha) + T(\beta)$.

1.
$$N(\alpha\beta) = N(\alpha)N(\beta)$$
 and $T(\alpha + \beta) = T(\alpha) + T(\beta)$.

2. The norm and trace appear as coefficients of the corresponding field polynomial: $f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(x))$

1.
$$N(\alpha\beta) = N(\alpha)N(\beta)$$
 and $T(\alpha + \beta) = T(\alpha) + T(\beta)$.

2. The norm and trace appear as coefficients of the corresponding field polynomial: $f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(x))$

$$=x^{n}-\underbrace{(\sigma_{1}(\alpha)+\cdots+\sigma_{n}(\alpha))}_{T(\alpha)}x^{n-1}+\cdots+(-1)^{n}\underbrace{\sigma_{1}(\alpha)\cdots\sigma_{n}(\alpha)}_{N(\alpha)}.$$

1.
$$N(\alpha\beta) = N(\alpha)N(\beta)$$
 and $T(\alpha + \beta) = T(\alpha) + T(\beta)$.

2. The norm and trace appear as coefficients of the corresponding field polynomial: $f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(x))$

$$=x^{n}-\underbrace{(\sigma_{1}(\alpha)+\cdots+\sigma_{n}(\alpha))}_{T(\alpha)}x^{n-1}+\cdots+(-1)^{n}\underbrace{\sigma_{1}(\alpha)\cdots\sigma_{n}(\alpha)}_{N(\alpha)}.$$

3. $N(\alpha), T(\alpha) \in \mathbb{Q}$. If $\alpha \in \mathfrak{O}_K$, then $N(\alpha), T(\alpha) \in \mathbb{Z}$

1.
$$N(\alpha\beta) = N(\alpha)N(\beta)$$
 and $T(\alpha + \beta) = T(\alpha) + T(\beta)$.

2. The norm and trace appear as coefficients of the corresponding field polynomial: $f_{\alpha} = \prod_{i=1}^{n} (x - \sigma_i(x))$

$$=x^{n}-\underbrace{(\sigma_{1}(\alpha)+\cdots+\sigma_{n}(\alpha))}_{T(\alpha)}x^{n-1}+\cdots+(-1)^{n}\underbrace{\sigma_{1}(\alpha)\cdots\sigma_{n}(\alpha)}_{N(\alpha)}.$$

3. $N(\alpha), T(\alpha) \in \mathbb{Q}$. If $\alpha \in \mathfrak{O}_K$, then $N(\alpha), T(\alpha) \in \mathbb{Z}$ (since $f_\alpha \in \mathbb{Z}[x]$ in this case).

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}] =$$

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = (-1)^{n(n-1)/2} \mathcal{N}(p'(\theta))$$

where p' is the derivative of p.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = (-1)^{n(n-1)/2} \mathcal{N}(p'(\theta))$$

where p' is the derivative of p.

7. Let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Q} -basis for K.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = (-1)^{n(n-1)/2} N(p'(\theta))$$

where p' is the derivative of p.

7. Let $\alpha_1, \ldots, \alpha_n$ be a Q-basis for K. Let S be the $n \times n$ matrix with *ij*-th entry $T(\alpha_i \alpha_j)$.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = (-1)^{n(n-1)/2} \mathcal{N}(p'(\theta))$$

where p' is the derivative of p.

7. Let $\alpha_1, \ldots, \alpha_n$ be a Q-basis for K. Let S be the $n \times n$ matrix with *ij*-th entry $T(\alpha_i \alpha_j)$. Then

$$\Delta[\alpha_1,\ldots,\alpha_n] =$$

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = (-1)^{n(n-1)/2} \mathcal{N}(p'(\theta))$$

where p' is the derivative of p.

