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Today

I Tomorrow’s quiz.
I Fundamental Theorem of Algebra.
I Field homomorphisms.
I The discriminant.



Tomorrow’s quiz

See homepage.



Fundamental Theorem of Algebra

Theorem. (Fundamental theorem of algebra.) Let h ∈ C[x ] be a
nonconstant polynomial. Then there exists α ∈ C such that
h(α) = 0.

Using polynomial division, we get the following (equivalent)
formulation of the fundamental theorem of algebra:

Corollary. A polynomial h ∈ C[x ] of degree n has n complex roots
θ1, . . . , θn counting multiplicities (i.e., the θi are not necessarily
distinct), and

h = β
n∏

n=1
(x − θi )

for some β ∈ C.
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Field homomorphisms

Let K be a number field.

Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. The homomorphism σ is either injective or identically 0.
2. If σ is injective, then σ is the identity mapping when

restricted to Q ∈ K .
3. Suppose that α ∈ K and h ∈ Q[x ] with h(α) = 0. If σ 6= 0,

then h(σ(α)) = 0. Thus, σ permutes the roots of h in C.
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1
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α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields,

i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.

I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.

I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,
and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.

If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒

σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,
and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.

If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and

σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.

If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0},

then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ.

Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K ,

and since ker σ is an ideal, 1
α · α = 1 ∈ ker σ. So

ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ.

So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K ,

i.e., σ = 0.



Field homomorphisms

Let K be a number field. Let σ : K → C be a homomorphism of
fields, i.e., for all a, b ∈ K ,

σ(a + b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b).

1. ker σ is an ideal in K :

Proof.
I σ(0) = 0⇒ ker σ 6= ∅.
I a, b ∈ ker σ, k ∈ K ⇒ σ(a + b) = σ(a) + σ(b) = 0 + 0 = 0,

and σ(ka) = σ(k)σ(a) = σ(k) · 0 = 0.
If ker σ 6= (0) = {0}, then take 0 6= α ∈ ker σ. Since K is a field,
1
α ∈ K , and since ker σ is an ideal, 1

α · α = 1 ∈ ker σ. So
ker σ = (1) = K , i.e., σ = 0.



Field homomorphisms

2. If σ is injective, then σ is the identity mapping when restricted
to Q ∈ K .

Proof. Suppose σ is injective. Then the standard argument shows
that σ(1) = 1:

σ(1) = σ(1 · 1) = σ(1)σ(1).

Since σ is injective, σ(1) 6= 0. Multiplying the above equation
through by 1/σ(1), gives σ(1) = 1.
Then, for each n ∈ N,

σ(n) = σ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

It follows that σ fixes Q: (i) For n ∈ Z>0, apply σ to the identity
(1/n)n = 1 to get σ(1/n) = 1/n. (ii) Next show σ(m/n) = m/n
for all m, n ∈ N with n 6= 0. (iii) Finally, show that for any α ∈ K ,
we have σ(−α) = −σ(α).



Field homomorphisms

2. If σ is injective, then σ is the identity mapping when restricted
to Q ∈ K .

Proof. Suppose σ is injective. Then the standard argument shows
that σ(1) = 1:

σ(1) = σ(1 · 1) = σ(1)σ(1).

Since σ is injective, σ(1) 6= 0. Multiplying the above equation
through by 1/σ(1), gives σ(1) = 1.
Then, for each n ∈ N,

σ(n) = σ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

It follows that σ fixes Q: (i) For n ∈ Z>0, apply σ to the identity
(1/n)n = 1 to get σ(1/n) = 1/n. (ii) Next show σ(m/n) = m/n
for all m, n ∈ N with n 6= 0. (iii) Finally, show that for any α ∈ K ,
we have σ(−α) = −σ(α).



Field homomorphisms

2. If σ is injective, then σ is the identity mapping when restricted
to Q ∈ K .

Proof. Suppose σ is injective. Then the standard argument shows
that σ(1) = 1:

σ(1) = σ(1 · 1) = σ(1)σ(1).

Since σ is injective, σ(1) 6= 0. Multiplying the above equation
through by 1/σ(1), gives σ(1) = 1.

Then, for each n ∈ N,

σ(n) = σ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

It follows that σ fixes Q: (i) For n ∈ Z>0, apply σ to the identity
(1/n)n = 1 to get σ(1/n) = 1/n. (ii) Next show σ(m/n) = m/n
for all m, n ∈ N with n 6= 0. (iii) Finally, show that for any α ∈ K ,
we have σ(−α) = −σ(α).



