Math 361

February 8, 2023

- 1. Let $A \subseteq B$ be domains. What does it mean to say the $\alpha \in B$ is *integral* over A?
- 2. Define the following terms:
 - (i) Number field.
 - (ii) Algebraic number.
 - (iii) Algebraic integer.

To prove this theorem we need some tools:

To prove this theorem we need some tools:

the Vandermonde matrix

To prove this theorem we need some tools:

- ▶ the Vandermonde matrix
- symmetric polynomials.

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

 $K = \operatorname{Span}_{\mathbb{Q}} \{1, \theta, \dots, \theta^{n-1}\}.$

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

$$K = \operatorname{Span}_{\mathbb{Q}} \{1, \theta, \dots, \theta^{n-1}\}.$$

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

$$K = \operatorname{Span}_{\mathbb{Q}} \{1, \theta, \dots, \theta^{n-1}\}.$$

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct. Field embeddings $K \to \mathbb{C}$ given by $\sigma_i : \theta \mapsto \theta_i$.

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

$$K = \operatorname{Span}_{\mathbb{Q}} \{1, \theta, \dots, \theta^{n-1}\}.$$

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Field embeddings $K \to \mathbb{C}$ given by $\sigma_i : \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

$$K = \operatorname{Span}_{\mathbb{Q}} \{1, \theta, \dots, \theta^{n-1}\}.$$

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Field embeddings $K \to \mathbb{C}$ given by $\sigma_i : \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

$$\Delta[lpha_1,\ldots,lpha_n]:=\left(\mathsf{det}(\sigma_i(lpha_j))
ight)^2$$
 .

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

$$K = \operatorname{Span}_{\mathbb{Q}} \{1, \theta, \dots, \theta^{n-1}\}.$$

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Field embeddings $K \to \mathbb{C}$ given by $\sigma_i : \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

$$\Delta[lpha_1,\ldots,lpha_n]:=\left(\mathsf{det}(\sigma_i(lpha_j))
ight)^2$$
 .

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where d is a square-free integer $\neq 0, 1$.

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

$$K = \operatorname{Span}_{\mathbb{Q}} \{1, \theta, \dots, \theta^{n-1}\}.$$

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Field embeddings $K \to \mathbb{C}$ given by $\sigma_i : \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

$$\Delta[lpha_1,\ldots,lpha_{\it n}]:=\left({\sf det}(\sigma_i(lpha_j))
ight)^2.$$

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where d is a square-free integer $\neq 0, 1$. Then

$$\Delta[1,\sqrt{d}] =$$

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

$$K = \operatorname{Span}_{\mathbb{Q}} \{1, \theta, \dots, \theta^{n-1}\}.$$

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Field embeddings $K \to \mathbb{C}$ given by $\sigma_i : \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

$$\Delta[lpha_1,\ldots,lpha_{\it n}]:=\left({\sf det}(\sigma_i(lpha_j))
ight)^2.$$

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where d is a square-free integer $\neq 0, 1$. Then

$$\Delta[1,\sqrt{d}] = \left(\det \left(\begin{array}{cc} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{array}\right)\right)^2 = (-2\sqrt{d})^2 = 4d.$$

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field K over \mathbb{Q} .

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field K over \mathbb{Q} . Let C be the change of basis matrix from the α_i to the β_i .

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field K over \mathbb{Q} . Let C be the change of basis matrix from the α_i to the β_i . Then

$$\Delta[\beta_1,\ldots,\beta_n] = (\det C)^2 \Delta[\alpha_1,\ldots,\alpha_n].$$

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number. It is positive if all of the θ_i are real.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number. It is positive if all of the θ_i are real.

It is a rational integer if the α_i are algebraic integers.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number. It is positive if all of the θ_i are real.

It is a rational integer if the α_i are algebraic integers.

To prove this theorem we need some tools:

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number. It is positive if all of the θ_i are real.

It is a rational integer if the α_i are algebraic integers.

To prove this theorem we need some tools:

- Vandermonde matrix
- symmetric polynomials.

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

٠

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

٠

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

٠

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Sketch of proof.