7. Let $\alpha_1, \ldots, \alpha_n$ be a Q-basis for K. Let S be the $n \times n$ matrix with *ij*-th entry $T(\alpha_i \alpha_j)$. Then

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det S = \det((T(\alpha_i\alpha_j))).$$

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

1 = N(1)

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

$$1 = N(1) = N(\alpha\beta)$$

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

 $1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

But $N(\alpha), N(\beta) \in \mathbb{Z}$.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

 $1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$

But $N(\alpha), N(\beta) \in \mathbb{Z}$. So $N(\alpha) = \pm 1$.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

But $N(\alpha), N(\beta) \in \mathbb{Z}$. So $N(\alpha) = \pm 1$.

(\Leftarrow) Suppose that $N(\alpha) = \pm 1$:

$$\pm 1 = \prod_{i=1}^{n} \sigma_i(\alpha) = \alpha \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

But $N(\alpha), N(\beta) \in \mathbb{Z}$. So $N(\alpha) = \pm 1$.

(\Leftarrow) Suppose that $N(\alpha) = \pm 1$:

$$\pm 1 = \prod_{i=1}^{n} \sigma_i(\alpha) = \alpha \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

We claim $\beta \in \mathfrak{O}_{\mathcal{K}}$.

1. $\beta \in K$ since

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

But $N(\alpha), N(\beta) \in \mathbb{Z}$. So $N(\alpha) = \pm 1$.

(\Leftarrow) Suppose that $N(\alpha) = \pm 1$:

$$\pm 1 = \prod_{i=1}^{n} \sigma_i(\alpha) = \alpha \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

We claim $\beta \in \mathfrak{O}_{K}$.

1.
$$\beta \in K$$
 since $\beta = \pm \frac{1}{\alpha} \in K$.

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

But $N(\alpha), N(\beta) \in \mathbb{Z}$. So $N(\alpha) = \pm 1$.

(\Leftarrow) Suppose that $N(\alpha) = \pm 1$:

$$\pm 1 = \prod_{i=1}^{n} \sigma_i(\alpha) = \alpha \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

We claim $\beta \in \mathfrak{O}_{\mathcal{K}}$.

1.
$$\beta \in K$$
 since $\beta = \pm \frac{1}{\alpha} \in K$.

2. β is an algebraic number:

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

But $N(\alpha), N(\beta) \in \mathbb{Z}$. So $N(\alpha) = \pm 1$.

(\Leftarrow) Suppose that $N(\alpha) = \pm 1$:

$$\pm 1 = \prod_{i=1}^{n} \sigma_i(\alpha) = \alpha \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

We claim $\beta \in \mathfrak{O}_{K}$.

1.
$$\beta \in K$$
 since $\beta = \pm \frac{1}{\alpha} \in K$.

2. β is an algebraic number: Each $\sigma_i(\alpha)$ satisfies the minimal polynomial for α , and

4. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. Then α is a unit if and only if $N(\alpha) = \pm 1$.

Proof. (\Rightarrow) Suppose there exist $\beta \in \mathfrak{O}_K$ such that $\alpha\beta = 1$. Then

$$1 = N(1) = N(\alpha\beta) = N(\alpha)N(\beta).$$

But $N(\alpha), N(\beta) \in \mathbb{Z}$. So $N(\alpha) = \pm 1$.

(\Leftarrow) Suppose that $N(\alpha) = \pm 1$:

$$\pm 1 = \prod_{i=1}^{n} \sigma_i(\alpha) = \alpha \underbrace{\sigma_2(\alpha) \cdots \sigma_n(\alpha)}_{\beta}.$$

We claim $\beta \in \mathfrak{O}_{\mathcal{K}}$.

1.
$$\beta \in K$$
 since $\beta = \pm \frac{1}{\alpha} \in K$.

2. β is an algebraic number: Each $\sigma_i(\alpha)$ satisfies the minimal polynomial for α , and the algebraic numbers form a ring.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

Proof. Suppose that $\alpha = \beta \gamma$ for some $\beta, \gamma \in \mathfrak{O}_{\mathcal{K}}$.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

Proof. Suppose that $\alpha = \beta \gamma$ for some $\beta, \gamma \in \mathfrak{O}_{\mathcal{K}}$. Then

$$q = N(\alpha) = N(\beta\gamma) = N(\beta)N(\gamma).$$

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

Proof. Suppose that $\alpha = \beta \gamma$ for some $\beta, \gamma \in \mathfrak{O}_{\mathcal{K}}$. Then

$$q = N(\alpha) = N(\beta\gamma) = N(\beta)N(\gamma).$$

Since $N(\beta), N(\gamma) \in \mathbb{Z}$ and q is prime, one of $N(\beta)$ or $N(\gamma)$ is ± 1 .