Field homomorphisms

2. If σ is injective, then σ is the identity mapping when restricted
to Q ∈ K .

Proof. Suppose σ is injective. Then the standard argument shows
that σ(1) = 1:

σ(1) = σ(1 · 1) = σ(1)σ(1).

Since σ is injective, σ(1) 6= 0. Multiplying the above equation
through by 1/σ(1), gives σ(1) = 1.
Then, for each n ∈ N,

σ(n) = σ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

It follows that σ fixes Q: (i) For n ∈ Z>0, apply σ to the identity
(1/n)n = 1 to get σ(1/n) = 1/n. (ii) Next show σ(m/n) = m/n
for all m, n ∈ N with n 6= 0. (iii) Finally, show that for any α ∈ K ,
we have σ(−α) = −σ(α).



Field homomorphisms

2. If σ is injective, then σ is the identity mapping when restricted
to Q ∈ K .

Proof. Suppose σ is injective. Then the standard argument shows
that σ(1) = 1:

σ(1) = σ(1 · 1) = σ(1)σ(1).

Since σ is injective, σ(1) 6= 0. Multiplying the above equation
through by 1/σ(1), gives σ(1) = 1.
Then, for each n ∈ N,

σ(n) = σ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

It follows that σ fixes Q:

(i) For n ∈ Z>0, apply σ to the identity
(1/n)n = 1 to get σ(1/n) = 1/n. (ii) Next show σ(m/n) = m/n
for all m, n ∈ N with n 6= 0. (iii) Finally, show that for any α ∈ K ,
we have σ(−α) = −σ(α).



Field homomorphisms

2. If σ is injective, then σ is the identity mapping when restricted
to Q ∈ K .

Proof. Suppose σ is injective. Then the standard argument shows
that σ(1) = 1:

σ(1) = σ(1 · 1) = σ(1)σ(1).

Since σ is injective, σ(1) 6= 0. Multiplying the above equation
through by 1/σ(1), gives σ(1) = 1.
Then, for each n ∈ N,

σ(n) = σ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

It follows that σ fixes Q: (i) For n ∈ Z>0, apply σ to the identity
(1/n)n = 1 to get σ(1/n) = 1/n.

(ii) Next show σ(m/n) = m/n
for all m, n ∈ N with n 6= 0. (iii) Finally, show that for any α ∈ K ,
we have σ(−α) = −σ(α).



Field homomorphisms

2. If σ is injective, then σ is the identity mapping when restricted
to Q ∈ K .

Proof. Suppose σ is injective. Then the standard argument shows
that σ(1) = 1:

σ(1) = σ(1 · 1) = σ(1)σ(1).

Since σ is injective, σ(1) 6= 0. Multiplying the above equation
through by 1/σ(1), gives σ(1) = 1.
Then, for each n ∈ N,

σ(n) = σ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

It follows that σ fixes Q: (i) For n ∈ Z>0, apply σ to the identity
(1/n)n = 1 to get σ(1/n) = 1/n. (ii) Next show σ(m/n) = m/n
for all m, n ∈ N with n 6= 0.

(iii) Finally, show that for any α ∈ K ,
we have σ(−α) = −σ(α).



Field homomorphisms

2. If σ is injective, then σ is the identity mapping when restricted
to Q ∈ K .

Proof. Suppose σ is injective. Then the standard argument shows
that σ(1) = 1:

σ(1) = σ(1 · 1) = σ(1)σ(1).

Since σ is injective, σ(1) 6= 0. Multiplying the above equation
through by 1/σ(1), gives σ(1) = 1.
Then, for each n ∈ N,

σ(n) = σ(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = σ(1) + · · ·+ σ(1)︸ ︷︷ ︸
n times

= 1 + · · ·+ 1︸ ︷︷ ︸
n times

= n.

It follows that σ fixes Q: (i) For n ∈ Z>0, apply σ to the identity
(1/n)n = 1 to get σ(1/n) = 1/n. (ii) Next show σ(m/n) = m/n
for all m, n ∈ N with n 6= 0. (iii) Finally, show that for any α ∈ K ,
we have σ(−α) = −σ(α).