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

٠

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Sketch of proof. det $V \in \mathbb{Q}[x_1, \ldots, x_n]$,

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

•

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Sketch of proof. det $V \in \mathbb{Q}[x_1, \ldots, x_n]$, and if we set $x_i = x_j$, then det(V) = 0 (why?).

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

.

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Sketch of proof. det $V \in \mathbb{Q}[x_1, \ldots, x_n]$, and if we set $x_i = x_j$, then det(V) = 0 (why?). Algebra implies $x_j - x_i$ divides det V for all $1 \le i < j \le n$.

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

.

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Sketch of proof. det $V \in \mathbb{Q}[x_1, \ldots, x_n]$, and if we set $x_i = x_j$, then det(V) = 0 (why?). Algebra implies $x_j - x_i$ divides det V for all $1 \le i < j \le n$. Compare degrees on both sides of the equation

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Sketch of proof. det $V \in \mathbb{Q}[x_1, \ldots, x_n]$, and if we set $x_i = x_j$, then det(V) = 0 (why?). Algebra implies $x_j - x_i$ divides det V for all $1 \le i < j \le n$. Compare degrees on both sides of the equation to see det $V = r \prod_{1 \le i \le j \le n} (x_j - x_i)$ for some $r \in \mathbb{Q}$.

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Sketch of proof. det $V \in \mathbb{Q}[x_1, \ldots, x_n]$, and if we set $x_i = x_j$, then det(V) = 0 (why?). Algebra implies $x_j - x_i$ divides det V for all $1 \le i < j \le n$. Compare degrees on both sides of the equation to see det $V = r \prod_{1 \le i < j \le n} (x_j - x_i)$ for some $r \in \mathbb{Q}$. Compare coefficient of $x_2 x_3^2 \cdots x_n^{n-1}$ on both sides

Vandermonde matrix. Let x_1, \ldots, x_n be indeterminates, and consider the $n \times n$ matrix

$$V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \dots & x_3^{n-1} \\ 1 & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

Then

$$\det V = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Sketch of proof. det $V \in \mathbb{Q}[x_1, \ldots, x_n]$, and if we set $x_i = x_j$, then det(V) = 0 (why?). Algebra implies $x_j - x_i$ divides det V for all $1 \le i < j \le n$. Compare degrees on both sides of the equation to see det $V = r \prod_{1 \le i < j \le n} (x_j - x_i)$ for some $r \in \mathbb{Q}$. Compare coefficient of $x_2 x_3^2 \cdots x_n^{n-1}$ on both sides to see r = 1.

Symmetric polynomials

Let $f \in R[x_1, \ldots, x_n]$ where R is a ring.
Let $f \in R[x_1, ..., x_n]$ where R is a ring. Let π be a permutation of 1, ..., n.

Let $f \in R[x_1, ..., x_n]$ where R is a ring. Let π be a permutation of 1, ..., n. Define $f^{\pi} \in R[x_1, ..., x_n]$ by

$$f^{\pi}(x_1,...,x_n) = f(x_{\pi(1)},...,x_{\pi(n)}).$$

Let $f \in R[x_1, ..., x_n]$ where R is a ring. Let π be a permutation of 1, ..., n. Define $f^{\pi} \in R[x_1, ..., x_n]$ by

$$f^{\pi}(x_1,\ldots,x_n) = f(x_{\pi(1)},\ldots,x_{\pi(n)}).$$

Example. Let $f = 3x_1^2 - 5x_2x_3 + x_1x_4^3$,

Let $f \in R[x_1, ..., x_n]$ where R is a ring. Let π be a permutation of 1, ..., n. Define $f^{\pi} \in R[x_1, ..., x_n]$ by

$$f^{\pi}(x_1,...,x_n) = f(x_{\pi(1)},...,x_{\pi(n)}).$$

Example. Let $f = 3x_1^2 - 5x_2x_3 + x_1x_4^3$, and let π be the permutation $\pi(1) = 3$, $\pi(2) = 1$, $\pi(3) = 4$, and $\pi(4) = 2$,

Let $f \in R[x_1, ..., x_n]$ where R is a ring. Let π be a permutation of 1, ..., n. Define $f^{\pi} \in R[x_1, ..., x_n]$ by

$$f^{\pi}(x_1,...,x_n) = f(x_{\pi(1)},...,x_{\pi(n)}).$$

Example. Let $f = 3x_1^2 - 5x_2x_3 + x_1x_4^3$, and let π be the permutation $\pi(1) = 3$, $\pi(2) = 1$, $\pi(3) = 4$, and $\pi(4) = 2$, Then $f^{\pi} = 3x_3^2 - 5x_1x_4 + x_3x_2^3$.

