Math 361

February 1, 2023

- 1. Let K be a field. State the *division algorithm* for K[x].
- 2. Let L/K be a field extension. What does it mean to say $\alpha \in L$ is algebraic over K.
- 3. Let L/K be a field extension, and suppose that $\alpha \in L$ is algebraic over K. What is the definition of the *minimal* polynomial for α over K?

Today

- Module discussion from last time.
- ▶ Algorithm for finding the minimal polynomial.
- ▶ Integral elements in an extension of rings.

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Then, the degree of the minimal polynomial is the smallest d such that $1, \alpha, \alpha^2, \cdots, \alpha^d$ are K-linearly dependent.

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Then, the degree of the minimal polynomial is the smallest d such that $1, \alpha, \alpha^2, \cdots, \alpha^d$ are K-linearly dependent. For that d, the minimal polynomial may be derived from the dependency relation.

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Then, the degree of the minimal polynomial is the smallest d such that $1, \alpha, \alpha^2, \dots, \alpha^d$ are K-linearly dependent. For that d, the minimal polynomial may be derived from the dependency relation.

Example. Consider $i \in \mathbb{C}/\mathbb{Q}$.

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Then, the degree of the minimal polynomial is the smallest d such that $1, \alpha, \alpha^2, \dots, \alpha^d$ are K-linearly dependent. For that d, the minimal polynomial may be derived from the dependency relation.

Example. Consider $i \in \mathbb{C}/\mathbb{Q}$. We have that 1 and *i* are linearly independent over \mathbb{Q} ,

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Then, the degree of the minimal polynomial is the smallest d such that $1, \alpha, \alpha^2, \cdots, \alpha^d$ are K-linearly dependent. For that d, the minimal polynomial may be derived from the dependency relation.

Example. Consider $i \in \mathbb{C}/\mathbb{Q}$. We have that 1 and *i* are linearly independent over \mathbb{Q} , but 1, *i*, and i^2 are dependent:

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Then, the degree of the minimal polynomial is the smallest d such that $1, \alpha, \alpha^2, \cdots, \alpha^d$ are K-linearly dependent. For that d, the minimal polynomial may be derived from the dependency relation.

Example. Consider $i \in \mathbb{C}/\mathbb{Q}$. We have that 1 and *i* are linearly independent over \mathbb{Q} , but 1, *i*, and i^2 are dependent:

 $1(1) + 0(i) + 1(i^2) = 0.$

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Then, the degree of the minimal polynomial is the smallest d such that $1, \alpha, \alpha^2, \cdots, \alpha^d$ are K-linearly dependent. For that d, the minimal polynomial may be derived from the dependency relation.

Example. Consider $i \in \mathbb{C}/\mathbb{Q}$. We have that 1 and *i* are linearly independent over \mathbb{Q} , but 1, *i*, and i^2 are dependent:

$$1(1) + 0(i) + 1(i^2) = 0.$$

Let

$$p(x) = 1 \cdot 1 + 0 \cdot x + 1 \cdot x^2 = 1 + x^2.$$

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Then, the degree of the minimal polynomial is the smallest d such that $1, \alpha, \alpha^2, \cdots, \alpha^d$ are K-linearly dependent. For that d, the minimal polynomial may be derived from the dependency relation.

Example. Consider $i \in \mathbb{C}/\mathbb{Q}$. We have that 1 and *i* are linearly independent over \mathbb{Q} , but 1, *i*, and i^2 are dependent:

$$1(1) + 0(i) + 1(i^2) = 0.$$

Let

$$p(x) = 1 \cdot 1 + 0 \cdot x + 1 \cdot x^2 = 1 + x^2.$$

Then p(i) = 0,

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Then, the degree of the minimal polynomial is the smallest d such that $1, \alpha, \alpha^2, \cdots, \alpha^d$ are K-linearly dependent. For that d, the minimal polynomial may be derived from the dependency relation.

Example. Consider $i \in \mathbb{C}/\mathbb{Q}$. We have that 1 and *i* are linearly independent over \mathbb{Q} , but 1, *i*, and i^2 are dependent:

$$1(1) + 0(i) + 1(i^2) = 0.$$

Let

$$p(x) = 1 \cdot 1 + 0 \cdot x + 1 \cdot x^2 = 1 + x^2.$$

Then p(i) = 0, and since p is already monic, we do not have to scale it.

