Math 361

February 6, 2023

Today

► Tomorrow's quiz.

- ► Fundamental Theorem of Algebra.
- Field homomorphisms.
- The discriminant.

Tomorrow's quiz

See homepage.

Fundamental Theorem of Algebra

Theorem. (Fundamental theorem of algebra.) Let $h \in \mathbb{C}[x]$ be a nonconstant polynomial. Then there exists $\alpha \in \mathbb{C}$ such that $h(\alpha) = 0$.

Fundamental Theorem of Algebra

Theorem. (Fundamental theorem of algebra.) Let $h \in \mathbb{C}[x]$ be a nonconstant polynomial. Then there exists $\alpha \in \mathbb{C}$ such that $h(\alpha) = 0$.

Using polynomial division, we get the following (equivalent) formulation of the fundamental theorem of algebra:

Fundamental Theorem of Algebra

Theorem. (Fundamental theorem of algebra.) Let $h \in \mathbb{C}[x]$ be a nonconstant polynomial. Then there exists $\alpha \in \mathbb{C}$ such that $h(\alpha) = 0$.

Using polynomial division, we get the following (equivalent) formulation of the fundamental theorem of algebra:

Corollary. A polynomial $h \in \mathbb{C}[x]$ of degree *n* has *n* complex roots $\theta_1, \ldots, \theta_n$ counting multiplicities (i.e., the θ_i are not necessarily distinct), and

$$h=\beta\prod_{n=1}^n(x-\theta_i)$$

for some $\beta \in \mathbb{C}$.

Let K be a number field.

Let K be a number field. Let $\sigma\colon K\to \mathbb{C}$ be a homomorphism of fields,

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b).$

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. The homomorphism σ is either injective or identically 0.

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

- 1. The homomorphism σ is either injective or identically 0.
- 2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

- 1. The homomorphism σ is either injective or identically 0.
- 2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.
- 3. Suppose that $\alpha \in K$ and $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0$. If $\sigma \neq 0$, then $h(\sigma(\alpha)) = 0$. Thus, σ permutes the roots of h in \mathbb{C} .

Let K be a number field.

Let K be a number field. Let $\sigma\colon K\to \mathbb{C}$ be a homomorphism of fields,

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

$$\blacktriangleright \ \sigma(0) = 0 \Rightarrow \ker \sigma \neq \emptyset.$$

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

$$\blacktriangleright \ \sigma(0) = 0 \Rightarrow \ker \sigma \neq \emptyset.$$

$$\blacktriangleright \ a,b\in \ker \sigma, \ k\in K \Rightarrow$$

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b).$

1. ker σ is an ideal in K:

Proof.

$$\bullet \ \sigma(0) = 0 \Rightarrow \ker \sigma \neq \emptyset.$$

► $a, b \in \ker \sigma, \ k \in K \Rightarrow \sigma(a+b) = \sigma(a) + \sigma(b) = 0 + 0 = 0,$ and

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

Proof.

$$\bullet \ \sigma(\mathbf{0}) = \mathbf{0} \Rightarrow \ker \sigma \neq \emptyset.$$

► $a, b \in \ker \sigma, \ k \in K \Rightarrow \sigma(a+b) = \sigma(a) + \sigma(b) = 0 + 0 = 0,$ and $\sigma(ka) = \sigma(k)\sigma(a) = \sigma(k) \cdot 0 = 0.$

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

Proof.

$$\bullet \ \sigma(0) = 0 \Rightarrow \ker \sigma \neq \emptyset.$$

► $a, b \in \ker \sigma, \ k \in K \Rightarrow \sigma(a+b) = \sigma(a) + \sigma(b) = 0 + 0 = 0,$ and $\sigma(ka) = \sigma(k)\sigma(a) = \sigma(k) \cdot 0 = 0.$

If ker $\sigma \neq (0) = \{0\}$, then take $0 \neq \alpha \in \ker \sigma$.

