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Quiz

1. Let K be a field. State the division algorithm for K [x ].
2. Let L/K be a field extension. What does it mean to say α ∈ L

is algebraic over K .
3. Let L/K be a field extension, and suppose that α ∈ L is

algebraic over K . What is the definition of the minimal
polynomial for α over K?



Today

I Module discussion from last time.
I Algorithm for finding the minimal polynomial.
I Integral elements in an extension of rings.



Algorithm for finding minimal polynomial

Let L/K be a field extension, and let α ∈ L be algebraic over K .
Then, the degree of the minimal polynomial is the smallest d such
that 1, α, α2, · · · , αd are K -linearly dependent.

For that d , the
minimal polynomial may be derived from the dependency relation.

Example. Consider i ∈ C/Q. We have that 1 and i are linearly
independent over Q, but 1, i , and i2 are dependent:

1(1) + 0(i) + 1(i2) = 0.

Let
p(x) = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

Then p(i) = 0, and since p is already monic, we do not have to
scale it.



Algorithm for finding minimal polynomial

Let L/K be a field extension, and let α ∈ L be algebraic over K .
Then, the degree of the minimal polynomial is the smallest d such
that 1, α, α2, · · · , αd are K -linearly dependent. For that d , the
minimal polynomial may be derived from the dependency relation.

Example. Consider i ∈ C/Q. We have that 1 and i are linearly
independent over Q, but 1, i , and i2 are dependent:

1(1) + 0(i) + 1(i2) = 0.

Let
p(x) = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

Then p(i) = 0, and since p is already monic, we do not have to
scale it.



Algorithm for finding minimal polynomial

Let L/K be a field extension, and let α ∈ L be algebraic over K .
Then, the degree of the minimal polynomial is the smallest d such
that 1, α, α2, · · · , αd are K -linearly dependent. For that d , the
minimal polynomial may be derived from the dependency relation.

Example. Consider i ∈ C/Q.

We have that 1 and i are linearly
independent over Q, but 1, i , and i2 are dependent:

1(1) + 0(i) + 1(i2) = 0.

Let
p(x) = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

Then p(i) = 0, and since p is already monic, we do not have to
scale it.



Algorithm for finding minimal polynomial

Let L/K be a field extension, and let α ∈ L be algebraic over K .
Then, the degree of the minimal polynomial is the smallest d such
that 1, α, α2, · · · , αd are K -linearly dependent. For that d , the
minimal polynomial may be derived from the dependency relation.

Example. Consider i ∈ C/Q. We have that 1 and i are linearly
independent over Q,

but 1, i , and i2 are dependent:

1(1) + 0(i) + 1(i2) = 0.

Let
p(x) = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

Then p(i) = 0, and since p is already monic, we do not have to
scale it.



Algorithm for finding minimal polynomial

Let L/K be a field extension, and let α ∈ L be algebraic over K .
Then, the degree of the minimal polynomial is the smallest d such
that 1, α, α2, · · · , αd are K -linearly dependent. For that d , the
minimal polynomial may be derived from the dependency relation.

Example. Consider i ∈ C/Q. We have that 1 and i are linearly
independent over Q, but 1, i , and i2 are dependent:

1(1) + 0(i) + 1(i2) = 0.

Let
p(x) = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

Then p(i) = 0, and since p is already monic, we do not have to
scale it.



Algorithm for finding minimal polynomial

Let L/K be a field extension, and let α ∈ L be algebraic over K .
Then, the degree of the minimal polynomial is the smallest d such
that 1, α, α2, · · · , αd are K -linearly dependent. For that d , the
minimal polynomial may be derived from the dependency relation.

Example. Consider i ∈ C/Q. We have that 1 and i are linearly
independent over Q, but 1, i , and i2 are dependent:

1(1) + 0(i) + 1(i2) = 0.

Let
p(x) = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

Then p(i) = 0, and since p is already monic, we do not have to
scale it.



Algorithm for finding minimal polynomial

Let L/K be a field extension, and let α ∈ L be algebraic over K .
Then, the degree of the minimal polynomial is the smallest d such
that 1, α, α2, · · · , αd are K -linearly dependent. For that d , the
minimal polynomial may be derived from the dependency relation.

Example. Consider i ∈ C/Q. We have that 1 and i are linearly
independent over Q, but 1, i , and i2 are dependent:

1(1) + 0(i) + 1(i2) = 0.

Let
p(x) = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

Then p(i) = 0, and since p is already monic, we do not have to
scale it.



Algorithm for finding minimal polynomial

Let L/K be a field extension, and let α ∈ L be algebraic over K .
Then, the degree of the minimal polynomial is the smallest d such
that 1, α, α2, · · · , αd are K -linearly dependent. For that d , the
minimal polynomial may be derived from the dependency relation.

Example. Consider i ∈ C/Q. We have that 1 and i are linearly
independent over Q, but 1, i , and i2 are dependent:

1(1) + 0(i) + 1(i2) = 0.