Definition. Let A and B be integral domains (rings with no zero divisors) with $A \subseteq B$.

Definition. Let A and B be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over* A if

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Examples.

▶ If A is a field, then integral over A means

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Examples.

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Examples.

•
$$\frac{1+\sqrt{5}}{2}$$
 is integral over \mathbb{Z}

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Examples.

•
$$\frac{1+\sqrt{5}}{2}$$
 is integral over \mathbb{Z} ($p(x) = x^2 - x - 1$).

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Examples.

▶ If A is a field, then integral over A means algebraic over A.

•
$$\frac{1+\sqrt{5}}{2}$$
 is integral over \mathbb{Z} $(p(x) = x^2 - x - 1)$.

 \blacktriangleright *i* is integral over \mathbb{Z}

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Examples.

•
$$\frac{1+\sqrt{5}}{2}$$
 is integral over \mathbb{Z} ($p(x) = x^2 - x - 1$).

• *i* is integral over
$$\mathbb{Z}(p(x) = x^2 + 1)$$
.

Definition. Let A and B be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over* A if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Examples.

•
$$\frac{1+\sqrt{5}}{2}$$
 is integral over \mathbb{Z} $(p(x) = x^2 - x - 1)$.

• *i* is integral over
$$\mathbb{Z}$$
 ($p(x) = x^2 + 1$).

▶
$$\frac{2}{3}$$
 is not integral over \mathbb{Z} even though it's a zero of $p(x) = 3x - 2$.

Proposition. A rational number is integral over \mathbb{Z} if and only if it is an integer.

Proposition. A rational number is integral over \mathbb{Z} if and only if it is an integer.

Proof. (\Leftarrow) Let $a \in \mathbb{Z}$. Then $x - a \in \mathbb{Z}[x]$ shows that a is integral over \mathbb{Z} .

Proposition. A rational number is integral over \mathbb{Z} if and only if it is an integer.

Proof. (\Leftarrow) Let $a \in \mathbb{Z}$. Then $x - a \in \mathbb{Z}[x]$ shows that a is integral over \mathbb{Z} .

(\Rightarrow) Conversely, suppose that $\frac{a}{b} \in \mathbb{Q}$ in lowest terms is integral over \mathbb{Z} .

Proposition. A rational number is integral over \mathbb{Z} if and only if it is an integer.

Proof. (\Leftarrow) Let $a \in \mathbb{Z}$. Then $x - a \in \mathbb{Z}[x]$ shows that a is integral over \mathbb{Z} .

(⇒) Conversely, suppose that $\frac{a}{b} \in \mathbb{Q}$ in lowest terms is integral over \mathbb{Z} . Then there exists $p = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ with $c_i \in \mathbb{Z}$ such that p(a/b) = 0:

Proposition. A rational number is integral over \mathbb{Z} if and only if it is an integer.

Proof. (\Leftarrow) Let $a \in \mathbb{Z}$. Then $x - a \in \mathbb{Z}[x]$ shows that a is integral over \mathbb{Z} .

(⇒) Conversely, suppose that $\frac{a}{b} \in \mathbb{Q}$ in lowest terms is integral over \mathbb{Z} . Then there exists $p = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ with $c_i \in \mathbb{Z}$ such that p(a/b) = 0:

$$\left(\frac{a}{b}\right)^n + c_{n-1}\left(\frac{a}{b}\right)^{n-1} + \cdots + c_1\left(\frac{a}{b}\right) + c_0 = 0.$$

Proposition. A rational number is integral over \mathbb{Z} if and only if it is an integer.

Proof. (\Leftarrow) Let $a \in \mathbb{Z}$. Then $x - a \in \mathbb{Z}[x]$ shows that a is integral over \mathbb{Z} .

(⇒) Conversely, suppose that $\frac{a}{b} \in \mathbb{Q}$ in lowest terms is integral over \mathbb{Z} . Then there exists $p = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ with $c_i \in \mathbb{Z}$ such that p(a/b) = 0:

$$\left(\frac{a}{b}\right)^n + c_{n-1}\left(\frac{a}{b}\right)^{n-1} + \cdots + c_1\left(\frac{a}{b}\right) + c_0 = 0.$$

Clear denominators by multiplying through by b^n :

$$a^{n} + c_{n-1}a^{n-1}b + \cdots + c_{1}ab^{n-1} + c_{0}b^{n} = 0.$$

Proposition. A rational number is integral over \mathbb{Z} if and only if it is an integer.