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

Proof.

$$\blacktriangleright \ \sigma(\mathbf{0}) = \mathbf{0} \Rightarrow \ker \sigma \neq \emptyset.$$

► $a, b \in \ker \sigma, \ k \in K \Rightarrow \sigma(a+b) = \sigma(a) + \sigma(b) = 0 + 0 = 0,$ and $\sigma(ka) = \sigma(k)\sigma(a) = \sigma(k) \cdot 0 = 0.$

If ker $\sigma \neq (0) = \{0\}$, then take $0 \neq \alpha \in \ker \sigma$. Since K is a field, $\frac{1}{\alpha} \in K$,

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

Proof.

$$\bullet \ \sigma(\mathbf{0}) = \mathbf{0} \Rightarrow \ker \sigma \neq \emptyset.$$

►
$$a, b \in \ker \sigma, \ k \in K \Rightarrow \sigma(a+b) = \sigma(a) + \sigma(b) = 0 + 0 = 0,$$

and $\sigma(ka) = \sigma(k)\sigma(a) = \sigma(k) \cdot 0 = 0.$

If ker $\sigma \neq (0) = \{0\}$, then take $0 \neq \alpha \in \ker \sigma$. Since K is a field, $\frac{1}{\alpha} \in K$, and since ker σ is an ideal, $\frac{1}{\alpha} \cdot \alpha = 1 \in \ker \sigma$.

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

Proof.

$$\blacktriangleright \ \sigma(0) = 0 \Rightarrow \ker \sigma \neq \emptyset.$$

► $a, b \in \ker \sigma, \ k \in K \Rightarrow \sigma(a+b) = \sigma(a) + \sigma(b) = 0 + 0 = 0,$ and $\sigma(ka) = \sigma(k)\sigma(a) = \sigma(k) \cdot 0 = 0.$

If ker $\sigma \neq (0) = \{0\}$, then take $0 \neq \alpha \in \ker \sigma$. Since K is a field, $\frac{1}{\alpha} \in K$, and since ker σ is an ideal, $\frac{1}{\alpha} \cdot \alpha = 1 \in \ker \sigma$. So ker $\sigma = (1) = K$,

Let K be a number field. Let $\sigma \colon K \to \mathbb{C}$ be a homomorphism of fields, i.e., for all $a, b \in K$,

$$\sigma(a+b) = \sigma(a) + \sigma(b)$$
 and $\sigma(ab) = \sigma(a)\sigma(b)$.

1. ker σ is an ideal in K:

Proof.

$$\blacktriangleright \ \sigma(0) = 0 \Rightarrow \ker \sigma \neq \emptyset.$$

►
$$a, b \in \ker \sigma, \ k \in K \Rightarrow \sigma(a+b) = \sigma(a) + \sigma(b) = 0 + 0 = 0,$$

and $\sigma(ka) = \sigma(k)\sigma(a) = \sigma(k) \cdot 0 = 0.$

If ker $\sigma \neq (0) = \{0\}$, then take $0 \neq \alpha \in \ker \sigma$. Since K is a field, $\frac{1}{\alpha} \in K$, and since ker σ is an ideal, $\frac{1}{\alpha} \cdot \alpha = 1 \in \ker \sigma$. So ker $\sigma = (1) = K$, i.e., $\sigma = 0$.

2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.

2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.

Proof. Suppose σ is injective. Then the standard argument shows that $\sigma(1) = 1$:

$$\sigma(1) = \sigma(1 \cdot 1) = \sigma(1)\sigma(1).$$

2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.

Proof. Suppose σ is injective. Then the standard argument shows that $\sigma(1) = 1$:

$$\sigma(1) = \sigma(1 \cdot 1) = \sigma(1)\sigma(1).$$

Since σ is injective, $\sigma(1) \neq 0$. Multiplying the above equation through by $1/\sigma(1)$, gives $\sigma(1) = 1$.