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

Proof. Suppose that $\alpha = \beta \gamma$ for some $\beta, \gamma \in \mathfrak{O}_{\mathcal{K}}$. Then

$$q = N(\alpha) = N(\beta\gamma) = N(\beta)N(\gamma).$$

Since $N(\beta), N(\gamma) \in \mathbb{Z}$ and q is prime, one of $N(\beta)$ or $N(\gamma)$ is ± 1 . Without loss of generality, say $N(\beta) = \pm 1$.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

Proof. Suppose that $\alpha = \beta \gamma$ for some $\beta, \gamma \in \mathfrak{O}_{\mathcal{K}}$. Then

$$q = N(\alpha) = N(\beta\gamma) = N(\beta)N(\gamma).$$

Since $N(\beta), N(\gamma) \in \mathbb{Z}$ and q is prime, one of $N(\beta)$ or $N(\gamma)$ is ± 1 . Without loss of generality, say $N(\beta) = \pm 1$. It follows that β is a unit.

5. Suppose that $\alpha \in \mathfrak{O}_{\mathcal{K}}$. If $N(\alpha) = q \in \mathbb{Z}$ where q is a rational prime, then α is irreducible.

Proof. Suppose that $\alpha = \beta \gamma$ for some $\beta, \gamma \in \mathfrak{O}_{\mathcal{K}}$. Then

$$q = N(\alpha) = N(\beta\gamma) = N(\beta)N(\gamma).$$

Since $N(\beta), N(\gamma) \in \mathbb{Z}$ and q is prime, one of $N(\beta)$ or $N(\gamma)$ is ± 1 . Without loss of generality, say $N(\beta) = \pm 1$. It follows that β is a unit. Thus, α is irreducible.

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof. $\Delta[1, \theta, \dots, \theta^{n-1}] = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2$, where $\theta_i = \sigma_i(\theta)$.
6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof. $\Delta[1, \theta, \dots, \theta^{n-1}] = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2$, where $\theta_i = \sigma_i(\theta)$. For each $j = 1, \dots, n$,

$$p(x) = \prod_{i=1}^{n} (x - \theta_i) \Rightarrow$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof. $\Delta[1, \theta, \dots, \theta^{n-1}] = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2$, where $\theta_i = \sigma_i(\theta)$. For each $j = 1, \dots, n$,

$$p(x) = \prod_{i=1}^{n} (x - \theta_i) \Rightarrow p'(x) = \sum_{k=1}^{n} \prod_{i:i \neq k} (x - \theta_i)$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof. $\Delta[1, \theta, \dots, \theta^{n-1}] = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2$, where $\theta_i = \sigma_i(\theta)$. For each $j = 1, \dots, n$,

$$p(x) = \prod_{i=1}^{n} (x - \theta_i) \Rightarrow p'(x) = \sum_{k=1}^{n} \prod_{i:i \neq k} (x - \theta_i)$$
$$\Rightarrow p'(\theta_j) = \prod_{i:i \neq j} (\theta_j - \theta_i).$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof. $\Delta[1, \theta, \dots, \theta^{n-1}] = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2$, where $\theta_i = \sigma_i(\theta)$. For each $j = 1, \dots, n$,

$$p(x) = \prod_{i=1}^{n} (x - heta_i) \Rightarrow p'(x) = \sum_{k=1}^{n} \prod_{i:i \neq k} (x - heta_i)$$