Proof. (\Leftarrow) Let $a \in \mathbb{Z}$. Then $x - a \in \mathbb{Z}[x]$ shows that a is integral over \mathbb{Z} .

(⇒) Conversely, suppose that $\frac{a}{b} \in \mathbb{Q}$ in lowest terms is integral over \mathbb{Z} . Then there exists $p = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ with $c_i \in \mathbb{Z}$ such that p(a/b) = 0:

$$\left(\frac{a}{b}\right)^n + c_{n-1}\left(\frac{a}{b}\right)^{n-1} + \cdots + c_1\left(\frac{a}{b}\right) + c_0 = 0.$$

Clear denominators by multiplying through by b^n :

$$a^{n} + c_{n-1}a^{n-1}b + \cdots + c_{1}ab^{n-1} + c_{0}b^{n} = 0.$$

We see that

$$a^n = 0 \mod b$$
.

Proposition. A rational number is integral over \mathbb{Z} if and only if it is an integer.

Proof. (\Leftarrow) Let $a \in \mathbb{Z}$. Then $x - a \in \mathbb{Z}[x]$ shows that a is integral over \mathbb{Z} .

(⇒) Conversely, suppose that $\frac{a}{b} \in \mathbb{Q}$ in lowest terms is integral over \mathbb{Z} . Then there exists $p = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ with $c_i \in \mathbb{Z}$ such that p(a/b) = 0:

$$\left(\frac{a}{b}\right)^n + c_{n-1}\left(\frac{a}{b}\right)^{n-1} + \cdots + c_1\left(\frac{a}{b}\right) + c_0 = 0.$$

Clear denominators by multiplying through by b^n :

$$a^{n} + c_{n-1}a^{n-1}b + \cdots + c_{1}ab^{n-1} + c_{0}b^{n} = 0.$$

We see that

$$a^n = 0 \mod b$$
.

If $b \neq 1$, then some prime in the factorization of *b* must divide *a*,

Proposition. A rational number is integral over \mathbb{Z} if and only if it is an integer.

Proof. (\Leftarrow) Let $a \in \mathbb{Z}$. Then $x - a \in \mathbb{Z}[x]$ shows that a is integral over \mathbb{Z} .

(⇒) Conversely, suppose that $\frac{a}{b} \in \mathbb{Q}$ in lowest terms is integral over \mathbb{Z} . Then there exists $p = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$ with $c_i \in \mathbb{Z}$ such that p(a/b) = 0:

$$\left(\frac{a}{b}\right)^n + c_{n-1}\left(\frac{a}{b}\right)^{n-1} + \cdots + c_1\left(\frac{a}{b}\right) + c_0 = 0.$$

Clear denominators by multiplying through by b^n :

$$a^{n} + c_{n-1}a^{n-1}b + \cdots + c_{1}ab^{n-1} + c_{0}b^{n} = 0.$$

We see that

$$a^n = 0 \mod b$$
.

If $b \neq 1$, then some prime in the factorization of *b* must divide *a*, but that cannot happen since a/b is in lowest terms.

Theorem. Let A and B be domains with $A \subseteq B$, and let $\alpha \in B$. Then the following are equivalent.

Theorem. Let A and B be domains with $A \subseteq B$, and let $\alpha \in B$. Then the following are equivalent.

1. α is integral over A.

Theorem. Let A and B be domains with $A \subseteq B$, and let $\alpha \in B$. Then the following are equivalent.

- 1. α is integral over A.
- 2. $A[\alpha] := \{f(\alpha) : f \in A[x]\}$ is a finitely generated A-module.

Theorem. Let A and B be domains with $A \subseteq B$, and let $\alpha \in B$. Then the following are equivalent.

- 1. α is integral over A.
- 2. $A[\alpha] := \{f(\alpha) : f \in A[x]\}$ is a finitely generated A-module.
- 3. There exists a finitely generated A-module M in B such that $\alpha M \subseteq M$. (Here, $\alpha M = \{\alpha m : m \in M\}$).

 α is integral over $A \Longrightarrow A[\alpha]$ is a f.g. A-module.

 α is integral over $A \Longrightarrow A[\alpha]$ is a f.g. A-module.

Proof. Since α is integral, there exists $p = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ with $a_i \in A$ such that $p(\alpha) = 0$.

 α is integral over $A \Longrightarrow A[\alpha]$ is a f.g. A-module.