2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.

Proof. Suppose σ is injective. Then the standard argument shows that $\sigma(1) = 1$:

$$\sigma(1) = \sigma(1 \cdot 1) = \sigma(1)\sigma(1).$$

Since σ is injective, $\sigma(1) \neq 0$. Multiplying the above equation through by $1/\sigma(1)$, gives $\sigma(1) = 1$. Then, for each $n \in \mathbb{N}$,

$$\sigma(n) = \sigma(\underbrace{1 + \dots + 1}_{n \text{ times}}) = \underbrace{\sigma(1) + \dots + \sigma(1)}_{n \text{ times}} = \underbrace{1 + \dots + 1}_{n \text{ times}} = n.$$

2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.

Proof. Suppose σ is injective. Then the standard argument shows that $\sigma(1) = 1$:

$$\sigma(1) = \sigma(1 \cdot 1) = \sigma(1)\sigma(1).$$

Since σ is injective, $\sigma(1) \neq 0$. Multiplying the above equation through by $1/\sigma(1)$, gives $\sigma(1) = 1$. Then, for each $n \in \mathbb{N}$,

It follows that σ fixes \mathbb{Q} :

2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.

Proof. Suppose σ is injective. Then the standard argument shows that $\sigma(1) = 1$:

$$\sigma(1) = \sigma(1 \cdot 1) = \sigma(1)\sigma(1).$$

Since σ is injective, $\sigma(1) \neq 0$. Multiplying the above equation through by $1/\sigma(1)$, gives $\sigma(1) = 1$. Then, for each $n \in \mathbb{N}$,

$$\sigma(n) = \sigma(\underbrace{1 + \dots + 1}_{n \text{ times}}) = \underbrace{\sigma(1) + \dots + \sigma(1)}_{n \text{ times}} = \underbrace{1 + \dots + 1}_{n \text{ times}} = n.$$

It follows that σ fixes \mathbb{Q} : (i) For $n \in \mathbb{Z}_{>0}$, apply σ to the identity (1/n)n = 1 to get $\sigma(1/n) = 1/n$.

2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.

Proof. Suppose σ is injective. Then the standard argument shows that $\sigma(1) = 1$:

$$\sigma(1) = \sigma(1 \cdot 1) = \sigma(1)\sigma(1).$$

Since σ is injective, $\sigma(1) \neq 0$. Multiplying the above equation through by $1/\sigma(1)$, gives $\sigma(1) = 1$. Then, for each $n \in \mathbb{N}$,

$$\sigma(n) = \sigma(\underbrace{1 + \dots + 1}_{n \text{ times}}) = \underbrace{\sigma(1) + \dots + \sigma(1)}_{n \text{ times}} = \underbrace{1 + \dots + 1}_{n \text{ times}} = n.$$

It follows that σ fixes \mathbb{Q} : (i) For $n \in \mathbb{Z}_{>0}$, apply σ to the identity (1/n)n = 1 to get $\sigma(1/n) = 1/n$. (ii) Next show $\sigma(m/n) = m/n$ for all $m, n \in \mathbb{N}$ with $n \neq 0$.

2. If σ is injective, then σ is the identity mapping when restricted to $\mathbb{Q} \in K$.

Proof. Suppose σ is injective. Then the standard argument shows that $\sigma(1) = 1$:

$$\sigma(1) = \sigma(1 \cdot 1) = \sigma(1)\sigma(1).$$

Since σ is injective, $\sigma(1) \neq 0$. Multiplying the above equation through by $1/\sigma(1)$, gives $\sigma(1) = 1$. Then, for each $n \in \mathbb{N}$,

$$\sigma(n) = \sigma(\underbrace{1 + \dots + 1}_{n \text{ times}}) = \underbrace{\sigma(1) + \dots + \sigma(1)}_{n \text{ times}} = \underbrace{1 + \dots + 1}_{n \text{ times}} = n.$$

It follows that σ fixes \mathbb{Q} : (i) For $n \in \mathbb{Z}_{>0}$, apply σ to the identity (1/n)n = 1 to get $\sigma(1/n) = 1/n$. (ii) Next show $\sigma(m/n) = m/n$ for all $m, n \in \mathbb{N}$ with $n \neq 0$. (iii) Finally, show that for any $\alpha \in K$, we have $\sigma(-\alpha) = -\sigma(\alpha)$.

