Math 361

February 10, 2023

Review quiz from last time

- Let A ⊆ B be domains. What does it mean to say the α ∈ B is integral over A?
- 2. Define the following terms:
 - (i) Number field.
 - (ii) Algebraic number.
 - (iii) Algebraic integer.

1. Review our main theorem for the discriminants proved last time.

- 1. Review our main theorem for the discriminants proved last time.
- 2. Show that \mathfrak{O}_K is a free \mathbb{Z} -module of rank n.

Today

- 1. Review our main theorem for the discriminants proved last time.
- 2. Show that \mathfrak{O}_K is a free \mathbb{Z} -module of rank n.
- 3. Define the discriminant of a number field.

Today

- 1. Review our main theorem for the discriminants proved last time.
- 2. Show that \mathfrak{O}_K is a free \mathbb{Z} -module of rank n.
- 3. Define the discriminant of a number field.
- 4. How to sometimes find a \mathbb{Z} -basis for $\mathfrak{O}_{\mathcal{K}}$.

Let K be a number field, and let $\alpha_1, \ldots, \alpha_n$ be a \mathbb{Q} -basis for K.

Let K be a number field, and let $\alpha_1, \ldots, \alpha_n$ be a Q-basis for K. Then the discriminant, $\Delta[\alpha_1, \ldots, \alpha_n]$, is a nonzero rational number.

Let K be a number field, and let $\alpha_1, \ldots, \alpha_n$ be a Q-basis for K. Then the discriminant, $\Delta[\alpha_1, \ldots, \alpha_n]$, is a nonzero rational number. If the α_i are algebraic integers, then $\Delta[\alpha_1, \ldots, \alpha_n]$ is a nonzero rational integer.

To define the discriminant, we need the embeddings $K \to \mathbb{C}$.

To define the discriminant, we need the embeddings $\mathcal{K} \to \mathbb{C}$.

▶ Pick $\theta \in K$ such that $K = \mathbb{Q}(\theta)$.

To define the discriminant, we need the embeddings $K \to \mathbb{C}$.

• Pick
$$\theta \in K$$
 such that $K = \mathbb{Q}(\theta)$.

• Let p be the minimal polynomial for θ over \mathbb{Q} .

To define the discriminant, we need the embeddings $\mathcal{K} \to \mathbb{C}$.

• Pick
$$\theta \in K$$
 such that $K = \mathbb{Q}(\theta)$.

• Let p be the minimal polynomial for θ over \mathbb{Q} .

• Factor:
$$p = \prod_{i=1}^{n} (x - \theta_i)$$
.

To define the discriminant, we need the embeddings $K \to \mathbb{C}$.

• Pick
$$\theta \in K$$
 such that $K = \mathbb{Q}(\theta)$.

▶ Let p be the minimal polynomial for θ over \mathbb{Q} .

• Factor:
$$p = \prod_{i=1}^{n} (x - \theta_i)$$
.

To define the discriminant, we need the embeddings $K \to \mathbb{C}$.

• Pick
$$\theta \in K$$
 such that $K = \mathbb{Q}(\theta)$.

• Let p be the minimal polynomial for θ over \mathbb{Q} .

• Factor:
$$p = \prod_{i=1}^{n} (x - \theta_i)$$
.

► {1, θ,..., θⁿ⁻¹} is a Q-basis for K. Hence, sending θ → θ_i defines an embedding σ_i. This procedure gives all of the embeddings.

To define the discriminant, we need the embeddings $K \to \mathbb{C}$.

• Pick
$$\theta \in K$$
 such that $K = \mathbb{Q}(\theta)$.

• Let p be the minimal polynomial for θ over \mathbb{Q} .

• Factor:
$$p = \prod_{i=1}^{n} (x - \theta_i)$$
.

► {1, θ,..., θⁿ⁻¹} is a Q-basis for K. Hence, sending θ → θ_i defines an embedding σ_i. This procedure gives all of the embeddings.