Let $f \in R[x_1, ..., x_n]$ where R is a ring. Let π be a permutation of 1, ..., n. Define $f^{\pi} \in R[x_1, ..., x_n]$ by

$$f^{\pi}(x_1,\ldots,x_n) = f(x_{\pi(1)},\ldots,x_{\pi(n)}).$$

Example. Let $f = 3x_1^2 - 5x_2x_3 + x_1x_4^3$, and let π be the permutation $\pi(1) = 3$, $\pi(2) = 1$, $\pi(3) = 4$, and $\pi(4) = 2$, Then $f^{\pi} = 3x_3^2 - 5x_1x_4 + x_3x_2^3$.

Definition. *f* is *symmetric* if $f = f^{\pi}$ for all permutations π .

Let $f \in R[x_1, ..., x_n]$ where R is a ring. Let π be a permutation of 1, ..., n. Define $f^{\pi} \in R[x_1, ..., x_n]$ by

$$f^{\pi}(x_1,...,x_n) = f(x_{\pi(1)},...,x_{\pi(n)}).$$

Example. Let $f = 3x_1^2 - 5x_2x_3 + x_1x_4^3$, and let π be the permutation $\pi(1) = 3$, $\pi(2) = 1$, $\pi(3) = 4$, and $\pi(4) = 2$, Then $f^{\pi} = 3x_3^2 - 5x_1x_4 + x_3x_2^3$.

Definition. f is symmetric if $f = f^{\pi}$ for all permutations π . **Example.** f in the above examples is not symmetric.

Let $f \in R[x_1, ..., x_n]$ where R is a ring. Let π be a permutation of 1, ..., n. Define $f^{\pi} \in R[x_1, ..., x_n]$ by

$$f^{\pi}(x_1,...,x_n) = f(x_{\pi(1)},...,x_{\pi(n)}).$$

Example. Let $f = 3x_1^2 - 5x_2x_3 + x_1x_4^3$, and let π be the permutation $\pi(1) = 3$, $\pi(2) = 1$, $\pi(3) = 4$, and $\pi(4) = 2$, Then $f^{\pi} = 3x_3^2 - 5x_1x_4 + x_3x_2^3$.

Definition. f is symmetric if $f = f^{\pi}$ for all permutations π . **Example.** f in the above examples is not symmetric. What are some examples of symmetric functions?

$$s_1 = x_1 + x_2 + \cdots + x_n$$

$$s_1 = x_1 + x_2 + \dots + x_n$$

 $s_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$

$$s_1 = x_1 + x_2 + \dots + x_n$$

 $s_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$
 \vdots
 $s_n = x_1 x_2 \dots x_n.$

For $1 \le r \le n$, the elementary symmetric polynomials in x_1, \ldots, x_n are $s_r(x_1, \ldots, x_n)$ formed by summing all products of exactly r of the indeterminates x_1, \ldots, x_n :

$$s_1 = x_1 + x_2 + \dots + x_n$$

$$s_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$$

$$\vdots$$

$$s_n = x_1 x_2 \dots x_n.$$

Is $2s_1^2 - 5s_2^2s_5^4$ symmetric?

For $1 \le r \le n$, the elementary symmetric polynomials in x_1, \ldots, x_n are $s_r(x_1, \ldots, x_n)$ formed by summing all products of exactly r of the indeterminates x_1, \ldots, x_n :

$$s_{1} = x_{1} + x_{2} + \dots + x_{n}$$

$$s_{2} = x_{1}x_{2} + x_{1}x_{3} + \dots + x_{n-1}x_{n}$$

$$\vdots$$

$$s_{n} = x_{1}x_{2} - x_{n}$$

Is $2s_1^2 - 5s_2^2s_5^4$ symmetric? Answer: Yes. In general, if $h \in R[x_1, \ldots, x_n]$, then $h(s_1, \ldots, s_n)$ is symmetric.

