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Today

» Tomorrow's quiz.
» Fundamental Theorem of Algebra.
» Field homomorphisms.

» The discriminant.



Tomorrow's quiz

See homepage.



Fundamental Theorem of Algebra

Theorem. (Fundamental theorem of algebra.) Let h € C[x] be a
nonconstant polynomial. Then there exists a € C such that
h(a) = 0.
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Fundamental Theorem of Algebra

Theorem. (Fundamental theorem of algebra.) Let h € C[x] be a
nonconstant polynomial. Then there exists a € C such that
h(a) = 0.

Using polynomial division, we get the following (equivalent)
formulation of the fundamental theorem of algebra:

Corollary. A polynomial h € C[x] of degree n has n complex roots
01,...,0, counting multiplicities (i.e., the 6; are not necessarily
distinct), and

hzﬁﬁ(x—G;)
n=1

for some 3 € C.
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2. If o is injective, then o is the identity mapping when
restricted to Q € K.
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Let K be a number field. Let 0: K — C be a homomorphism of
fields, i.e., for all a,b € K,

o(a+ b)=o0(a)+o(b) and o(ab)=o(a)o(b).

1. The homomorphism ¢ is either injective or identically 0.
2. If o is injective, then o is the identity mapping when
restricted to Q € K.

3. Suppose that a € K and h € Q[x] with h(a) = 0. If o # 0,
then h(o(a)) = 0. Thus, o permutes the roots of h in C.
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Let K be a number field. Let 0: K — C be a homomorphism of
fields, i.e., for all a,b € K,

o(a+ b)=o0(a)+o(b) and o(ab) = o(a)o(b).
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Let K be a number field. Let 0: K — C be a homomorphism of
fields, i.e., for all a,b € K,

o(a+ b)=o0(a)+o(b) and o(ab) = o(a)o(b).

1. kero is an ideal in K:
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» o(0) =0= kero # 0.
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Field homomorphisms

Let K be a number field. Let 0: K — C be a homomorphism of
fields, i.e., for all a,b € K,

o(a+ b)=o0(a)+o(b) and o(ab) = o(a)o(b).

1. kero is an ideal in K:

Proof.
» o(0) =0= kero # 0.
» a,bckero, ke K=o(a+b)=0(a)+0o(b)=0+0=0,
and o(ka) = o(k)o(a) = o(k)-0=0.
If kero # (0) = {0}, then take 0 # « € kero. Since K is a field,

é € K, and since ker o is an ideal, é -aa=1¢€kero. So
kero=(1)=K, ie,o=0.
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Proof. Suppose o is injective. Then the standard argument shows
that (1) = 1
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through by 1/0(1), gives o(1) = 1.
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It follows that o fixes Q: (i) For n € Z~g, apply o to the identity
(1/n)n =1 to get o(1/n) = 1/n.



Field homomorphisms

2. If o is injective, then o is the identity mapping when restricted
to Q € K.

Proof. Suppose o is injective. Then the standard argument shows
that (1) = 1

o(l)=0(1-1)=0(1)o(1).
Since o is injective, o(1) # 0. Multiplying the above equation
through by 1/0(1), gives o(1) = 1.
Then, for each n € N,

o(n=c+---+1)=0(1)+---+0(1)=1+---+1=n.

n times n times n times

It follows that o fixes Q: (i) For n € Z~g, apply o to the identity
(1/n)n =1 to get o(1/n) = 1/n. (ii) Next show o(m/n) = m/n
for all m,n € N with n # 0.



Field homomorphisms

2. If o is injective, then o is the identity mapping when restricted
to Q € K.

Proof. Suppose o is injective. Then the standard argument shows
that (1) = 1

o(l)=0(1-1)=0(1)o(1).
Since o is injective, o(1) # 0. Multiplying the above equation
through by 1/0(1), gives o(1) = 1.
Then, for each n € N,

o(n=c+---+1)=0(1)+---+0(1)=1+---+1=n.

n times n times n times

It follows that o fixes Q: (i) For n € Z~g, apply o to the identity
(1/n)n =1 to get o(1/n) = 1/n. (ii) Next show o(m/n) = m/n
for all m,n € N with n # 0. (iii) Finally, show that for any a € K,
we have o(—a) = —o(a).



Field homomorphisms

3. Suppose that a € K and h € Q[x] with h(«) = 0. If o # 0,
then h(o(a)) = 0. Thus, o permutes the roots of h in C.



Field homomorphisms

3. Suppose that a € K and h € Q[x] with h(«) = 0. If o # 0,
then h(o(a)) = 0. Thus, o permutes the roots of h in C.

Proof. So suppose o # 0, in which case o



Field homomorphisms

3. Suppose that a € K and h € Q[x] with h(«) = 0. If o # 0,
then h(o(a)) = 0. Thus, o permutes the roots of h in C.

Proof. So suppose o # 0, in which case o is injective.



Field homomorphisms

3. Suppose that a € K and h € Q[x] with h(«) = 0. If o # 0,
then h(o(a)) = 0. Thus, o permutes the roots of h in C.

Proof. So suppose o # 0, in which case o is injective.

Say h =" a;x’ and that h(a) = 0.



Field homomorphisms
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then h(o(a)) = 0. Thus, o permutes the roots of h in C.

Proof. So suppose o # 0, in which case o is injective.

Say h=3""; a;x’ and that h(a) = 0. Then, using the fact that o
preserves sums and products, o is the identity on Q, and the

aj € Q,

0=0(0)=c(X " aia))



Field homomorphisms

3. Suppose that a € K and h € Q[x] with h(«) = 0. If o # 0,
then h(o(a)) = 0. Thus, o permutes the roots of h in C.

Proof. So suppose o # 0, in which case o is injective.