• The discriminant of the basis $\{\alpha_1, \ldots, \alpha_n\}$ is

$$\Delta[\alpha_1,\ldots,\alpha_n] := \det(\sigma_i(\alpha_j))^2.$$

Recall the connection between a polynomial in $f \in \mathbb{Q}[x]$ and the symmetric polynomials in its roots:

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Recall the connection between a polynomial in $f \in \mathbb{Q}[x]$ and the symmetric polynomials in its roots:

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Expand:

Recall the connection between a polynomial in $f \in \mathbb{Q}[x]$ and the symmetric polynomials in its roots:

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Expand:

$$f = x^4 - (\theta_1 + \dots + \theta_4)x^3 + (\theta_1\theta_2 + \dots + \theta_3\theta_4)x^2 - (\theta_1\theta_2\theta_3 + \dots + \theta_2\theta_3\theta_4)x + (\theta_1\theta_2\theta_3\theta_4)$$

Recall the connection between a polynomial in $f \in \mathbb{Q}[x]$ and the symmetric polynomials in its roots:

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Expand:

$$f = x^4 - (\theta_1 + \dots + \theta_4)x^3 + (\theta_1\theta_2 + \dots + \theta_3\theta_4)x^2$$
$$- (\theta_1\theta_2\theta_3 + \dots + \theta_2\theta_3\theta_4)x + (\theta_1\theta_2\theta_3\theta_4)$$
$$= x^4 - s_1(\theta_1, \theta_2, \theta_3, \theta_4)x^3 + s_2(\theta_1, \theta_2, \theta_3, \theta_4)x^2$$
$$- s_3(\theta_1, \theta_2, \theta_3, \theta_4)x + s_4(\theta_1, \theta_2, \theta_3, \theta_4).$$

Recall the connection between a polynomial in $f \in \mathbb{Q}[x]$ and the symmetric polynomials in its roots:

$$f = (x - \theta_1)(x - \theta_2)(x - \theta_3)(x - \theta_4).$$

Expand:

$$f = x^4 - (\theta_1 + \dots + \theta_4)x^3 + (\theta_1\theta_2 + \dots + \theta_3\theta_4)x^2$$
$$- (\theta_1\theta_2\theta_3 + \dots + \theta_2\theta_3\theta_4)x + (\theta_1\theta_2\theta_3\theta_4)$$
$$= x^4 - s_1(\theta_1, \theta_2, \theta_3, \theta_4)x^3 + s_2(\theta_1, \theta_2, \theta_3, \theta_4)x^2$$
$$- s_3(\theta_1, \theta_2, \theta_3, \theta_4)x + s_4(\theta_1, \theta_2, \theta_3, \theta_4).$$

Punch line: The $s_i(\theta_1, \ldots, \theta_n)$ are the coefficients of f, and hence, are rational numbers.

Idea behind proof:

• Compute $\Delta[1, \theta, \dots, \theta^{n-1}]$ using a Vandermonde determinant.

- Compute $\Delta[1, \theta, \dots, \theta^{n-1}]$ using a Vandermonde determinant.
- ► Compare the two Q-bases 1, θ,..., θⁿ⁻¹ and α₁,..., α_n using the change of basis formula for discriminants.

- Compute $\Delta[1, \theta, \dots, \theta^{n-1}]$ using a Vandermonde determinant.
- ► Compare the two Q-bases 1, θ,..., θⁿ⁻¹ and α₁,..., α_n using the change of basis formula for discriminants.
- Notice that the resulting formula for Δ[α₁,..., α_n] is a symmetric function in the roots of p, i.e., in θ₁,..., θ_n,

- Compute $\Delta[1, \theta, \dots, \theta^{n-1}]$ using a Vandermonde determinant.
- ► Compare the two Q-bases 1, θ,..., θⁿ⁻¹ and α₁,..., α_n using the change of basis formula for discriminants.
- Notice that the resulting formula for Δ[α₁,..., α_n] is a symmetric function in the roots of p, i.e., in θ₁,..., θ_n, hence rational (since p has rational coefficients).

Proof.

$$\Delta[1,\theta,\ldots,\theta^{n-1}] =$$

Proof.

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = \det \begin{pmatrix} 1 & \theta_1 & \theta_1^2 & \ldots & \theta_1^{n-1} \\ 1 & \theta_2 & \theta_2^2 & \ldots & \theta_2^{n-1} \\ 1 & \theta_3 & \theta_3^2 & \ldots & \theta_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \theta_n^2 & \ldots & \theta_n^{n-1} \end{pmatrix}^2$$

Proof.

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = \det \begin{pmatrix} 1 & \theta_1 & \theta_1^2 & \ldots & \theta_1^{n-1} \\ 1 & \theta_2 & \theta_2^2 & \ldots & \theta_2^{n-1} \\ 1 & \theta_3 & \theta_3^2 & \ldots & \theta_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \theta_n^2 & \ldots & \theta_n^{n-1} \end{pmatrix}^2 = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2.$$

Proof.