Let
p(x) = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

Then p(i) = 0,

and since p is already monic, we do not have to
scale it.



Algorithm for finding minimal polynomial

Let L/K be a field extension, and let α ∈ L be algebraic over K .
Then, the degree of the minimal polynomial is the smallest d such
that 1, α, α2, · · · , αd are K -linearly dependent. For that d , the
minimal polynomial may be derived from the dependency relation.

Example. Consider i ∈ C/Q. We have that 1 and i are linearly
independent over Q, but 1, i , and i2 are dependent:

1(1) + 0(i) + 1(i2) = 0.

Let
p(x) = 1 · 1 + 0 · x + 1 · x2 = 1 + x2.

Then p(i) = 0, and since p is already monic, we do not have to
scale it.



Integral elements

Definition. Let A and B be integral domains (rings with no zero
divisors) with A ⊆ B.

An element of α ∈ B is integral over A if
there exists a monic polynomial p ∈ A[x ] such that p(α) = 0.

Examples.
I If A is a field, then integral over A means algebraic over A.

I 1+
√

5
2 is integral over Z (p(x) = x2 − x − 1).

I i is integral over Z (p(x) = x2 + 1).

I 2
3 is not integral over Z even though it’s a zero of
p(x) = 3x − 2.
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Which rational numbers integral over Z?
Proposition. A rational number is integral over Z if and only if it
is an integer.

Proof. (⇐) Let a ∈ Z. Then x − a ∈ Z[x ] shows that a is integral
over Z.
(⇒) Conversely, suppose that a

b ∈ Q in lowest terms is integral
over Z. Then there exists p = xn + cn−1xn−1 + · · ·+ c1x + c0 with
ci ∈ Z such that p(a/b) = 0:(a

b

)n
+ cn−1

(a
b

)n−1
+ · · ·+ c1

(a
b

)
+ c0 = 0.

Clear denominators by multiplying through by bn:

an + cn−1an−1b + · · ·+ c1abn−1 + c0bn = 0.

We see that
an = 0 mod b.

If b 6= 1, then some prime in the factorization of b must divide a,
but that cannot happen since a/b is in lowest terms. �
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Important theorem about integral elements

Theorem. Let A and B be domains with A ⊆ B, and let α ∈ B.
Then the following are equivalent.

1. α is integral over A.
2. A[α] := {f (α) : f ∈ A[x ]} is a finitely generated A-module.

3. There exists a finitely generated A-module M in B such that
αM ⊆ M. (Here, αM = {αm : m ∈ M}).
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Important theorem about integral elements

α is integral over A =⇒ A[α] is a f.g. A-module.

Proof. Since α is integral, there exists
p = xn + an−1xn−1 + · · ·+ a1x + a0 with ai ∈ A such that
p(α) = 0. Therefore,

αn = −a0 − a1α− · · · − an−1α
n−1.

Thus, {1, α, . . . , αn−1} generates A[α] as an A-module.
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Important theorem about integral elements

∃ f.g. A-module M ⊆ B such that αM ⊆ M ⇒ α is integral over A

Proof. Say M is generated by b1, . . . , bn ∈ B as an A-module.
Since αM ⊆ M, there exist aij ∈ A such that

αb1 = a11b1 + · · ·+ a1nbn

αb2 = a21b1 + · · ·+ a2nbn
...

...

αbn = an1b1 + · · ·+ annbn.

Letting T = (aij) and b = (b1, . . . , bn)t , we get αb = Tb.
Then (αIn − T )b = 0, which implies det(αIn − T ) = 0. Define
p(x) = det(xIn − T ). Then p(α) = 0. We take a closer look at p
on the next page.
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Important theorem about integral elements

We defined p(x) = det(xIn − T ):

p(x) = det


x − a11 −a12 · · · −a1n
−a21 x − a22 · · · −a2n

...
... . . . ...

−an1 −an2 · · · x − ann

 = xn + lots.

So p is monic, has coefficients in A, and vanishes at α. Therefore,
α is integral over B. �
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Integral elements form a subring

Lemma. Let A ⊆ B ⊆ C be rings. If B is finitely generated as an
A-module and C is finitely generated as a B-module, then C is
finitely generated as an A-module.

Corollary. Let A ⊆ B be domains. The set of elements of B that
are integral over A forms a subring of B.

Proof. Let α, β ∈ B be integral over A. Consider

A ⊆ A[α] ⊆ A[α][β] = A[α, β].

Then M := A[α, β] ⊆ B is a f.g. A-module and

(α + β)M ⊆ M and (αβ)M ⊆ M.�
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The algebraic integers

The algebraic integers are the elements of C that are integral
over Z:

O := {α ∈ C : p(α) = 0 for some monic p ∈ Z[x ]}.

The algebraic integers form a subring of C.

Example. Since 3√2 and i are algebraic integers, there must be a
monic p ∈ Z[x ] such that p( 3√2 + i) = 0. The determinant trick
from the proof of the Theorem, above, gives a method for
calculating such a p.
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