3. Suppose that $\alpha \in K$ and $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0$. If $\sigma \neq 0$, then $h(\sigma(\alpha)) = 0$. Thus, σ permutes the roots of h in \mathbb{C} .

3. Suppose that $\alpha \in K$ and $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0$. If $\sigma \neq 0$, then $h(\sigma(\alpha)) = 0$. Thus, σ permutes the roots of h in \mathbb{C} .

Proof. So suppose $\sigma \neq 0$, in which case σ
3. Suppose that $\alpha \in K$ and $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0$. If $\sigma \neq 0$, then $h(\sigma(\alpha)) = 0$. Thus, σ permutes the roots of h in \mathbb{C} .

Proof. So suppose $\sigma \neq 0$, in which case σ is injective.

3. Suppose that $\alpha \in K$ and $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0$. If $\sigma \neq 0$, then $h(\sigma(\alpha)) = 0$. Thus, σ permutes the roots of h in \mathbb{C} .

Proof. So suppose $\sigma \neq 0$, in which case σ is injective.

Say $h = \sum_{i=1}^{n} a_i x^i$ and that $h(\alpha) = 0$.

3. Suppose that $\alpha \in K$ and $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0$. If $\sigma \neq 0$, then $h(\sigma(\alpha)) = 0$. Thus, σ permutes the roots of h in \mathbb{C} .

Proof. So suppose $\sigma \neq 0$, in which case σ is injective.

3. Suppose that $\alpha \in K$ and $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0$. If $\sigma \neq 0$, then $h(\sigma(\alpha)) = 0$. Thus, σ permutes the roots of h in \mathbb{C} .

Proof. So suppose $\sigma \neq 0$, in which case σ is injective.

$$0 = \sigma(0) = \sigma(\sum_{i=1}^{n} a_i \alpha^i)$$

3. Suppose that $\alpha \in K$ and $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0$. If $\sigma \neq 0$, then $h(\sigma(\alpha)) = 0$. Thus, σ permutes the roots of h in \mathbb{C} .

Proof. So suppose $\sigma \neq 0$, in which case σ is injective.

$$0 = \sigma(0) = \sigma(\sum_{i=1}^{n} a_i \alpha^i)$$
$$= \sum_{i=1}^{n} \sigma(a_i) (\sigma(\alpha))^i$$

3. Suppose that $\alpha \in K$ and $h \in \mathbb{Q}[x]$ with $h(\alpha) = 0$. If $\sigma \neq 0$, then $h(\sigma(\alpha)) = 0$. Thus, σ permutes the roots of h in \mathbb{C} .

Proof. So suppose $\sigma \neq 0$, in which case σ is injective.

$$D = \sigma(0) = \sigma(\sum_{i=1}^{n} a_{i}\alpha^{i})$$
$$= \sum_{i=1}^{n} \sigma(a_{i})(\sigma(\alpha))^{i}$$
$$= \sum_{i=1}^{n} a_{i}(\sigma(\alpha))^{i} = h(\sigma(\alpha)).$$

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ .

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ . Let $p \in \mathbb{Q}[x]$ be the minimal polynomial for θ .

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ . Let $p \in \mathbb{Q}[x]$ be the minimal polynomial for θ .

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ . Let $p \in \mathbb{Q}[x]$ be the minimal polynomial for θ .

Facts from algebra.