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = \det \begin{pmatrix} 1 & \theta_1 & \theta_1^2 & \ldots & \theta_1^{n-1} \\ 1 & \theta_2 & \theta_2^2 & \ldots & \theta_2^{n-1} \\ 1 & \theta_3 & \theta_3^2 & \ldots & \theta_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \theta_n^2 & \ldots & \theta_n^{n-1} \end{pmatrix}^2 = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2.$$

Letting C be the change of basis matrix from $1, \theta, \ldots, \theta^{n-1}$ to $\alpha_1, \ldots, \alpha_n$,

Proof.

$$\Delta[1,\theta,\ldots,\theta^{n-1}] = \det \begin{pmatrix} 1 & \theta_1 & \theta_1^2 & \ldots & \theta_1^{n-1} \\ 1 & \theta_2 & \theta_2^2 & \ldots & \theta_2^{n-1} \\ 1 & \theta_3 & \theta_3^2 & \ldots & \theta_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \theta_n & \theta_n^2 & \ldots & \theta_n^{n-1} \end{pmatrix}^2 = \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2.$$

Letting C be the change of basis matrix from $1, \theta, \ldots, \theta^{n-1}$ to $\alpha_1, \ldots, \alpha_n$, we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \Delta[1,\theta,\ldots,\theta^{n-1}] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_j - \theta_i)^2.$$

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i .

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} .

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p,

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational.

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational. The entries in C are rational.

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational. The entries in C are rational. Hence, the discriminant is rational.

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational. The entries in C are rational. Hence, the discriminant is rational.

Its positive if the θ_i are real (why?).

So far we have

$$\Delta[\alpha_1,\ldots,\alpha_n] = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Key idea: note that $\Delta[\alpha_1, \ldots, \alpha_n]$ is a symmetric polynomial in the θ_i . Let $p = \prod_{i=1}^n (x - \theta_i)$ be the minimal polynomial for θ over \mathbb{Q} . The symmetric polynomials in the θ_i are, up to sign, the coefficients of p, which are rational. The entries in C are rational. Hence, the discriminant is rational.

Its positive if the θ_i are real (why?).

Finally, what can we say if each α_i is an algebraic integer? (See next page.)

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer.

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

We have seen that the algebraic integers in K form a ring.

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

We have seen that the algebraic integers in K form a ring. Hence, the discriminant det $(\sigma_i(\alpha_i))^2$ is an algebraic integer.

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

We have seen that the algebraic integers in K form a ring. Hence, the discriminant det $(\sigma_i(\alpha_j))^2$ is an algebraic integer. However, we have just seen that it is a rational number.

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(\sigma_i(\alpha_j))^2 = (\det C)^2 \prod_{1 \le i < j \le n} (\theta_i - \theta_j)^2.$$

Suppose that each α_i is an algebraic integer. Then the $\sigma_i(\alpha_j)$ are algebraic integers. (Why? Start with the definition of an algebraic integer.)

We have seen that the algebraic integers in K form a ring. Hence, the discriminant det $(\sigma_i(\alpha_j))^2$ is an algebraic integer. However, we have just seen that it is a rational number. We also know that if a rational number is integral over \mathbb{Q} , then it must be an ordinary integer.

Theorem. Let *K* be a number field of degree *n* over \mathbb{Q} , i.e., $[K : \mathbb{Q}] = n$. Then its ring of integers \mathcal{D}_K is a free \mathbb{Z} -module of rank *n*.

Theorem. Let *K* be a number field of degree *n* over \mathbb{Q} , i.e., $[K : \mathbb{Q}] = n$. Then its ring of integers \mathcal{D}_K is a free \mathbb{Z} -module of rank *n*.

Proof. Write $K = \mathbb{Q}(\theta)$ where θ is an algebraic integer.

Theorem. Let K be a number field of degree n over \mathbb{Q} , i.e., $[K : \mathbb{Q}] = n$. Then its ring of integers \mathcal{D}_K is a free \mathbb{Z} -module of rank n.

Proof. Write $K = \mathbb{Q}(\theta)$ where θ is an algebraic integer. Then $\{1, \theta, \dots, \theta^{n-1}\}$ is a \mathbb{Q} -basis of K consisting of algebraic integers.

Theorem. Let *K* be a number field of degree *n* over \mathbb{Q} , i.e., $[K : \mathbb{Q}] = n$. Then its ring of integers \mathcal{D}_K is a free \mathbb{Z} -module of rank *n*.