 $\Rightarrow p'(heta_j) = \prod_{i:i \neq j} (heta_j - heta_i).$

So

$$N(p'(\theta)) = \prod_{j=1}^n \sigma_j(p'(\theta))$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof. $\Delta[1, \theta, \dots, \theta^{n-1}] = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2$, where $\theta_i = \sigma_i(\theta)$. For each $j = 1, \dots, n$,

$$p(x) = \prod_{i=1}^{n} (x - heta_i) \Rightarrow p'(x) = \sum_{k=1}^{n} \prod_{i:i \neq k} (x - heta_i)$$

 $\Rightarrow p'(heta_j) = \prod_{i:i \neq j} (heta_j - heta_i).$

So

$$N(p'(\theta)) = \prod_{j=1}^n \sigma_j(p'(\theta)) = \prod_{j=1}^n p'(\theta_j)$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof. $\Delta[1, \theta, \dots, \theta^{n-1}] = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2$, where $\theta_i = \sigma_i(\theta)$. For each $j = 1, \dots, n$,

$$p(x) = \prod_{i=1}^{n} (x - heta_i) \Rightarrow p'(x) = \sum_{k=1}^{n} \prod_{i:i \neq k} (x - heta_i)$$

 $\Rightarrow p'(heta_j) = \prod_{i:i \neq j} (heta_j - heta_i).$

So

$$N(p'(\theta)) = \prod_{j=1}^{n} \sigma_j(p'(\theta)) = \prod_{j=1}^{n} p'(\theta_j) = \prod_{\substack{i,j \\ i \neq j}}^{n} (\theta_j - \theta_i).$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof continued.

$$N(p'(\theta)) = \prod_{j=1}^{n} \sigma_j(p'(\theta)) = \prod_{\substack{j=1 \ i \neq j}}^{n} p'(\theta_j) = \prod_{\substack{i,j=1 \ i \neq j}}^{n} (\theta_j - \theta_i).$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof continued.

$$N(p'(\theta)) = \prod_{j=1}^{n} \sigma_j(p'(\theta)) = \prod_{\substack{j=1 \ i \neq j}}^{n} p'(\theta_j) = \prod_{\substack{i,j=1 \ i \neq j}}^{n} (\theta_j - \theta_i).$$
On the right-hand side, each $\theta_i = \theta_i$ appears twice: once

On the right-hand side, each $\theta_j - \theta_i$ appears twice: once when j < i, and once when j > i.

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof continued.

$$N(p'(\theta)) = \prod_{j=1}^{n} \sigma_j(p'(\theta)) = \prod_{j=1}^{n} p'(\theta_j) = \prod_{\substack{i,j=1\\i\neq i}}^{n} (\theta_j - \theta_i).$$

On the right-hand side, each $\theta_j - \theta_i$ appears twice: once when j < i, and once when j > i. Grouping these two occurrences together gives

$$N(p'(\theta)) = \prod_{1 \le i < j \le n}^n \left(-(\theta_j - \theta_i)^2 \right)$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof continued.

$$N(p'(\theta)) = \prod_{j=1}^{n} \sigma_j(p'(\theta)) = \prod_{\substack{j=1 \ i \neq i}}^{n} p'(\theta_j) = \prod_{\substack{i,j=1 \ i \neq i}}^{n} (\theta_j - \theta_i).$$

On the right-hand side, each $\theta_j - \theta_i$ appears twice: once when j < i, and once when j > i. Grouping these two occurrences together gives

$$N(p'(\theta)) = \prod_{1 \leq i < j \leq n}^{n} \left(-(\theta_j - \theta_i)^2 \right) = (-1)^{\binom{n}{2}} \prod_{1 \leq i < j \leq n} (\theta_j - \theta_i)^2,$$

6. Let p be the minimal polynomial for θ . Then

$$\Delta[1,\theta,\ldots,\theta^{n-1}]=(-1)^{n(n-1)/2}N(p'(\theta)).$$

Proof continued.

$$N(p'(\theta)) = \prod_{j=1}^{n} \sigma_j(p'(\theta)) = \prod_{j=1}^{n} p'(\theta_j) = \prod_{\substack{i,j=1\\i\neq i}}^{n} (\theta_j - \theta_i).$$