▶ The number of embeddings is $n := \deg(p) = [K : \mathbb{Q}].$

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ . Let $p \in \mathbb{Q}[x]$ be the minimal polynomial for θ .

- The number of embeddings is $n := \deg(p) = [K : \mathbb{Q}].$
- If $\sigma_1, \ldots, \sigma_n$ are the embeddings, define $\theta_i := \sigma_i(\theta)$.

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ . Let $p \in \mathbb{Q}[x]$ be the minimal polynomial for θ .

- The number of embeddings is $n := \deg(p) = [K : \mathbb{Q}].$
- If $\sigma_1, \ldots, \sigma_n$ are the embeddings, define $\theta_i := \sigma_i(\theta)$. Then $p = \prod_{i=1}^n (x \theta_i)$.

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ . Let $p \in \mathbb{Q}[x]$ be the minimal polynomial for θ .

- The number of embeddings is $n := \deg(p) = [K : \mathbb{Q}]$.
- ▶ If $\sigma_1, \ldots, \sigma_n$ are the embeddings, define $\theta_i := \sigma_i(\theta)$. Then $p = \prod_{i=1}^n (x \theta_i)$.
- $\blacktriangleright \ \theta \mapsto \theta_i \text{ determines } \sigma_i.$

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ . Let $p \in \mathbb{Q}[x]$ be the minimal polynomial for θ .

Facts from algebra.

- The number of embeddings is $n := \deg(p) = [K : \mathbb{Q}].$
- ▶ If $\sigma_1, \ldots, \sigma_n$ are the embeddings, define $\theta_i := \sigma_i(\theta)$. Then $p = \prod_{i=1}^n (x \theta_i)$.
- $\blacktriangleright \ \theta \mapsto \theta_i \text{ determines } \sigma_i.$

To see last fact, recall that $\{1, \theta, \theta^2, \dots, \theta^{n-1}\}$ is a \mathbb{Q} -basis for K.

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ . Let $p \in \mathbb{Q}[x]$ be the minimal polynomial for θ .

Facts from algebra.

- ► The number of embeddings is n := deg(p) = [K : Q].
- ▶ If $\sigma_1, \ldots, \sigma_n$ are the embeddings, define $\theta_i := \sigma_i(\theta)$. Then $p = \prod_{i=1}^n (x \theta_i)$.
- $\blacktriangleright \ \theta \mapsto \theta_i \text{ determines } \sigma_i.$

To see last fact, recall that $\{1, \theta, \theta^2, \dots, \theta^{n-1}\}$ is a \mathbb{Q} -basis for K. So for each fixed *i*, we have $\sigma_i \colon \sum_{i=1}^n \alpha_i \theta^i \mapsto$

What are all of the *embeddings* (injective field homomorphisms) of a number field K into \mathbb{C} ?

Write $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$ for some algebraic number θ . Let $p \in \mathbb{Q}[x]$ be the minimal polynomial for θ .

Facts from algebra.

- ► The number of embeddings is n := deg(p) = [K : Q].
- ▶ If $\sigma_1, \ldots, \sigma_n$ are the embeddings, define $\theta_i := \sigma_i(\theta)$. Then $p = \prod_{i=1}^n (x \theta_i)$.
- $\blacktriangleright \ \theta \mapsto \theta_i \text{ determines } \sigma_i.$

To see last fact, recall that $\{1, \theta, \theta^2, \dots, \theta^{n-1}\}$ is a Q-basis for K. So for each fixed *i*, we have $\sigma_i \colon \sum_{i=1}^n \alpha_i \theta^i \mapsto \sum_{i=1}^n \alpha_j \theta_i^j$.

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

Minimal polynomial:

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}?$

Minimal polynomial: $p = (x - \sqrt{5})(x + \sqrt{5})$.