Proof. Write $K = \mathbb{Q}(\theta)$ where θ is an algebraic integer. Then $\{1, \theta, \dots, \theta^{n-1}\}$ is a \mathbb{Q} -basis of K consisting of algebraic integers. So its discriminant is

Theorem. Let *K* be a number field of degree *n* over \mathbb{Q} , i.e., $[K : \mathbb{Q}] = n$. Then its ring of integers \mathcal{D}_K is a free \mathbb{Z} -module of rank *n*.

Proof. Write $K = \mathbb{Q}(\theta)$ where θ is an algebraic integer. Then $\{1, \theta, \dots, \theta^{n-1}\}$ is a \mathbb{Q} -basis of K consisting of algebraic integers. So its discriminant is an integer.

Theorem. Let *K* be a number field of degree *n* over \mathbb{Q} , i.e., $[K : \mathbb{Q}] = n$. Then its ring of integers \mathcal{D}_K is a free \mathbb{Z} -module of rank *n*.

Proof. Write $K = \mathbb{Q}(\theta)$ where θ is an algebraic integer. Then $\{1, \theta, \dots, \theta^{n-1}\}$ is a \mathbb{Q} -basis of K consisting of algebraic integers. So its discriminant is an integer.

Among all \mathbb{Q} -bases for K consisting of algebraic integers, choose one, $\{\alpha_1, \ldots, \alpha_n\}$, such that $|\Delta[\alpha_1, \ldots, \alpha_n]|$ is smallest.

Theorem. Let *K* be a number field of degree *n* over \mathbb{Q} , i.e., $[K : \mathbb{Q}] = n$. Then its ring of integers \mathcal{D}_K is a free \mathbb{Z} -module of rank *n*.

Proof. Write $K = \mathbb{Q}(\theta)$ where θ is an algebraic integer. Then $\{1, \theta, \dots, \theta^{n-1}\}$ is a \mathbb{Q} -basis of K consisting of algebraic integers. So its discriminant is an integer.

Among all \mathbb{Q} -bases for K consisting of algebraic integers, choose one, $\{\alpha_1, \ldots, \alpha_n\}$, such that $|\Delta[\alpha_1, \ldots, \alpha_n]|$ is smallest.

For sake of contradiction, suppose that $\{\alpha_1, \ldots, \alpha_n\}$ is not a \mathbb{Z} -basis for \mathfrak{O}_K .

Theorem. Let *K* be a number field of degree *n* over \mathbb{Q} , i.e., $[K : \mathbb{Q}] = n$. Then its ring of integers \mathcal{D}_K is a free \mathbb{Z} -module of rank *n*.

Proof. Write $K = \mathbb{Q}(\theta)$ where θ is an algebraic integer. Then $\{1, \theta, \dots, \theta^{n-1}\}$ is a \mathbb{Q} -basis of K consisting of algebraic integers. So its discriminant is an integer.

Among all \mathbb{Q} -bases for K consisting of algebraic integers, choose one, $\{\alpha_1, \ldots, \alpha_n\}$, such that $|\Delta[\alpha_1, \ldots, \alpha_n]|$ is smallest.

For sake of contradiction, suppose that $\{\alpha_1, \ldots, \alpha_n\}$ is not a \mathbb{Z} -basis for \mathfrak{O}_K . Then there exists $\alpha \in \mathfrak{O}_K$ such that

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

with $c_i \in \mathbb{Q}$ but with not all $c_i \in \mathbb{Z}$.

Theorem. Let *K* be a number field of degree *n* over \mathbb{Q} , i.e., $[K : \mathbb{Q}] = n$. Then its ring of integers \mathcal{D}_K is a free \mathbb{Z} -module of rank *n*.

Proof. Write $K = \mathbb{Q}(\theta)$ where θ is an algebraic integer. Then $\{1, \theta, \dots, \theta^{n-1}\}$ is a \mathbb{Q} -basis of K consisting of algebraic integers. So its discriminant is an integer.

Among all \mathbb{Q} -bases for K consisting of algebraic integers, choose one, $\{\alpha_1, \ldots, \alpha_n\}$, such that $|\Delta[\alpha_1, \ldots, \alpha_n]|$ is smallest.

For sake of contradiction, suppose that $\{\alpha_1, \ldots, \alpha_n\}$ is not a \mathbb{Z} -basis for \mathfrak{O}_K . Then there exists $\alpha \in \mathfrak{O}_K$ such that

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

with $c_i \in \mathbb{Q}$ but with not all $c_i \in \mathbb{Z}$. Without loss of generality, suppose $c_1 \in \mathbb{Q} \setminus \mathbb{Z}$.