Symmetric functions

Theorem. (I. Newton) Let R be a ring, and let $f \in R[x_1, \ldots, x_n]$.

Theorem. (I. Newton) Let R be a ring, and let $f \in R[x_1, \ldots, x_n]$. Then f is symmetric if and only if there exists $h \in R[x_1, \ldots, x_n]$ such that

$$f = h(s_1,\ldots,s_n)$$

where the s_i are the elementary symmetric polynomials.

Theorem. (I. Newton) Let R be a ring, and let $f \in R[x_1, \ldots, x_n]$. Then f is symmetric if and only if there exists $h \in R[x_1, \ldots, x_n]$ such that

$$f = h(s_1, \ldots, s_n)$$

where the s_i are the elementary symmetric polynomials.

Proof. See our textbook, Theorem 1.12.

Suppose $f \in \mathbb{Q}[x]$ is monic of degree 4.

Suppose $f \in \mathbb{Q}[x]$ is monic of degree 4. Then by the FTA, there exist $\theta_1, \ldots, \theta_4$ such that

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Suppose $f \in \mathbb{Q}[x]$ is monic of degree 4. Then by the FTA, there exist $\theta_1, \ldots, \theta_4$ such that

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Expand:

$$f = x^4 - (\theta_1 + \dots + \theta_4)x^3 + (\theta_1\theta_2 + \dots + \theta_3\theta_4)x^2 - (\theta_1\theta_2\theta_3 + \dots + \theta_2\theta_3\theta_4)x + (\theta_1\theta_2\theta_3\theta_4)$$

Suppose $f \in \mathbb{Q}[x]$ is monic of degree 4. Then by the FTA, there exist $\theta_1, \ldots, \theta_4$ such that

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Expand:

$$f = x^4 - (\theta_1 + \dots + \theta_4)x^3 + (\theta_1\theta_2 + \dots + \theta_3\theta_4)x^2$$
$$- (\theta_1\theta_2\theta_3 + \dots + \theta_2\theta_3\theta_4)x + (\theta_1\theta_2\theta_3\theta_4)$$
$$= x^4 - s_1(\theta_1, \theta_2, \theta_3, \theta_4)x^3 + s_2(\theta_1, \theta_2, \theta_3, \theta_4)x^2$$
$$- s_3(\theta_1, \theta_2, \theta_3, \theta_4)x + s_4(\theta_1, \theta_2, \theta_3, \theta_4).$$

Suppose $f \in \mathbb{Q}[x]$ is monic of degree 4. Then by the FTA, there exist $\theta_1, \ldots, \theta_4$ such that

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Expand:

$$f = x^4 - (\theta_1 + \dots + \theta_4)x^3 + (\theta_1\theta_2 + \dots + \theta_3\theta_4)x^2$$
$$- (\theta_1\theta_2\theta_3 + \dots + \theta_2\theta_3\theta_4)x + (\theta_1\theta_2\theta_3\theta_4)$$
$$= x^4 - s_1(\theta_1, \theta_2, \theta_3, \theta_4)x^3 + s_2(\theta_1, \theta_2, \theta_3, \theta_4)x^2$$
$$- s_3(\theta_1, \theta_2, \theta_3, \theta_4)x + s_4(\theta_1, \theta_2, \theta_3, \theta_4).$$

In particular, the $s_i(\theta_1, \ldots, \theta_4) \in \mathbb{Q}$ (why?),

Suppose $f \in \mathbb{Q}[x]$ is monic of degree 4. Then by the FTA, there exist $\theta_1, \ldots, \theta_4$ such that

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Expand:

$$f = x^4 - (\theta_1 + \dots + \theta_4)x^3 + (\theta_1\theta_2 + \dots + \theta_3\theta_4)x^2$$
$$- (\theta_1\theta_2\theta_3 + \dots + \theta_2\theta_3\theta_4)x + (\theta_1\theta_2\theta_3\theta_4)$$
$$= x^4 - s_1(\theta_1, \theta_2, \theta_3, \theta_4)x^3 + s_2(\theta_1, \theta_2, \theta_3, \theta_4)x^2$$
$$- s_3(\theta_1, \theta_2, \theta_3, \theta_4)x + s_4(\theta_1, \theta_2, \theta_3, \theta_4).$$

In particular, the $s_i(\theta_1, \ldots, \theta_4) \in \mathbb{Q}$ (why?), and if $f \in \mathbb{Z}[x]$, they are in \mathbb{Z} .