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

Minimal polynomial: $p = (x - \sqrt{5})(x + \sqrt{5})$. Embeddings:

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

Minimal polynomial: $p = (x - \sqrt{5})(x + \sqrt{5})$. Embeddings: $\sigma_1 : \sqrt{5} \mapsto \sqrt{5}$

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

$$\sigma_1(r+s\sqrt{5})$$

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

$$\sigma_1(r+s\sqrt{5})=r+s\sqrt{5}.$$

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

$$\sigma_1(r+s\sqrt{5})=r+s\sqrt{5}.$$

$$\sigma_2(r+s\sqrt{5})$$

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

$$\sigma_1(r+s\sqrt{5})=r+s\sqrt{5}.$$

$$\sigma_2(r+s\sqrt{5})=r-s\sqrt{5}.$$

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

Minimal polynomial: $p = (x - \sqrt{5})(x + \sqrt{5})$. Embeddings: $\sigma_1 : \sqrt{5} \mapsto \sqrt{5}$ and $\sigma_2 : \sqrt{5} \mapsto -\sqrt{5}$.

$$\sigma_1(r+s\sqrt{5})=r+s\sqrt{5}.$$

$$\sigma_2(r+s\sqrt{5})=r-s\sqrt{5}.$$

Note that in this case the image of the embedding is $\mathbb{Q}(\sqrt{5})$.

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

Minimal polynomial: $p = (x - \sqrt{5})(x + \sqrt{5})$. Embeddings: $\sigma_1 : \sqrt{5} \mapsto \sqrt{5}$ and $\sigma_2 : \sqrt{5} \mapsto -\sqrt{5}$.

$$\sigma_1(r+s\sqrt{5})=r+s\sqrt{5}.$$

$$\sigma_2(r+s\sqrt{5})=r-s\sqrt{5}.$$

Note that in this case the image of the embedding is $\mathbb{Q}(\sqrt{5})$. So they are *automorphisms* of *K*.

What are the embeddings $\mathbb{Q}(\sqrt{5}) \to \mathbb{C}$?

Minimal polynomial: $p = (x - \sqrt{5})(x + \sqrt{5})$. Embeddings: $\sigma_1 : \sqrt{5} \mapsto \sqrt{5}$ and $\sigma_2 : \sqrt{5} \mapsto -\sqrt{5}$.

$$\sigma_1(r+s\sqrt{5})=r+s\sqrt{5}.$$

$$\sigma_2(r+s\sqrt{5})=r-s\sqrt{5}.$$

Note that in this case the image of the embedding is $\mathbb{Q}(\sqrt{5})$. So they are *automorphisms* of *K*. The next example shows that embeddings do not need to be automorphisms.

Let
$$K = \mathbb{Q}(\sqrt[3]{5})$$
.

Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is $p = x^3 - 5 =$

Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is

$$p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5}),$$

Let $\mathcal{K} = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is $p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5})$.

where $\omega = e^{2\pi i/3} = \cos(2\pi/3) + i\sin(2\pi/3) = \frac{-1+i\sqrt{3}}{2}$.

Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is

$$p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5}),$$

where $\omega = e^{2\pi i/3} = \cos(2\pi/3) + i\sin(2\pi/3) = \frac{-1+i\sqrt{3}}{2}$. The three embeddings of $\mathbb{Q}(\sqrt[3]{5})$ are given by

Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is

$$p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5}),$$

where $\omega = e^{2\pi i/3} = \cos(2\pi/3) + i\sin(2\pi/3) = \frac{-1+i\sqrt{3}}{2}$. The three embeddings of $\mathbb{Q}(\sqrt[3]{5})$ are given by

$$\sigma_1(1 + a\sqrt[3]{5} + b(\sqrt[3]{5})^2) := \mathrm{id}(1 + a\sqrt[3]{5} + b(\sqrt[3]{5})^2)$$
Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is

$$p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5}),$$

$$\sigma_1(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) := \mathrm{id}(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) = 1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2$$

Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is

$$p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5}),$$

$$\begin{aligned} \sigma_1(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= \mathrm{id}(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) = 1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2\\ \sigma_2(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= 1+a\omega\sqrt[3]{5}+b(\omega\sqrt[3]{5})^2 \end{aligned}$$

Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is

$$p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5}),$$

$$\begin{aligned} \sigma_1(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= \mathrm{id}(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) = 1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2\\ \sigma_2(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= 1+a\omega\sqrt[3]{5}+b(\omega\sqrt[3]{5})^2 = 1+a\omega\sqrt[3]{5}+b\omega^2(\sqrt[3]{5})^2 \end{aligned}$$

Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is

$$p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5}),$$

$$\begin{aligned} \sigma_1(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= \mathrm{id}(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) = 1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2\\ \sigma_2(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= 1+a\omega\sqrt[3]{5}+b(\omega\sqrt[3]{5})^2 = 1+a\omega\sqrt[3]{5}+b\omega^2(\sqrt[3]{5})^2\\ \sigma_3(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= 1+a\omega^2\sqrt[3]{5}+b(\omega^2\sqrt[3]{5})^2 \end{aligned}$$

Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is

$$p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5}),$$

$$\begin{aligned} \sigma_1(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= \mathrm{id}(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) = 1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2\\ \sigma_2(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= 1+a\omega\sqrt[3]{5}+b(\omega\sqrt[3]{5})^2 = 1+a\omega\sqrt[3]{5}+b\omega^2(\sqrt[3]{5})^2\\ \sigma_3(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= 1+a\omega^2\sqrt[3]{5}+b(\omega^2\sqrt[3]{5})^2 = 1+a\omega^2\sqrt[3]{5}+b\omega(\sqrt[3]{5})^2 \end{aligned}$$

Let $K = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is

$$p = x^3 - 5 = (x - \sqrt[3]{5})(x - \omega\sqrt[3]{5})(x - \omega^2\sqrt[3]{5}),$$

where $\omega = e^{2\pi i/3} = \cos(2\pi/3) + i\sin(2\pi/3) = \frac{-1+i\sqrt{3}}{2}$. The three embeddings of $\mathbb{Q}(\sqrt[3]{5})$ are given by

$$\begin{aligned} \sigma_1(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= \mathrm{id}(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) = 1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2\\ \sigma_2(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= 1+a\omega\sqrt[3]{5}+b(\omega\sqrt[3]{5})^2 = 1+a\omega\sqrt[3]{5}+b\omega^2(\sqrt[3]{5})^2\\ \sigma_3(1+a\sqrt[3]{5}+b(\sqrt[3]{5})^2) &:= 1+a\omega^2\sqrt[3]{5}+b(\omega^2\sqrt[3]{5})^2 \end{aligned}$$

Unlike the previous example, note that neither $im(\sigma_2)$ nor $im(\sigma_3)$ are contained in $\mathbb{Q}(\sqrt[3]{5})$.

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Embeddings $\sigma_i : \theta \mapsto \theta_i$.

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Embeddings $\sigma_i : \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Embeddings $\sigma_i : \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

$$\Delta[\alpha_1,\ldots,\alpha_n] := (\det(\sigma_i(\alpha_j)))^2$$
.

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Embeddings $\sigma_i: \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

$$\Delta[\alpha_1,\ldots,\alpha_n] := (\det(\sigma_i(\alpha_j)))^2$$
.

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where d is a square-free integer $\neq 0, 1$.

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Embeddings $\sigma_i: \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

$$\Delta[\alpha_1,\ldots,\alpha_n] := (\det(\sigma_i(\alpha_j)))^2$$
.

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where d is a square-free integer $\neq 0, 1$. Then

$$\Delta[1,\sqrt{d}] =$$

Number field: $K = \mathbb{Q}(\theta)$ with $[K : \mathbb{Q}] = n$. Let $p \in \mathbb{Q}[x]$ be the minimal polynomial of θ .