We have $\alpha \in \mathfrak{O}_K$ such that

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

with $c_1 \in \mathbb{Q} \setminus \mathbb{Z}$.

We have $\alpha \in \mathfrak{O}_K$ such that

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

with $c_1 \in \mathbb{Q} \setminus \mathbb{Z}$. Write $c_1 = c + r$ where $c = \lfloor c_1 \rfloor$ and 0 < r < 1.

We have $\alpha \in \mathfrak{O}_K$ such that

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

with $c_1 \in \mathbb{Q} \setminus \mathbb{Z}$. Write $c_1 = c + r$ where $c = \lfloor c_1 \rfloor$ and 0 < r < 1. Then

$$\alpha = (c+r)\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n$$

We have $\alpha \in \mathfrak{O}_K$ such that

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

with $c_1 \in \mathbb{Q} \setminus \mathbb{Z}$. Write $c_1 = c + r$ where $c = \lfloor c_1 \rfloor$ and 0 < r < 1. Then

$$\alpha = (c+r)\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n.$$

Define

$$\alpha'_1 = \alpha - c\alpha_1 =$$

We have $\alpha \in \mathfrak{O}_K$ such that

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

with $c_1 \in \mathbb{Q} \setminus \mathbb{Z}$. Write $c_1 = c + r$ where $c = \lfloor c_1 \rfloor$ and 0 < r < 1. Then

$$\alpha = (c+r)\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n.$$

Define

$$\alpha_1' = \alpha - c\alpha_1 = r\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n.$$

We have $\alpha \in \mathfrak{O}_K$ such that

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

with $c_1 \in \mathbb{Q} \setminus \mathbb{Z}$. Write $c_1 = c + r$ where $c = \lfloor c_1 \rfloor$ and 0 < r < 1. Then

$$\alpha = (c+r)\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n.$$

Define

$$\alpha_1' = \alpha - c\alpha_1 = r\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n.$$

Then

We have $\alpha \in \mathfrak{O}_{\mathcal{K}}$ such that

$$\alpha = c_1 \alpha_1 + \dots + c_n \alpha_n$$

with $c_1 \in \mathbb{Q} \setminus \mathbb{Z}$. Write $c_1 = c + r$ where $c = \lfloor c_1 \rfloor$ and 0 < r < 1. Then

$$\alpha = (c+r)\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n.$$

Define

$$\alpha_1' = \alpha - c\alpha_1 = r\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n.$$

Then

Compare the discriminant of $\{\alpha'_1, \alpha_2, \dots, \alpha_n\}$ to that of $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$.

Compare the discriminant of $\{\alpha'_1, \alpha_2, \dots, \alpha_n\}$ to that of $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Recall

$$\alpha'_1 = \alpha - c\alpha_1 =$$

Compare the discriminant of $\{\alpha'_1, \alpha_2, \dots, \alpha_n\}$ to that of $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Recall

$$\alpha_1' = \alpha - c\alpha_1 = r\alpha_1 + c_2\alpha_2 + \dots + c_n\alpha_n$$

with 0 < r < 1.

Compare the discriminant of $\{\alpha'_1, \alpha_2, \dots, \alpha_n\}$ to that of $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$. Recall

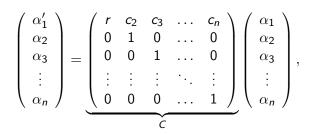
$$\alpha_1' = \alpha - c\alpha_1 = r\alpha_1 + c_2\alpha_2 + \dots + c_n\alpha_n$$

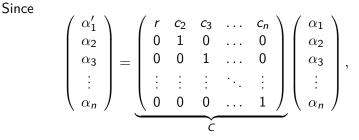
with 0 < r < 1.

Let *C* denote the change of basis matrix:

$$\begin{pmatrix} \alpha_1' \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_n \end{pmatrix} = \underbrace{\begin{pmatrix} r & c_2 & c_3 & \dots & c_n \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}}_{C} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \vdots \\ \alpha_n \end{pmatrix}$$

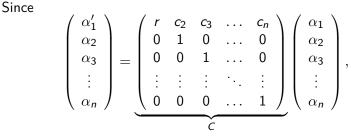
.





we have

$$|\Delta[\alpha'_1, \alpha_2 \dots, \alpha_n]| = |(\det C)^2 \Delta[\alpha_1, \dots, \alpha_n]| = r^2 |\Delta[\alpha_1, \dots, \alpha_n]|$$



we have

 $|\Delta[\alpha'_1, \alpha_2..., \alpha_n]| = |(\det C)^2 \Delta[\alpha_1, ..., \alpha_n]| = r^2 |\Delta[\alpha_1, ..., \alpha_n]|$ contradicting the minimality of $|\Delta[\alpha_1, ..., \alpha_n]|$. The result follows. \Box

The discriminant of a number field

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

The discriminant of a number field

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

Proof. Suppose that $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two.

