Math 361

January 30, 2023



Today

» Quiz reminder.

» Finish proof from last time.

» Algebraic numbers, number fields.
» Primitive element theorem.

» Modules

» definition

» finitely generated

» bases (free modules)

» homomorphisms, kernels, images
» submodules, quotient modules



Finish theorem from last time

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[o] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[o] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof.
First suppose that [K(«): K] =n < cc.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[o] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof.

First suppose that [K(a): K] =n < oco. Then 1,a,0?,...,a" are
n+ 1 (not necessarily distinct) elements in a vector space of
dimension n, so
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Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[o] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof.

First suppose that [K(a): K] =n < oco. Then 1,a,0?,...,a" are
n+ 1 (not necessarily distinct) elements in a vector space of
dimension n, so they are linearly dependent.
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Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[o] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof.

First suppose that [K(a): K] =n < oco. Then 1,a,0?,...,a" are
n+ 1 (not necessarily distinct) elements in a vector space of
dimension n, so they are linearly dependent. This

means .7 cia' = 0 for some ¢; € K, not all zero.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[o] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof.

First suppose that [K(a): K] =n < oco. Then 1,a,0?,...,a" are
n+ 1 (not necessarily distinct) elements in a vector space of
dimension n, so they are linearly dependent. This

means .7 cia' = 0 for some ¢; € K, not all zero. Define the
polynomial f(x) = 37 cix'.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[o] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof.

First suppose that [K(a): K] =n < oco. Then 1,a,0?,...,a" are
n+ 1 (not necessarily distinct) elements in a vector space of
dimension n, so they are linearly dependent. This

means .7 cia' = 0 for some ¢; € K, not all zero. Define the
polynomial f(x) = 3", c;x’. Then f € K[x] and f(a) = 0.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[o] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof.

First suppose that [K(a): K] =n < oco. Then 1,a,0?,...,a" are
n+ 1 (not necessarily distinct) elements in a vector space of
dimension n, so they are linearly dependent. This

means .7 cia' = 0 for some ¢; € K, not all zero. Define the
polynomial f(x) = 37, cix’. Then f € K[x] and f(a) = 0. So «
is algebraic over K.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[o] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof.

First suppose that [K(a): K] =n < oco. Then 1,a,0?,...,a" are
n+ 1 (not necessarily distinct) elements in a vector space of
dimension n, so they are linearly dependent. This

means .7 cia' = 0 for some ¢; € K, not all zero. Define the
polynomial f(x) = 37, cix’. Then f € K[x] and f(a) = 0. So «
is algebraic over K.

Proof continued on next page.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a): K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a): K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a): K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued.

Conversely, suppose that « is algebraic over K, and
let p=>"i_yaix" be its minimal polynomial.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a): K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued.
Conversely, suppose that « is algebraic over K, and

let p= 3", a;x’ be its minimal polynomial.
We first claim that 1,a,a?,...,a" ! are linearly independent.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a): K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued.

Conversely, suppose that « is algebraic over K, and

let p=>"i_yaix" be its minimal polynomial.

We first claim that 1,a,a?,...,a" ! are linearly independent. If
not,
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K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a): K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued.

Conversely, suppose that « is algebraic over K, and

let p= 3", a;x’ be its minimal polynomial.

We first claim that 1,a,a?,...,a" ! are linearly independent. If
not, then there is a nontrivial linear relation 27:_01 b

Defining f = Z,f’;ol bix', we have



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a): K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued.

Conversely, suppose that « is algebraic over K, and

let p= 3", a;x’ be its minimal polynomial.

We first claim that 1,a,a?,...,a" ! are linearly independent. If
not, then there is a nontrivial linear relation 27:_01 b

Defining f = >-"4 b;x’, we have f € K[x] and f(a) = 0.
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and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.
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Conversely, suppose that « is algebraic over K, and

let p= 3", a;x’ be its minimal polynomial.

We first claim that 1,a,a?,...,a" ! are linearly independent. If
not, then there is a nontrivial linear relation 27:_01 b

Defining f = >-"4 b;x’, we have f € K[x] and f(a) = 0.
However, deg(f) < deg(p) = n, which contradicts the minimality
of p.
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over K if and only if [K(a): K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued.

Conversely, suppose that « is algebraic over K, and

let p= 3", a;x’ be its minimal polynomial.

We first claim that 1,a,a?,...,a" ! are linearly independent. If
not, then there is a nontrivial linear relation 27:_01 b

Defining f = >-"4 b;x’, we have f € K[x] and f(a) = 0.
However, deg(f) < deg(p) = n, which contradicts the minimality
of p.

