Math 361

February 1, 2023



Quiz

1. Let K be a field. State the division algorithm for K|[x].
2. Let L/K be a field extension. What does it mean to say a € L
is algebraic over K.

3. Let L/K be a field extension, and suppose that « € L is
algebraic over K. What is the definition of the minimal
polynomial for o over K7



Today

» Module discussion from last time.
» Algorithm for finding the minimal polynomial.

» Integral elements in an extension of rings.
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Algorithm for finding minimal polynomial

Let L/K be a field extension, and let o € L be algebraic over K.
Then, the degree of the minimal polynomial is the smallest d such
that 1, 0,02, --- ,a? are K-linearly dependent. For that d, the
minimal polynomial may be derived from the dependency relation.

Example. Consider i € C/Q. We have that 1 and i are linearly
independent over Q, but 1, /, and i2 are dependent:

1(1) +0(i) + 1(i*) = 0.

Let
p(x)=1-14+0-x+1-x2=1+x2

Then p(i) =0, and since p is already monic, we do not have to
scale it.
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Integral elements

Definition. Let A and B be integral domains (rings with no zero
divisors) with A C B. An element of o € B is integral over A if
there exists a monic polynomial p € A[x] such that p(a) = 0.

Examples.
» If Ais a field, then integral over A means algebraic over A.

> % is integral over Z (p(x) = x? — x — 1).
» i is integral over Z (p(x) = x? +1).

> % is not integral over Z even though it's a zero of
p(x) =3x —2.
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Which rational numbers integral over Z?

Proposition. A rational number is integral over Z if and only if it
is an integer.

Proof. (<) Let a € Z. Then x — a € Z[x] shows that a is integral
over Z.

(=) Conversely, suppose that 2 € Q in lowest terms is integral
over Z. Then there exists p = x" + cp_1x" L+ - + c1x + cg with
¢;i € Z such that p(a/b) = 0:

(a)n+c <a>n1+ +c <a>+c—0
b n—1 b 1 b 0 — V.

Clear denominators by multiplying through by b":
a"+cp1a" b+ -+ qab™ ! + b = 0.

We see that
a" =0 mod b.

If b # 1, then some prime in the factorization of b must divide a,
but that cannot happen since a/b is in lowest terms. O
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Important theorem about integral elements

Theorem. Let A and B be domains with A C B, and let o € B.
Then the following are equivalent.

1. « is integral over A.
2. Ala] :={f(«) : f € A[x]} is a finitely generated A-module.

3. There exists a finitely generated A-module M in B such that
aM C M. (Here, aM = {am : m € M}).
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Important theorem about integral elements

« is integral over A = Ala] is a f.g. A-module.

Proof. Since « is integral, there exists
p=x"4an_1x" 1+ + a;x + ap with a; € A such that
p(a) = 0. Therefore,

a"=—a —aja—--— an,la”_l.

Thus, {1,a,...,a" "1} generates Ala] as an A-module.
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3 f.g. A-module M C B such that aM C M =- « is integral over A

Proof. Say M is generated by by, ..., b, € B as an A-module.
Since aM C M, there exist a;; € A such that

ozbl = 211b1 + 4 al,,b,,
aby = ax1by + -+ aonbp

ab, = apib1 + -+ + apnbn-

Letting T = (a;) and b = (b1, ..., bp)*, we get ab = Tb.

Then (al, — T)b =0, which implies det(al, — T) = 0. Define
p(x) = det(xl, — T). Then p(a) = 0. We take a closer look at p
on the next page.
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We defined p(x) = det(xl, — T):

X—aix —ap - —ain
—ao1 X —axp - —azn n
p(x) = det ) ] _ ] = x" + lots.
—dnl —dn2 c++ X —adapn

So p is monic, has coefficients in A, and vanishes at a.. Therefore,
« is integral over B. O
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Integral elements form a subring

Lemma. Let A C B C C be rings. If B is finitely generated as an
A-module and C is finitely generated as a B-module, then C is
finitely generated as an A-module.

Corollary. Let A C B be domains. The set of elements of B that
are integral over A forms a subring of B.

Proof. Let o, 8 € B be integral over A. Consider
A C Ala] € Ala][8] = Ala 8]
Then M := Ala, 5] C B is a f.g. A-module and

(a+BMCM and (af)MC MO
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The algebraic integers

The algebraic integers are the elements of C that are integral
over Z:

O :={a € C: p(a) = 0 for some monic p € Z[x]}.
The algebraic integers form a subring of C.

Example. Since v2 and i are algebraic integers, there must be a
monic p € Z[x] such that p(+/2 + i) = 0. The determinant trick
from the proof of the Theorem, above, gives a method for
calculating such a p.