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

Proof. Suppose that $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two. Then each α_i can be uniquely written as a \mathbb{Z} -linear combination of the β_j , and vice versa.

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

Proof. Suppose that $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two. Then each α_i can be uniquely written as a \mathbb{Z} -linear combination of the β_j , and vice versa. Let *C* be the change of basis matrix from the α_i to the β_i , and let *D* be the change of basis matrix from the β_i to the α_i .

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

Proof. Suppose that $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two. Then each α_i can be uniquely written as a \mathbb{Z} -linear combination of the β_j , and vice versa. Let *C* be the change of basis matrix from the α_i to the β_i , and let *D* be the change of basis matrix from the β_i to the α_i . Then both *C* and *D* have integer entries,

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

Proof. Suppose that $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two. Then each α_i can be uniquely written as a \mathbb{Z} -linear combination of the β_j , and vice versa. Let *C* be the change of basis matrix from the α_i to the β_i , and let *D* be the change of basis matrix from the β_i to the α_i . Then both *C* and *D* have integer entries, and $CD = I_n$.

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

Proof. Suppose that $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two. Then each α_i can be uniquely written as a \mathbb{Z} -linear combination of the β_j , and vice versa. Let *C* be the change of basis matrix from the α_i to the β_i , and let *D* be the change of basis matrix from the β_i to the α_i . Then both *C* and *D* have integer entries, and $CD = I_n$. So $D = C^{-1}$, which shows that the inverse of *C* also has integer entries.

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

Proof. Suppose that $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two. Then each α_i can be uniquely written as a \mathbb{Z} -linear combination of the β_j , and vice versa. Let *C* be the change of basis matrix from the α_i to the β_i , and let *D* be the change of basis matrix from the β_i to the α_i . Then both *C* and *D* have integer entries, and $CD = I_n$. So $D = C^{-1}$, which shows that the inverse of *C* also has integer entries. Further, $I_n = CD \Rightarrow 1 = \det(C) \det(D)$,

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

Proof. Suppose that $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two. Then each α_i can be uniquely written as a \mathbb{Z} -linear combination of the β_j , and vice versa. Let *C* be the change of basis matrix from the α_i to the β_i , and let *D* be the change of basis matrix from the β_i to the α_i . Then both *C* and *D* have integer entries, and $CD = I_n$. So $D = C^{-1}$, which shows that the inverse of *C* also has integer entries. Further, $I_n = CD \Rightarrow 1 = \det(C) \det(D)$, which implies $\det(C) = \pm 1$ (why?).

Proposition. Let K be a number field. Then all integral bases for \mathfrak{O}_K have the same discriminant.

Proof. Suppose that $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n are two. Then each α_i can be uniquely written as a \mathbb{Z} -linear combination of the β_j , and vice versa. Let *C* be the change of basis matrix from the α_i to the β_i , and let *D* be the change of basis matrix from the β_i to the α_i . Then both *C* and *D* have integer entries, and $CD = I_n$. So $D = C^{-1}$, which shows that the inverse of *C* also has integer entries. Further, $I_n = CD \Rightarrow 1 = \det(C) \det(D)$, which implies $\det(C) = \pm 1$ (why?). It follows that

$$\Delta[\beta_i,\ldots,\beta_n] = \det(C)^2 \Delta[\alpha_1,\ldots,\alpha_n] = \Delta[\alpha_1,\ldots,\alpha_n].$$

Definition. The *discriminant* of a number field K, denoted $\Delta(K)$ is the discriminant of any integral basis for \mathcal{D}_K .

Definition. The *discriminant* of a number field K, denoted $\Delta(K)$ is the discriminant of any integral basis for \mathfrak{O}_K .

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ and $d \neq 0, 1$.

Definition. The *discriminant* of a number field K, denoted $\Delta(K)$ is the discriminant of any integral basis for \mathcal{D}_K .

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ and $d \neq 0, 1$. We have seen that $\{1, \sqrt{d}\}$ is an integral basis for \mathfrak{O}_K if $d \neq 1 \mod 4$,

Definition. The *discriminant* of a number field K, denoted $\Delta(K)$ is the discriminant of any integral basis for \mathcal{D}_K .