Proof. Since α is integral, there exists $p = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ with $a_i \in A$ such that $p(\alpha) = 0$. Therefore,

$$\alpha^n = -a_0 - a_1\alpha - \cdots - a_{n-1}\alpha^{n-1}.$$

 α is integral over $A \Longrightarrow A[\alpha]$ is a f.g. A-module.

Proof. Since α is integral, there exists $p = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ with $a_i \in A$ such that $p(\alpha) = 0$. Therefore,

$$\alpha^{n} = -a_{0} - a_{1}\alpha - \cdots - a_{n-1}\alpha^{n-1}.$$

Thus, $\{1, \alpha, \dots, \alpha^{n-1}\}$ generates $A[\alpha]$ as an A-module.

 $A[\alpha]$ f.g. A-module $\Rightarrow \exists$ f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M$

$A[\alpha]$ f.g. A-module $\Rightarrow \exists$ f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M$

Proof. Let M = A[x].

 $A[\alpha]$ f.g. A-module $\Rightarrow \exists$ f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M$

Proof. Let M = A[x]. Then $\alpha M \subseteq M$.

 \exists f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M \Rightarrow \alpha$ is integral over A

 \exists f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M \Rightarrow \alpha$ is integral over A

Proof. Say *M* is generated by $b_1, \ldots, b_n \in B$ as an *A*-module.

 \exists f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M \Rightarrow \alpha$ is integral over A

Proof. Say *M* is generated by $b_1, \ldots, b_n \in B$ as an *A*-module. Since $\alpha M \subseteq M$, there exist $a_{ij} \in A$ such that

$$\alpha b_1 = a_{11}b_1 + \dots + a_{1n}b_n$$

$$\alpha b_2 = a_{21}b_1 + \dots + a_{2n}b_n$$

$$\vdots \qquad \vdots$$

$$\alpha b_n = a_{n1}b_1 + \dots + a_{nn}b_n.$$

 \exists f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M \Rightarrow \alpha$ is integral over A

Proof. Say *M* is generated by $b_1, \ldots, b_n \in B$ as an *A*-module. Since $\alpha M \subseteq M$, there exist $a_{ij} \in A$ such that

$$\alpha b_1 = a_{11}b_1 + \dots + a_{1n}b_n$$

$$\alpha b_2 = a_{21}b_1 + \dots + a_{2n}b_n$$

$$\vdots \qquad \vdots$$

$$\alpha b_n = a_{n1}b_1 + \dots + a_{nn}b_n.$$

Letting $T = (a_{ij})$ and $b = (b_1, \ldots, b_n)^t$, we get $\alpha b = Tb$.

 \exists f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M \Rightarrow \alpha$ is integral over A

Proof. Say *M* is generated by $b_1, \ldots, b_n \in B$ as an *A*-module. Since $\alpha M \subseteq M$, there exist $a_{ij} \in A$ such that

$$\alpha b_1 = a_{11}b_1 + \dots + a_{1n}b_n$$

$$\alpha b_2 = a_{21}b_1 + \dots + a_{2n}b_n$$

$$\vdots \qquad \vdots$$

 $\alpha b_n = a_{n1}b_1 + \cdots + a_{nn}b_n.$

Letting $T = (a_{ij})$ and $b = (b_1, \ldots, b_n)^t$, we get $\alpha b = Tb$. Then $(\alpha I_n - T)b = 0$,

 \exists f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M \Rightarrow \alpha$ is integral over A

Proof. Say *M* is generated by $b_1, \ldots, b_n \in B$ as an *A*-module. Since $\alpha M \subseteq M$, there exist $a_{ij} \in A$ such that

$$\alpha b_1 = a_{11}b_1 + \dots + a_{1n}b_n$$

$$\alpha b_2 = a_{21}b_1 + \dots + a_{2n}b_n$$

$$\vdots \qquad \vdots$$

$$\alpha b_n = a_{n1}b_1 + \dots + a_{nn}b_n.$$

Letting $T = (a_{ij})$ and $b = (b_1, \dots, b_n)^t$, we get $\alpha b = Tb$. Then $(\alpha I_n - T)b = 0$, which implies $det(\alpha I_n - T) = 0$.