On the right-hand side, each $\theta_j - \theta_i$ appears twice: once when j < i, and once when j > i. Grouping these two occurrences together gives

$$N(p'(\theta)) = \prod_{1 \le i < j \le n}^{n} \left(-(\theta_j - \theta_i)^2 \right) = (-1)^{\binom{n}{2}} \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2,$$

where $\binom{n}{2} = n(n-1)/2$ is the number of pairs i, j with $i < j$. \Box

7. Let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Q} -basis for K.

7. Let $\alpha_1, \ldots, \alpha_n$ be a Q-basis for K. Let $S = (T(\alpha_i \alpha_j))$.

7. Let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Q} -basis for K. Let $S = (T(\alpha_i \alpha_j))$. Then $\Delta[\alpha_1, \ldots, \alpha_n] = \det S = \det((T(\alpha_i \alpha_j)))$.

7. Let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Q} -basis for K. Let $S = (T(\alpha_i \alpha_j))$. Then $\Delta[\alpha_1, \ldots, \alpha_n] = \det S = \det((T(\alpha_i \alpha_j)))$. **Proof.**

7. Let $\alpha_1, \ldots, \alpha_n$ be a Q-basis for K. Let $S = (T(\alpha_i \alpha_j))$. Then $\Delta[\alpha_1, \ldots, \alpha_n] = \det S = \det((T(\alpha_i \alpha_j)))$. **Proof.**

 $S_{ij} = T(\alpha_i \alpha_j)$

7. Let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Q} -basis for K. Let $S = (T(\alpha_i \alpha_j))$. Then $\Delta[\alpha_1, \ldots, \alpha_n] = \det S = \det((T(\alpha_i \alpha_j)))$.

Proof.

$$S_{ij} = T(\alpha_i \alpha_j) = \sum_{k=1}^n \sigma_k(\alpha_i \alpha_j)$$

7. Let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Q} -basis for K. Let $S = (T(\alpha_i \alpha_j))$. Then $\Delta[\alpha_1, \ldots, \alpha_n] = \det S = \det((T(\alpha_i \alpha_j)))$.

Proof.

$$S_{ij} = T(\alpha_i \alpha_j) = \sum_{k=1}^n \sigma_k(\alpha_i \alpha_j) = \sum_{k=1}^n \sigma_k(\alpha_i) \sigma_k(\alpha_j).$$

To compute the discriminant, let $A = (\sigma_i(\alpha_j))$.

7. Let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Q} -basis for K. Let $S = (T(\alpha_i \alpha_j))$. Then $\Delta[\alpha_1, \ldots, \alpha_n] = \det S = \det((T(\alpha_i \alpha_j)))$.

Proof.

$$S_{ij} = T(\alpha_i \alpha_j) = \sum_{k=1}^n \sigma_k(\alpha_i \alpha_j) = \sum_{k=1}^n \sigma_k(\alpha_i) \sigma_k(\alpha_j).$$

To compute the discriminant, let $A = (\sigma_i(\alpha_j))$. Then

 $\Delta[\alpha_1,\ldots,\alpha_n] = (\det A)^2 = \det(A) \det(A) = \det(A^t) \det(A) = \det(A^tA).$

7. Let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Q} -basis for K. Let $S = (T(\alpha_i \alpha_j))$. Then $\Delta[\alpha_1, \ldots, \alpha_n] = \det S = \det((T(\alpha_i \alpha_j)))$.

Proof.

$$S_{ij} = T(\alpha_i \alpha_j) = \sum_{k=1}^n \sigma_k(\alpha_i \alpha_j) = \sum_{k=1}^n \sigma_k(\alpha_i) \sigma_k(\alpha_j).$$

To compute the discriminant, let $A = (\sigma_i(\alpha_j))$. Then

 $\Delta[\alpha_1, \dots, \alpha_n] = (\det A)^2 = \det(A) \det(A) = \det(A^t) \det(A) = \det(A^t A).$ Check that $A^t A = S$.