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ and $d \neq 0, 1$. We have seen that $\{1, \sqrt{d}\}$ is an integral basis for \mathfrak{O}_K if $d \neq 1 \mod 4$, and $\{1, \frac{1+\sqrt{5}}{2}\}$ is an integral basis if $d = 1 \mod 4$.

Definition. The *discriminant* of a number field K, denoted $\Delta(K)$ is the discriminant of any integral basis for \mathcal{D}_K .

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ and $d \neq 0, 1$. We have seen that $\{1, \sqrt{d}\}$ is an integral basis for \mathfrak{O}_K if $d \neq 1 \mod 4$, and $\{1, \frac{1+\sqrt{5}}{2}\}$ is an integral basis if $d = 1 \mod 4$. We have

$$\det \left(\begin{array}{cc} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{array} \right) = -2\sqrt{d}$$

Definition. The *discriminant* of a number field K, denoted $\Delta(K)$ is the discriminant of any integral basis for \mathfrak{O}_K .

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ and $d \neq 0, 1$. We have seen that $\{1, \sqrt{d}\}$ is an integral basis for \mathfrak{O}_K if $d \neq 1 \mod 4$, and $\{1, \frac{1+\sqrt{5}}{2}\}$ is an integral basis if $d = 1 \mod 4$. We have

$$\det \left(\begin{array}{cc} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{array} \right) = -2\sqrt{d} \quad \text{and} \quad \left(\begin{array}{cc} 1 & \frac{1+\sqrt{5}}{2} \\ 1 & \frac{1-\sqrt{5}}{2} \end{array} \right) = -\sqrt{d}.$$

Definition. The *discriminant* of a number field K, denoted $\Delta(K)$ is the discriminant of any integral basis for \mathcal{D}_K .

Example. Let $K = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$ and $d \neq 0, 1$. We have seen that $\{1, \sqrt{d}\}$ is an integral basis for \mathfrak{O}_K if $d \neq 1 \mod 4$, and $\{1, \frac{1+\sqrt{5}}{2}\}$ is an integral basis if $d = 1 \mod 4$. We have

$$\det \left(\begin{array}{cc} 1 & \sqrt{d} \\ 1 & -\sqrt{d} \end{array} \right) = -2\sqrt{d} \quad \text{and} \quad \left(\begin{array}{cc} 1 & \frac{1+\sqrt{5}}{2} \\ 1 & \frac{1-\sqrt{5}}{2} \end{array} \right) = -\sqrt{d}.$$

Therefore,

$$\Delta(\mathcal{K}) = egin{cases} 4d & ext{if } d
eq 1 egin{array}{c} 4d & ext{if } d
eq 1 egin{array}{c} 4d & ext{if } d
eq 1 egin{array}{c} 1 & ext{mod } 4. \end{array} \end{cases}$$

Proposition. Suppose that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q} -basis for K consisting of algebraic integers.

Proposition. Suppose that $\alpha_1, \ldots, \alpha_n$ is a Q-basis for K consisting of algebraic integers. If $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free,

Proposition. Suppose that $\alpha_1, \ldots, \alpha_n$ is a Q-basis for K consisting of algebraic integers. If $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free, then $\alpha_1, \ldots, \alpha_n$ is a Z-basis for \mathfrak{O}_K .

Proposition. Suppose that $\alpha_1, \ldots, \alpha_n$ is a Q-basis for K consisting of algebraic integers. If $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free, then $\alpha_1, \ldots, \alpha_n$ is a Z-basis for \mathfrak{O}_K .

Proof. Let $\beta_{1,1}, \ldots, \beta_n$ be an integral basis for \mathfrak{O}_K .

Proposition. Suppose that $\alpha_1, \ldots, \alpha_n$ is a Q-basis for K consisting of algebraic integers. If $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free, then $\alpha_1, \ldots, \alpha_n$ is a Z-basis for \mathfrak{O}_K .

Proof. Let $\beta_{1,...,\beta_n}$ be an integral basis for \mathfrak{O}_K . Then since the α_i are algebraic integers, there exists an $n \times n$ matrix C with integer entries such that

$$\left(\begin{array}{c} \alpha_1\\ \vdots\\ \alpha_n \end{array}\right) = C \left(\begin{array}{c} \beta_1\\ \vdots\\ \beta_n \end{array}\right).$$

Proposition. Suppose that $\alpha_1, \ldots, \alpha_n$ is a Q-basis for K consisting of algebraic integers. If $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free, then $\alpha_1, \ldots, \alpha_n$ is a Z-basis for \mathfrak{O}_K .