 \exists f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M \Rightarrow \alpha$ is integral over A

Proof. Say *M* is generated by $b_1, \ldots, b_n \in B$ as an *A*-module. Since $\alpha M \subseteq M$, there exist $a_{ij} \in A$ such that

$$\alpha b_1 = a_{11}b_1 + \dots + a_{1n}b_n$$

$$\alpha b_2 = a_{21}b_1 + \dots + a_{2n}b_n$$

$$\vdots \qquad \vdots$$

$$\alpha b_n = a_{n1}b_1 + \cdots + a_{nn}b_n.$$

Letting $T = (a_{ij})$ and $b = (b_1, ..., b_n)^t$, we get $\alpha b = Tb$. Then $(\alpha I_n - T)b = 0$, which implies $det(\alpha I_n - T) = 0$. Define $p(x) = det(xI_n - T)$.

 \exists f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M \Rightarrow \alpha$ is integral over A

Proof. Say *M* is generated by $b_1, \ldots, b_n \in B$ as an *A*-module. Since $\alpha M \subseteq M$, there exist $a_{ij} \in A$ such that

$$\alpha b_1 = a_{11}b_1 + \dots + a_{1n}b_n$$

$$\alpha b_2 = a_{21}b_1 + \dots + a_{2n}b_n$$

$$\vdots \qquad \vdots$$

$$\alpha b_n = a_{n1}b_1 + \cdots + a_{nn}b_n.$$

Letting $T = (a_{ij})$ and $b = (b_1, ..., b_n)^t$, we get $\alpha b = Tb$. Then $(\alpha I_n - T)b = 0$, which implies $det(\alpha I_n - T) = 0$. Define $p(x) = det(xI_n - T)$. Then $p(\alpha) = 0$.

 \exists f.g. A-module $M \subseteq B$ such that $\alpha M \subseteq M \Rightarrow \alpha$ is integral over A

Proof. Say *M* is generated by $b_1, \ldots, b_n \in B$ as an *A*-module. Since $\alpha M \subseteq M$, there exist $a_{ij} \in A$ such that

$$\alpha b_1 = a_{11}b_1 + \dots + a_{1n}b_n$$

$$\alpha b_2 = a_{21}b_1 + \dots + a_{2n}b_n$$

$$\vdots \qquad \vdots$$

 $\alpha b_n = a_{n1}b_1 + \cdots + a_{nn}b_n.$

Letting $T = (a_{ij})$ and $b = (b_1, \ldots, b_n)^t$, we get $\alpha b = Tb$. Then $(\alpha I_n - T)b = 0$, which implies $det(\alpha I_n - T) = 0$. Define $p(x) = det(xI_n - T)$. Then $p(\alpha) = 0$. We take a closer look at p on the next page.

We defined $p(x) = det(xI_n - T)$:

We defined $p(x) = det(xI_n - T)$:

$$p(x) = \det \begin{pmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{pmatrix} = x^n + \text{ lots.}$$

We defined $p(x) = det(xI_n - T)$:

$$p(x) = \det \begin{pmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{pmatrix} = x^n + \text{ lots.}$$

So p is

We defined $p(x) = det(xI_n - T)$:

$$p(x) = \det \begin{pmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{pmatrix} = x^n + \text{ lots.}$$

So *p* is monic,

We defined $p(x) = det(xI_n - T)$:

$$p(x) = \det \begin{pmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{pmatrix} = x^n + \text{ lots.}$$

So p is monic, has coefficients in A,

We defined $p(x) = det(xI_n - T)$:

$$p(x) = \det \begin{pmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{pmatrix} = x^n + \text{ lots.}$$

So *p* is monic, has coefficients in *A*, and vanishes at α .

We defined $p(x) = det(xI_n - T)$:

$$p(x) = \det \begin{pmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{pmatrix} = x^n + \text{ lots.}$$

So *p* is monic, has coefficients in *A*, and vanishes at α . Therefore, α is integral over *B*.

Lemma. Let $A \subseteq B \subseteq C$ be rings. If *B* is finitely generated as an *A*-module and *C* is finitely generated as a *B*-module, then *C* is finitely generated as an *A*-module.

Lemma. Let $A \subseteq B \subseteq C$ be rings. If *B* is finitely generated as an *A*-module and *C* is finitely generated as a *B*-module, then *C* is finitely generated as an *A*-module.

Corollary. Let $A \subseteq B$ be domains. The set of elements of *B* that are integral over *A* forms a subring of *B*.