Let
$$\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$$
.

Let
$$\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$$
. Then
 $x^3 - 1 = (x - 1)(x - \omega)(x - \omega^2)$

Let
$$\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$$
. Then
 $x^3 - 1 = (x - 1)(x - \omega)(x - \omega^2)$
 $= x^3 - (1 + \omega + \omega^2)x^2 + (1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2)x - (1 \cdot \omega \cdot \omega^2)$

Let
$$\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$$
. Then
 $x^3 - 1 = (x - 1)(x - \omega)(x - \omega^2)$
 $= x^3 - (1 + \omega + \omega^2)x^2 + (1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2)x - (1 \cdot \omega \cdot \omega^2)$
 $= x^3 - s_1(1, \omega, \omega^2)x^2 + s_2(1, \omega, \omega^2)x - s_3(1, \omega, \omega^2).$

Let
$$\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$$
. Then
 $x^3 - 1 = (x - 1)(x - \omega)(x - \omega^2)$
 $= x^3 - (1 + \omega + \omega^2)x^2 + (1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2)x - (1 \cdot \omega \cdot \omega^2)$
 $= x^3 - s_1(1, \omega, \omega^2)x^2 + s_2(1, \omega, \omega^2)x - s_3(1, \omega, \omega^2).$

Let
$$\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$$
. Then
 $x^3 - 1 = (x - 1)(x - \omega)(x - \omega^2)$
 $= x^3 - (1 + \omega + \omega^2)x^2 + (1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2)x - (1 \cdot \omega \cdot \omega^2)$
 $= x^3 - s_1(1, \omega, \omega^2)x^2 + s_2(1, \omega, \omega^2)x - s_3(1, \omega, \omega^2).$

$$s_1(1,\omega,\omega^2) = 1 + \omega + \omega^2 = 0$$

Let
$$\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$$
. Then
 $x^3 - 1 = (x - 1)(x - \omega)(x - \omega^2)$
 $= x^3 - (1 + \omega + \omega^2)x^2 + (1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2)x - (1 \cdot \omega \cdot \omega^2)$
 $= x^3 - s_1(1, \omega, \omega^2)x^2 + s_2(1, \omega, \omega^2)x - s_3(1, \omega, \omega^2).$

$$\begin{split} s_1(1,\omega,\omega^2) &= 1 + \omega + \omega^2 = 0\\ s_2(1,\omega,\omega^2) &= 1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2 = \omega + \omega^2 + 1 = 0 \end{split}$$

Let
$$\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$$
. Then
 $x^3 - 1 = (x - 1)(x - \omega)(x - \omega^2)$
 $= x^3 - (1 + \omega + \omega^2)x^2 + (1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2)x - (1 \cdot \omega \cdot \omega^2)$
 $= x^3 - s_1(1, \omega, \omega^2)x^2 + s_2(1, \omega, \omega^2)x - s_3(1, \omega, \omega^2).$

$$\begin{split} s_1(1,\omega,\omega^2) &= 1 + \omega + \omega^2 = 0\\ s_2(1,\omega,\omega^2) &= 1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2 = \omega + \omega^2 + 1 = 0\\ s_3(1,\omega,\omega^2) &= 1 \cdot \omega \cdot \omega^2 = 1. \end{split}$$

Let
$$\omega = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2}$$
. Then
 $x^3 - 1 = (x - 1)(x - \omega)(x - \omega^2)$
 $= x^3 - (1 + \omega + \omega^2)x^2 + (1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2)x - (1 \cdot \omega \cdot \omega^2)$
 $= x^3 - s_1(1, \omega, \omega^2)x^2 + s_2(1, \omega, \omega^2)x - s_3(1, \omega, \omega^2).$

Comparing coefficients, we see that

$$\begin{split} s_1(1,\omega,\omega^2) &= 1 + \omega + \omega^2 = 0\\ s_2(1,\omega,\omega^2) &= 1 \cdot \omega + 1 \cdot \omega^2 + \omega \cdot \omega^2 = \omega + \omega^2 + 1 = 0\\ s_3(1,\omega,\omega^2) &= 1 \cdot \omega \cdot \omega^2 = 1. \end{split}$$

Since $x^3 - 1$ has integer coefficients, the elementary functions of its roots are all integers, too.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number.