Proof. Let $\beta_{1,...,\beta_n}$ be an integral basis for \mathfrak{O}_K . Then since the α_i are algebraic integers, there exists an $n \times n$ matrix C with integer entries such that

$$\left(\begin{array}{c} \alpha_1\\ \vdots\\ \alpha_n \end{array}\right) = C \left(\begin{array}{c} \beta_1\\ \vdots\\ \beta_n \end{array}\right).$$

It follows that

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\beta_1,\ldots,\beta_n].$$

Continuing, recall that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q} -basis for K consisting of algebraic integers, β_1, \ldots, β_n is a \mathbb{Z} -basis for \mathfrak{O}_K , and

Continuing, recall that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q} -basis for K consisting of algebraic integers, β_1, \ldots, β_n is a \mathbb{Z} -basis for \mathfrak{O}_K , and

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\beta_1,\ldots,\beta_n].$$

Continuing, recall that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q} -basis for K consisting of algebraic integers, β_1, \ldots, β_n is a \mathbb{Z} -basis for \mathfrak{O}_K , and

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\beta_1,\ldots,\beta_n].$$

Since $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free,

Continuing, recall that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q} -basis for K consisting of algebraic integers, β_1, \ldots, β_n is a \mathbb{Z} -basis for \mathfrak{O}_K , and

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\beta_1,\ldots,\beta_n].$$

Since $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free, det(C) = ±1.

Continuing, recall that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q} -basis for K consisting of algebraic integers, β_1, \ldots, β_n is a \mathbb{Z} -basis for \mathfrak{O}_K , and

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\beta_1,\ldots,\beta_n].$$

Since $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free, det(C) = ±1. This implies C⁻¹ has integer entries (why?).

Continuing, recall that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q} -basis for K consisting of algebraic integers, β_1, \ldots, β_n is a \mathbb{Z} -basis for \mathfrak{O}_K , and

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\beta_1,\ldots,\beta_n].$$

Since $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free, det $(C) = \pm 1$. This implies C^{-1} has integer entries (why?). Then

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = C \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \Longrightarrow C^{-1} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}.$$

Continuing, recall that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q} -basis for K consisting of algebraic integers, β_1, \ldots, β_n is a \mathbb{Z} -basis for \mathfrak{O}_K , and

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\beta_1,\ldots,\beta_n].$$

Since $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free, det $(C) = \pm 1$. This implies C^{-1} has integer entries (why?). Then

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = C \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix} \Longrightarrow C^{-1} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}.$$

Hence, the β_i are integer linear combinations of that α_i .

Continuing, recall that $\alpha_1, \ldots, \alpha_n$ is a \mathbb{Q} -basis for K consisting of algebraic integers, β_1, \ldots, β_n is a \mathbb{Z} -basis for \mathfrak{O}_K , and

$$\Delta[\alpha_1,\ldots,\alpha_n] = \det(C)^2 \Delta[\beta_1,\ldots,\beta_n].$$

Since $\Delta[\alpha_1, \ldots, \alpha_n]$ is square-free, det(C) = ±1. This implies C⁻¹ has integer entries (why?). Then

$$\left(\begin{array}{c} \alpha_1\\ \vdots\\ \alpha_n \end{array}\right) = C \left(\begin{array}{c} \beta_1\\ \vdots\\ \beta_n \end{array}\right) \Longrightarrow C^{-1} \left(\begin{array}{c} \alpha_1\\ \vdots\\ \alpha_n \end{array}\right) = \left(\begin{array}{c} \beta_1\\ \vdots\\ \beta_n \end{array}\right).$$

Hence, the β_i are integer linear combinations of that α_i . It follows that the α_i form a \mathbb{Z} -basis for \mathfrak{O}_K .

True/False question

Let K be a number field.

Let K be a number field.

 By the primitive element theorem, there exists an algebraic number θ ∈ K such that K = Q(θ). Is it always possible to take θ to be an algebraic integer? Let K be a number field.

- By the primitive element theorem, there exists an algebraic number θ ∈ K such that K = Q(θ). Is it always possible to take θ to be an algebraic integer?
- 2. In the case where $K = \mathbb{Q}(\theta)$ and θ is an algebraic integer, is $\{1, \theta, \dots, \theta^{n-1}\}$ a \mathbb{Z} -module bases for \mathfrak{O}_K ?