Minimal polynomial for θ : $p = \prod_{i=1}^{n} (x - \theta_i)$ with θ_i distinct.

Embeddings $\sigma_i: \theta \mapsto \theta_i$.

Definition. The *discriminant* for a basis $\alpha_1, \ldots, \alpha_n$ for K over \mathbb{Q} : is the square of the determinant of the $n \times n$ matrix with i, j-th entry $\sigma_i(\alpha_j)$:

$$\Delta[\alpha_1,\ldots,\alpha_n] := (\det(\sigma_i(\alpha_j)))^2$$
.

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where d is a square-free integer $\neq 0, 1$. Then

$$\Delta[1,\sqrt{d}] = \left(\det \left(\begin{array}{cc} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{array}\right)\right)^2 = (-2\sqrt{d})^2 = 4d.$$

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field K over \mathbb{Q} .

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field K over \mathbb{Q} . Let C be the change of basis matrix from the α_i to the β_i .

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field K over \mathbb{Q} . Let C be the change of basis matrix from the α_i to the β_i . Then

$$\Delta[\beta_1,\ldots,\beta_n] = (\det C)^2 \Delta[\alpha_1,\ldots,\alpha_n].$$

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field *K* over \mathbb{Q} . Let *C* be the change of basis matrix from the α_i to the β_i . Then

$$\Delta[\beta_1,\ldots,\beta_n] = (\det C)^2 \Delta[\alpha_1,\ldots,\alpha_n].$$

Proof.
$$A = (\sigma_i(\alpha_j))$$
 and $B = (\sigma_i(\beta_j))$.

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field *K* over \mathbb{Q} . Let *C* be the change of basis matrix from the α_i to the β_i . Then

$$\Delta[\beta_1,\ldots,\beta_n] = (\det C)^2 \Delta[\alpha_1,\ldots,\alpha_n].$$

Proof. $A = (\sigma_i(\alpha_j))$ and $B = (\sigma_i(\beta_j))$. Then B = AC.

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field *K* over \mathbb{Q} . Let *C* be the change of basis matrix from the α_i to the β_i . Then

$$\Delta[\beta_1,\ldots,\beta_n] = (\det C)^2 \Delta[\alpha_1,\ldots,\alpha_n].$$

Proof. $A = (\sigma_i(\alpha_j))$ and $B = (\sigma_i(\beta_j))$. Then B = AC. So $det(B)^2 =$

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field *K* over \mathbb{Q} . Let *C* be the change of basis matrix from the α_i to the β_i . Then

$$\Delta[\beta_1,\ldots,\beta_n] = (\det C)^2 \Delta[\alpha_1,\ldots,\alpha_n].$$

Proof. $A = (\sigma_i(\alpha_j))$ and $B = (\sigma_i(\beta_j))$. Then B = AC. So $det(B)^2 = (det(AC))^2 =$

Proposition. Let $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n be bases for the number field *K* over \mathbb{Q} . Let *C* be the change of basis matrix from the α_i to the β_i . Then

$$\Delta[\beta_1,\ldots,\beta_n] = (\det C)^2 \Delta[\alpha_1,\ldots,\alpha_n].$$

Proof.
$$A = (\sigma_i(\alpha_j))$$
 and $B = (\sigma_i(\beta_j))$. Then $B = AC$. So
 $det(B)^2 = (det(AC))^2 = (det(A) det(C))^2 = etc.$

Next time, we will prove the following:

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number.

It is positive if all of the θ_i are real.

Theorem. Let $K = \mathbb{Q}(\theta)$ be a number field, with embeddings σ_i and with $\theta_i = \sigma_i(\theta)$ for i = 1, ..., n. Let $\alpha_1, ..., \alpha_n$ be a basis for K over \mathbb{Q} .

Then the discriminant $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational number.

It is positive if all of the θ_i are real.

It is a rational integer if the α_i are algebraic integers.