Lemma. Let $A \subseteq B \subseteq C$ be rings. If *B* is finitely generated as an *A*-module and *C* is finitely generated as a *B*-module, then *C* is finitely generated as an *A*-module.

Corollary. Let $A \subseteq B$ be domains. The set of elements of *B* that are integral over *A* forms a subring of *B*.

Proof. Let $\alpha, \beta \in B$ be integral over A.

Lemma. Let $A \subseteq B \subseteq C$ be rings. If *B* is finitely generated as an *A*-module and *C* is finitely generated as a *B*-module, then *C* is finitely generated as an *A*-module.

Corollary. Let $A \subseteq B$ be domains. The set of elements of *B* that are integral over *A* forms a subring of *B*.

Proof. Let $\alpha, \beta \in B$ be integral over A. Consider

 $A \subseteq A[\alpha]$

Lemma. Let $A \subseteq B \subseteq C$ be rings. If *B* is finitely generated as an *A*-module and *C* is finitely generated as a *B*-module, then *C* is finitely generated as an *A*-module.

Corollary. Let $A \subseteq B$ be domains. The set of elements of *B* that are integral over *A* forms a subring of *B*.

Proof. Let $\alpha, \beta \in B$ be integral over A. Consider

 $A \subseteq A[\alpha] \subseteq A[\alpha][\beta]$

Lemma. Let $A \subseteq B \subseteq C$ be rings. If *B* is finitely generated as an *A*-module and *C* is finitely generated as a *B*-module, then *C* is finitely generated as an *A*-module.

Corollary. Let $A \subseteq B$ be domains. The set of elements of *B* that are integral over *A* forms a subring of *B*.

Proof. Let $\alpha, \beta \in B$ be integral over A. Consider

$$A \subseteq A[\alpha] \subseteq A[\alpha][\beta] = A[\alpha, \beta].$$

Lemma. Let $A \subseteq B \subseteq C$ be rings. If *B* is finitely generated as an *A*-module and *C* is finitely generated as a *B*-module, then *C* is finitely generated as an *A*-module.

Corollary. Let $A \subseteq B$ be domains. The set of elements of *B* that are integral over *A* forms a subring of *B*.

Proof. Let $\alpha, \beta \in B$ be integral over A. Consider

$$A \subseteq A[\alpha] \subseteq A[\alpha][\beta] = A[\alpha, \beta].$$

Then $M := A[\alpha, \beta] \subseteq B$ is a f.g. A-module

Lemma. Let $A \subseteq B \subseteq C$ be rings. If *B* is finitely generated as an *A*-module and *C* is finitely generated as a *B*-module, then *C* is finitely generated as an *A*-module.

Corollary. Let $A \subseteq B$ be domains. The set of elements of *B* that are integral over *A* forms a subring of *B*.

Proof. Let $\alpha, \beta \in B$ be integral over A. Consider

$$A \subseteq A[\alpha] \subseteq A[\alpha][\beta] = A[\alpha, \beta].$$

Then $M := A[\alpha, \beta] \subseteq B$ is a f.g. A-module and

 $(\alpha + \beta)M \subseteq M$ and $(\alpha\beta)M \subseteq M.\square$

The *algebraic integers* are the elements of \mathbb{C} that are integral over \mathbb{Z} :

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

The *algebraic integers* are the elements of \mathbb{C} that are integral over \mathbb{Z} :

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

The algebraic integers form a subring of \mathbb{C} .

The *algebraic integers* are the elements of \mathbb{C} that are integral over \mathbb{Z} :

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

The algebraic integers form a subring of $\mathbb{C}.$

Example. Since $\sqrt[3]{2}$ and *i* are algebraic integers,

The *algebraic integers* are the elements of \mathbb{C} that are integral over \mathbb{Z} :

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

The algebraic integers form a subring of \mathbb{C} .

Example. Since $\sqrt[3]{2}$ and *i* are algebraic integers, there must be a monic $p \in \mathbb{Z}[x]$ such that $p(\sqrt[3]{2} + i) = 0$.

The *algebraic integers* are the elements of \mathbb{C} that are integral over \mathbb{Z} :

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

The algebraic integers form a subring of \mathbb{C} .

Example. Since $\sqrt[3]{2}$ and *i* are algebraic integers, there must be a monic $p \in \mathbb{Z}[x]$ such that $p(\sqrt[3]{2} + i) = 0$. The determinant trick from the proof of the Theorem, above, gives a method for calculating such a *p*.