Say h=3""; a;x’ and that h(a) = 0. Then, using the fact that o
preserves sums and products, o is the identity on Q, and the

aj € Q,

0=0(0)=c(X " aia))

n

= >~ o(@)(o(a))
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Proof. So suppose o # 0, in which case o is injective.
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Write K = Q(0) = Q[#] for some algebraic number 6. Let
p € Q[x] be the minimal polynomial for 6.
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Write K = Q(0) = Q[#] for some algebraic number 6. Let
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What are all of the embeddings (injective field homomorphisms) of
a number field K into C?

Write K = Q(0) = Q[#] for some algebraic number 6. Let
p € Q[x] be the minimal polynomial for 6.
Facts from algebra.

» The number of embeddings is n := deg(p) = [K : Q).

» If 01,...,0, are the embeddings, define 6; := ¢j(#). Then
p = Ilii(x = 67).
» 0 — 0; determines o;.

To see last fact, recall that {1,0,6%,...,0""1} is a Q-basis for K.
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What are all of the embeddings (injective field homomorphisms) of
a number field K into C?

Write K = Q(0) = Q[#] for some algebraic number 6. Let
p € Q[x] be the minimal polynomial for 6.
Facts from algebra.
» The number of embeddings is n := deg(p) = [K : Q).
» If 01,...,0, are the embeddings, define 6; := ¢j(#). Then
p =TI (x — 65).
» 0 — 0; determines o;.

To see last fact, recall that {1,0,6%,...,0""1} is a Q-basis for K.
So for each fixed i, we have o;: ZJ’-’Zl aﬂj —



Field embeddings

What are all of the embeddings (injective field homomorphisms) of
a number field K into C?

Write K = Q(0) = Q[#] for some algebraic number 6. Let
p € Q[x] be the minimal polynomial for 6.
Facts from algebra.
» The number of embeddings is n := deg(p) = [K : Q).
» If 01,...,0, are the embeddings, define 6; := ¢j(#). Then
p =TI (x — 65).
» 0 — 0; determines o;.

To see last fact, recall that {1,60,62,...,0" 1} is a Q-basis for K.
So for each fixed i, we have o;: 337 4 ot — S oy
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Minimal polynomial: p = (x — v/5)(x + v/5).
Embeddings: o7 : V5 = /5 and o3 : /5 — —/5.
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Field embedding examples

What are the embeddings Q(+/5) — C?

Minimal polynomial: p = (x — v/5)(x + v/5).
Embeddings: o7 : V5 = /5 and o3 : /5 — —/5.

o1(r +sv5) = r +sV5.
oa(r +svV5) =r — sv/5.
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Field embedding examples

What are the embeddings Q(+/5) — C?

Minimal polynomial: p = (x — v/5)(x + v/5).
Embeddings: o7 : V5 = /5 and o3 : /5 — —/5.

o1(r +sv5) = r +sV5.
oa(r +svV5) =r — sv/5.

Note that in this case the image of the embedding is Q(+/5). So
they are automorphisms of K. The next example shows that
embeddings do not need to be automorphisms.
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oa(1 4 av/5 + b(V5)?) := 1+ awV/5 + b(wV/5)? = 1 + awV/5 + bw?(V/5)>
o3(1+ av/5 + b(V/5)?) == 1 + aw? V5 + b(w?V/5)? = 1 + aw?V/5 + bw(V/5)?.



Field embedding examples

Let K = Q(v/5). Then the minimal polynomial is
p=x3—-5=(x—V5)(x —wV5)(x — w?V5),

where w = €2™/3 = cos(27/3) + isin(21/3) = _1%"@ The three
embeddings of Q(v/5) are given by

01(1+ aV/5 + b(V/5)?) := id(1 + av/5 + b(V/5)?) = 1 + av/5 + b(V/5)?
oa(1 4 av/5 + b(V5)?) := 1+ awV/5 + b(wV/5)? = 1 + awV/5 + bw?(V/5)>
03(1+ av/5 + b(V/5)?) := 1 + aw?V/5 + b(w?V/5)?

Unlike the previous example, note that neither im(o2) nor im(o3)

are contained in Q(+v/5).
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Number field: K = Q(0) with [K: Q] = n. Let p € Q[x] be the
minimal polynomial of 6.
Minimal polynomial for : p = [[7_;(x — 6;) with 6; distinct.
Embeddings o; : 6 — 0;.

Definition. The discriminant for a basis s, ..., a, for K over Q:
is the square of the determinant of the n x n matrix with 7, j-th
entry oj(a;):

Alaa, ..., ap] = (det(ai()))? .

Example. Let K = Q(v/d) where d is a square-free integer # 0, 1.
Then

2
A, Vd] = (det( 1 _g )) = (—2Vd)? = 4d.
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Proposition. Let a1,...,a, and (1, ..., B, be bases for the
number field K over Q. Let C be the change of basis matrix from
the «; to the ;. Then

AlB1, ..., Bn] = (det C)2Aa, ..., ay).

Proof. A = (0i(aj)) and B = (0i(;)). Then B= AC. So

det(B)? = (det(AC))? = (det(A)det(C))®> =etc. O
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Next time, we will prove the following:

Theorem. Let K = Q(f) be a number field, with embeddings o;

and with §; = 0j(0) for i =1,...,n. Let ag,...,, be a basis
for K over Q.
Then the discriminant Afas, ..., ap] is a nonzero rational number.

It is positive if all of the #; are real.

It is a rational integer if the «; are algebraic integers.



