Math 361

February 8, 2023



Quiz

1. Let A C B be domains. What does it mean to say the « € B
is integral over A?
2. Define the following terms:

(i) Number field.
(ii) Algebraic number.
(iii) Algebraic integer.
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To prove this theorem we need some tools:
» the Vandermonde matrix

» symmetric polynomials.
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Number field: K = Q(0) with [K: Q] = n. Let p € Q[x] be the
minimal polynomial of 6.

K = Spang{1,6,...,0""'}.

Minimal polynomial for 0: p = []i_;(x — 0;) with 6; distinct.
Field embeddings K — C given by g : 8 — 0;.

Definition. The discriminant for a basis aq, ..., a, for K over Q:
is the square of the determinant of the n x n matrix with i, j-th
entry oj(a;):

Aloa, ..., ap] = (det(oi()))? .

Example. Let K = Q(v/d) where d is a square-free integer # 0, 1.
Then

2
AL, Vd] = (det( 1 _g >> = (—2Vd)? = 4d.
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Theorem. Let K = Q(#) be a number field, with embeddings o;

and with 6; = 0j(0) for i =1,...,n. Let a,...,, be a basis
for K over Q.
Then the discriminant Afasq, ..., ap] is a nonzero rational number.

It is positive if all of the 6; are real.
It is a rational integer if the «; are algebraic integers.
To prove this theorem we need some tools:

» Vandermonde matrix

» symmetric polynomials.
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Vandermonde matrix. Let xi, ..., x, be indeterminates, and
consider the n x n matrix

1 x3 2 Xt

1 xo x3 ... x3 !
v=l| 1 x5 2 ... x4t

1 :

1 x, x2 xn—1

Then
detV = H (xj — xi)-
1<i<j<n
Sketch of proof. det V € Q[xi, ..., x|, and if we set x; = x;,
then det(V) = 0 (why?). Algebra implies x; — x; divides det V' for
all 1 < i< j < n. Compare degrees on both sides of the equation
to see det V = r[[ <, j<,(x — xi) for some r € Q. Compare

coefficient of XQX32 . -x,’,’*1 on both sides to see r = 1. O
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Let f € R[xi,...,xn| where R is a ring. Let m be a permutation of
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What are some examples of symmetric functions?
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Examples

For 1 < r < n, the elementary symmetric polynomials in xq, ..., X,
are s;(x1,...,xp) formed by summing all products of exactly r of
the indeterminates xq, ..., Xn:

S1=X1+X2+ -+ Xy

So = X1Xo + X1X3 + **+ + Xpn—1Xn

Shp = X1X2...Xp.

Is 257 — 5s3s8 symmetric?

Answer: Yes. In general, if h € R[x1,..., x|, then h(s1,...,sp) is
symmetric.
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Symmetric functions

Theorem. (I. Newton) Let R be a ring, and let f € R[x1, ..., Xn].
Then f is symmetric if and only if there exists h € R[x1, ..., Xa]
such that

f=nh(st,...,sn)

where the s; are the elementary symmetric polynomials.

Proof. See our textbook, Theorem 1.12.



Connection between symmetric functions and our subject

Suppose f € Q[x] is monic of degree 4.



Connection between symmetric functions and our subject

Suppose f € Q[x] is monic of degree 4. Then by the FTA, there
exist 01, ..., 04 such that

f = (X — (91)(X — 02)(X — 93)(X — 04)



Connection between symmetric functions and our subject

Suppose f € Q[x] is monic of degree 4. Then by the FTA, there
exist 01, ..., 04 such that

f = (X — (91)(X — 02)(X — 93)(X — 04)
Expand:

f=x*— (0144 0)x3+ (01024 - - - + 0304)x>
— (010203 + - - - + 020304)x + (01020304)



Connection between symmetric functions and our subject

Suppose f € Q[x] is monic of degree 4. Then by the FTA, there
exist 01, ..., 04 such that

f = (X — (91)(X — 02)(X — 93)(X — 04)
Expand:

=x* = (014 -+ 02)x3 + (0102 + - - - + 0304)x>
— (010203 + - - - + 020304)x + (01020304)

= x* — 51(61,02,03,04)x> + 52(61, 02,03, 04)x°
- 53(617 927 037 94)X + 54(017 927 937 94)



Connection between symmetric functions and our subject

Suppose f € Q[x] is monic of degree 4. Then by the FTA, there
exist 01, ..., 04 such that

f = (X — (91)(X — 02)(X — 93)(X — 04)
Expand:

=x* = (014 -+ 02)x3 + (0102 + - - - + 0304)x>
— (010203 + - - - + 020304)x + (01020304)

= x* — 51(61,02,03,04)x> + 52(61, 02,03, 04)x°
- 53(617 927 037 94)X + 54(017 927 937 94)

In particular, the si(61,...,60s4) € Q (why?),



Connection between symmetric functions and our subject

Suppose f € Q[x] is monic of degree 4. Then by the FTA, there
exist 01, ..., 04 such that

f = (X — (91)(X — 02)(X — 93)(X — 04)
Expand:

=x* = (014 -+ 02)x3 + (0102 + - - - + 0304)x>
— (010203 + - - - + 020304)x + (01020304)

= x* — 51(61,02,03,04)x> + 52(61, 02,03, 04)x°
- 53(017 927 037 94)X + 54(017 927 937 94)

In particular, the sj(01,...,0s4) € Q (why?), and if f € Z[x], they
are in Z.
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Let w = e?™/3 = _1+T'\/§ Then
x3—1=(x—-1)(x —w)(x —w?)
= (14wt + 1w+l +w-wx—(1-w-w?)
= x3 — 51(1,w,w?)x? + 55(1, w, w?)x — s3(1, w, w?).
Comparing coefficients, we see that
2y _ 2 _
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Example

Let w = e?™/3 = _1+T'\/§ Then
x3—1=(x—-1)(x —w)(x —w?)
=X - (l+w+?)P+ 1w+l Fw-w)x— (1 -w-w?)
= x3 — 51(1,w,w?)x? + 55(1, w, w?)x — s3(1, w, w?).
Comparing coefficients, we see that
2y _ 2 _
si(lw,w)=1+w+w" =0

2_w+w’+1=0

s(lww)=1w+1l-w’ 4w w
s3(lw,w?)=1-w-w?=1.

Since x3 — 1 has integer coefficients, the elementary functions of
its roots are all integers, too.
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We know 1,6,...,0" ! is a Q-basis for K. We have
oi(#) = 0i(0) = ¢.. Therefore, by Vandermonde:

160 62 ... o t’
1 6, 63 ... 657!
n— 2 -1
AlL,0,...,0" =det| 1 63 63 ... 63 = II -6
S 1<i<j<n
10, 2 ... gt

Letting C be the change of basis matrix from 1,6,...,6" 1 to
Qai,...,0,, we have

Alog, ... an] = (det C)?A[L,0,...,0" ] = (det C)* [[ (6—6:)>
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So far we have

Alog,...,an) = (det C)* [ (6: —6))*

1<i<j<n

Key idea: note that Aoy, ..., a,] is a symmetric polynomial in
the 6;. Let p = [[/_1(x — 6;) be the minimal polynomial for #
over Q. The symmetric polynomials in the 6; are, up to sign, the
coefficients of p, which are rational. The entries in C are rational.
Hence, the discriminant is rational.

Its positive if the §; are real (why?).

Finally, what can we say if each «; is an algebraic integer? (See
next page)
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A[Oél, RN Oén] = det(a,-(aj))2 = (det C)2 H (9, — «9])2.

1<i<j<n

Suppose that each «; is an algebraic integer. Then the oi(«;) are
algebraic integers. (Why? Start with the definition of an algebraic
integer.)

We have seen that the algebraic integers in K form a ring. Hence,
the discriminant det(o;(;))? is an algebraic integer. However, we
have just seen that it is a rational number. We also know that if a
rational number is integral over QQ, then it must be an ordinary

integer. Il