It is positive if all of the θ_i are real.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number.

It is positive if all of the θ_i are real.

It is a rational integer if the α_i are algebraic integers.
We know $1, \theta, \ldots, \theta^{n-1}$ is a \mathbb{Q} -basis for K.

We know $1, \theta, \ldots, \theta^{n-1}$ is a \mathbb{Q} -basis for K. We have $\sigma_i(\theta^j) = \sigma_i(\theta)^j = \theta_i^j$.

We know $1, \theta, \ldots, \theta^{n-1}$ is a \mathbb{Q} -basis for K. We have $\sigma_i(\theta^j) = \sigma_i(\theta)^j = \theta_i^j$. Therefore, by Vandermonde:

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = \det \begin{pmatrix} 1 & \theta_1 & \theta_1^2 & \ldots & \theta_1^{n-1} \\ 1 & \theta_2 & \theta_2^2 & \ldots & \theta_2^{n-1} \\ 1 & \theta_3 & \theta_3^2 & \ldots & \theta_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \theta_n^2 & \ldots & \theta_n^{n-1} \end{pmatrix}^2 = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2.$$

We know $1, \theta, \ldots, \theta^{n-1}$ is a \mathbb{Q} -basis for K. We have $\sigma_i(\theta^j) = \sigma_i(\theta)^j = \theta_i^j$. Therefore, by Vandermonde:

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = \det \begin{pmatrix} 1 & \theta_1 & \theta_1^2 & \ldots & \theta_1^{n-1} \\ 1 & \theta_2 & \theta_2^2 & \ldots & \theta_2^{n-1} \\ 1 & \theta_3 & \theta_3^2 & \ldots & \theta_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \theta_n^2 & \ldots & \theta_n^{n-1} \end{pmatrix}^2 = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2.$$

Letting C be the change of basis matrix from $1, \theta, \ldots, \theta^{n-1}$ to $\alpha_1, \ldots, \alpha_n$,

We know $1, \theta, \ldots, \theta^{n-1}$ is a \mathbb{Q} -basis for K. We have $\sigma_i(\theta^j) = \sigma_i(\theta)^j = \theta_i^j$. Therefore, by Vandermonde:

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = \det \begin{pmatrix} 1 & \theta_1 & \theta_1^2 & \ldots & \theta_1^{n-1} \\ 1 & \theta_2 & \theta_2^2 & \ldots & \theta_2^{n-1} \\ 1 & \theta_3 & \theta_3^2 & \ldots & \theta_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \theta_n^2 & \ldots & \theta_n^{n-1} \end{pmatrix}^2 = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2 d_j$$

Letting C be the change of basis matrix from $1, \theta, \ldots, \theta^{n-1}$ to $\alpha_1, \ldots, \alpha_n$, we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \Delta[1,\theta,\ldots,\theta^{n-1}] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2.$$

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i .

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} .

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p,

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational.

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational. The entries in C are rational.

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational. The entries in C are rational. Hence, the discriminant is rational.

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational. The entries in C are rational. Hence, the discriminant is rational.

Its positive if the θ_i are real (why?).

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational. The entries in C are rational. Hence, the discriminant is rational.

Its positive if the θ_i are real (why?).

Finally, what can we say if each α_i is an algebraic integer? (See next page)

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer.

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

We have seen that the algebraic integers in K form a ring.

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

We have seen that the algebraic integers in K form a ring. Hence, the discriminant det $(\sigma_i(\alpha_i))^2$ is an algebraic integer.

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

We have seen that the algebraic integers in K form a ring. Hence, the discriminant det $(\sigma_i(\alpha_j))^2$ is an algebraic integer. However, we have just seen that it is a rational number.

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

We have seen that the algebraic integers in K form a ring. Hence, the discriminant det $(\sigma_i(\alpha_j))^2$ is an algebraic integer. However, we have just seen that it is a rational number. We also know that if a rational number is integral over \mathbb{Q} , then it must be an ordinary integer.