Field homomorphisms

3. Suppose that α ∈ K and h ∈ Q[x ] with h(α) = 0. If σ 6= 0,
then h(σ(α)) = 0. Thus, σ permutes the roots of h in C.

Proof. So suppose σ 6= 0, in which case σ is injective.
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i=1 aix i and that h(α) = 0. Then, using the fact that σ
preserves sums and products, σ is the identity on Q, and the
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0 = σ(0) = σ(
∑n

i=1 aiα
i )

=
n∑

i=1
σ(ai )(σ(α))i

=
n∑

i=1
ai (σ(α))i = h(σ(α)).

�



Field homomorphisms

3. Suppose that α ∈ K and h ∈ Q[x ] with h(α) = 0. If σ 6= 0,
then h(σ(α)) = 0. Thus, σ permutes the roots of h in C.

Proof. So suppose σ 6= 0, in which case σ

is injective.

Say h =
∑n

i=1 aix i and that h(α) = 0. Then, using the fact that σ
preserves sums and products, σ is the identity on Q, and the
ai ∈ Q,

0 = σ(0) = σ(
∑n

i=1 aiα
i )

=
n∑

i=1
σ(ai )(σ(α))i

=
n∑

i=1
ai (σ(α))i = h(σ(α)).

�



Field homomorphisms

3. Suppose that α ∈ K and h ∈ Q[x ] with h(α) = 0. If σ 6= 0,
then h(σ(α)) = 0. Thus, σ permutes the roots of h in C.

Proof. So suppose σ 6= 0, in which case σ is injective.

Say h =
∑n

i=1 aix i and that h(α) = 0. Then, using the fact that σ
preserves sums and products, σ is the identity on Q, and the
ai ∈ Q,

0 = σ(0) = σ(
∑n

i=1 aiα
i )

=
n∑

i=1
σ(ai )(σ(α))i

=
n∑

i=1
ai (σ(α))i = h(σ(α)).

�



Field homomorphisms

3. Suppose that α ∈ K and h ∈ Q[x ] with h(α) = 0. If σ 6= 0,
then h(σ(α)) = 0. Thus, σ permutes the roots of h in C.

Proof. So suppose σ 6= 0, in which case σ is injective.

Say h =
∑n

i=1 aix i and that h(α) = 0.

Then, using the fact that σ
preserves sums and products, σ is the identity on Q, and the
ai ∈ Q,

0 = σ(0) = σ(
∑n

i=1 aiα
i )

=
n∑

i=1
σ(ai )(σ(α))i

=
n∑

i=1
ai (σ(α))i = h(σ(α)).

�



Field homomorphisms

3. Suppose that α ∈ K and h ∈ Q[x ] with h(α) = 0. If σ 6= 0,
then h(σ(α)) = 0. Thus, σ permutes the roots of h in C.

Proof. So suppose σ 6= 0, in which case σ is injective.

Say h =
∑n

i=1 aix i and that h(α) = 0. Then, using the fact that σ
preserves sums and products, σ is the identity on Q, and the
ai ∈ Q,

0 = σ(0) = σ(
∑n

i=1 aiα
i )

=
n∑

i=1
σ(ai )(σ(α))i

=
n∑

i=1
ai (σ(α))i = h(σ(α)).

�



Field homomorphisms

3. Suppose that α ∈ K and h ∈ Q[x ] with h(α) = 0. If σ 6= 0,
then h(σ(α)) = 0. Thus, σ permutes the roots of h in C.

Proof. So suppose σ 6= 0, in which case σ is injective.

Say h =
∑n

i=1 aix i and that h(α) = 0. Then, using the fact that σ
preserves sums and products, σ is the identity on Q, and the
ai ∈ Q,

0 = σ(0) = σ(
∑n

i=1 aiα
i )

=
n∑

i=1
σ(ai )(σ(α))i

=
n∑

i=1
ai (σ(α))i = h(σ(α)).

�



Field homomorphisms

3. Suppose that α ∈ K and h ∈ Q[x ] with h(α) = 0. If σ 6= 0,
then h(σ(α)) = 0. Thus, σ permutes the roots of h in C.

Proof. So suppose σ 6= 0, in which case σ is injective.

Say h =
∑n

i=1 aix i and that h(α) = 0. Then, using the fact that σ
preserves sums and products, σ is the identity on Q, and the
ai ∈ Q,

0 = σ(0) = σ(
∑n

i=1 aiα
i )

=
n∑

i=1
σ(ai )(σ(α))i

=
n∑

i=1
ai (σ(α))i = h(σ(α)).

�



Field homomorphisms

3. Suppose that α ∈ K and h ∈ Q[x ] with h(α) = 0. If σ 6= 0,
then h(σ(α)) = 0. Thus, σ permutes the roots of h in C.

Proof. So suppose σ 6= 0, in which case σ is injective.

Say h =
∑n

i=1 aix i and that h(α) = 0. Then, using the fact that σ
preserves sums and products, σ is the identity on Q, and the
ai ∈ Q,

0 = σ(0) = σ(
∑n

i=1 aiα
i )

=
n∑

i=1
σ(ai )(σ(α))i

=
n∑

i=1
ai (σ(α))i = h(σ(α)).

�



Field embeddings

What are all of the embeddings (injective field homomorphisms) of
a number field K into C?

Write K = Q(θ) = Q[θ] for some algebraic number θ. Let
p ∈ Q[x ] be the minimal polynomial for θ.

Facts from algebra.
I The number of embeddings is n := deg(p) = [K : Q].
I If σ1, . . . , σn are the embeddings, define θi := σi (θ). Then

p =
∏n

i=1(x − θi ).
I θ 7→ θi determines σi .

To see last fact, recall that {1, θ, θ2, . . . , θn−1} is a Q-basis for K .
So for each fixed i , we have σi :

∑n
j=1 αjθ

j 7→
∑n

j=1 αjθ
j
i .
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Field embedding examples

What are the embeddings Q(
√

5)→ C?

Minimal polynomial: p = (x −
√

5)(x +
√

5).

Embeddings: σ1 :
√

5 7→
√

5 and σ2 :
√

5 7→ −
√

5.

σ1(r + s
√

5) = r + s
√

5.

σ2(r + s
√

5) = r − s
√

5.

Note that in this case the image of the embedding is Q(
√

5). So
they are automorphisms of K . The next example shows that
embeddings do not need to be automorphisms.
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Field embedding examples

Let K = Q( 3√5).

Then the minimal polynomial is

p = x3 − 5 = (x − 3√5)(x − ω 3√5)(x − ω2 3√5),

where ω = e2πi/3 = cos(2π/3) + i sin(2π/3) = −1+i
√

3
2 . The three

embeddings of Q( 3√5) are given by

σ1(1 + a 3√5 + b( 3√5)2) := id(1 + a 3√5 + b( 3√5)2) = 1 + a 3√5 + b( 3√5)2

σ2(1 + a 3√5 + b( 3√5)2) := 1 + aω 3√5 + b(ω 3√5)2 = 1 + aω 3√5 + bω2( 3√5)2

σ3(1 + a 3√5 + b( 3√5)2) := 1 + aω2 3√5 + b(ω2 3√5)2 = 1 + aω2 3√5 + bω( 3√5)2.

Unlike the previous example, note that neither im(σ2) nor im(σ3)
are contained in Q( 3√5).
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The discriminant
Number field: K = Q(θ) with [K : Q] = n. Let p ∈ Q[x ] be the
minimal polynomial of θ.

Minimal polynomial for θ: p =
∏n

i=1(x − θi ) with θi distinct.

Embeddings σi : θ 7→ θi .

Definition. The discriminant for a basis α1, . . . , αn for K over Q:
is the square of the determinant of the n × n matrix with i , j-th
entry σi (αj):

∆[α1, . . . , αn] := (det(σi (αj)))2 .

Example. Let K = Q(
√

d) where d is a square-free integer 6= 0, 1.
Then

∆[1,
√

d ] =
(

det
(

1
√

d
1 −

√
d

))2

= (−2
√

d)2 = 4d .
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The discriminant

Proposition. Let α1, . . . , αn and β1, . . . , βn be bases for the
number field K over Q.

Let C be the change of basis matrix from
the αi to the βi . Then

∆[β1, . . . , βn] = (det C)2∆[α1, . . . , αn].

Proof. A = (σi (αj)) and B = (σi (βj)). Then B = AC . So

det(B)2 = (det(AC))2 = (det(A) det(C))2 = etc. �
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The discriminant

Next time, we will prove the following:

Theorem. Let K = Q(θ) be a number field, with embeddings σi
and with θi = σi (θ) for i = 1, . . . , n. Let α1, . . . , αn be a basis
for K over Q.

Then the discriminant ∆[α1, . . . , αn] is a nonzero rational number.

It is positive if all of the θi are real.

It is a rational integer if the αi are algebraic integers.
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