Proof continued on next page.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then a € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
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over K.
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over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then a € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued. Now define V = Span,{1,a,a?, ---,a""1}.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then a € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued. Now define V = Span,{1,a,a?, ---,a""1}.
We have seen that dim V = n = deg(p).



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then a € L is algebraic
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We have seen that dim V = n = deg(p). Our goal is to prove that
V is a field.
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K|a] versus K(«)

Theorem. Let L/K be a field extension. Then a € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued. Now define V = Span,{1,a,a?, ---,a""1}.

We have seen that dim V = n = deg(p). Our goal is to prove that
V is a field. We then have

K(a) C V C K[q]



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then a € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued. Now define V = Span,{1,a,a?, ---,a""1}.

We have seen that dim V = n = deg(p). Our goal is to prove that
V is a field. We then have

K(a) CV C K] € K(a).



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then a € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued. Now define V = Span,{1,a,a?, ---,a""1}.

We have seen that dim V = n = deg(p). Our goal is to prove that
V is a field. We then have

K(a) CV C K] € K(a).

It then follows that K[a] = V = K(«a), and we are done.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then a € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Proof continued. Now define V = Span,{1,a,a?, ---,a""1}.
We have seen that dim V = n = deg(p). Our goal is to prove that
V is a field. We then have

K(a) CV C K] € K(a).
It then follows that K[a] = V = K(«a), and we are done.

Proof continued on next page.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.
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Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued. Claim: V := Spany{l,a,a?,--- ,a" 1} is a
field.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued. Claim: V := Spany{l,a,a?,--- ,a" 1} is a
field.

Why is V closed under multiplication?
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have " = —Z, 0 A
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have " = —Z, 0 A

Most of the rest of the field properties follow since V C L, and L is
a field.
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Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued. Claim: V := Spany{l,a,a?,--- ,a" 1} is a
field.

Why is V closed under muItipIication? Answer: since p(a) =0, we
have " = —Z, 0 A

Most of the rest of the field properties follow since V C L, and L is
a field.

It remains to show that nonzero elements of V' have inverses.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued. Claim: V := Spany{l,a,a?,--- ,a" 1} is a
field.

Why is V closed under muItipIication? Answer: since p(a) =0, we
have " = —Z, 0 A

Most of the rest of the field properties follow since V C L, and L is
a field.

It remains to show that nonzero elements of V' have inverses.

Proof continued on next page.
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Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for
over K.

Proof continued. Let 0 # v € V := Spang{l,a,a?,--- ,a" 1}

We claim v has a multiplicative inverse in V. Write v = Z,’-’Z_ol bio
for some b; € K, then define h = 27:_01 bix" € K[x].
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over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for
over K.

Proof continued. Let 0 # v € V := Spang{l,a,a?,--- ,a" 1}

We claim v has a multiplicative inverse in V. Write v = Z,’-’Z_ol bio
for some b; € K, then define h = 37"} bix’ € K[x]. So h(a) =



K|a] versus K(«)
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Since p is irreducible, it is prime.
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over K.
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Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued. Let 0 # v € V := Spang{l,a,a?,--- ,a" 1}

We claim v has a multiplicative inverse in V. Write v = Z,’-’Z_ol bio
for some b; € K, then define h = 7"} bix’ € K[x]. So h(a) = v.

Since p is irreducible, it is prime. So the only prime factor that
both h and p could share is p. But deg(h) < deg(p). So

ged(h, p) = 1.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued. Let 0 # v € V := Spang{l,a,a?,--- ,a" 1}

We claim v has a multiplicative inverse in V. Write v = Z,’-’Z_ol bio
for some b; € K, then define h = 7"} bix’ € K[x]. So h(a) = v.

Since p is irreducible, it is prime. So the only prime factor that
both h and p could share is p. But deg(h) < deg(p). So
gecd(h, p) = 1. Therefore, there exist f, g € K[x] such that

fh+ gp = ged(h, p) = 1.



K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued. Let 0 # v € V := Spang{l,a,a?,--- ,a" 1}
We claim v has a multiplicative inverse in V. Write v = Z,’-’Z_ol bio
for some b; € K, then define h = 7"} bix’ € K[x]. So h(a) = v.

Since p is irreducible, it is prime. So the only prime factor that
both h and p could share is p. But deg(h) < deg(p). So
gecd(h, p) = 1. Therefore, there exist f, g € K[x] such that

fh+ gp = ged(h, p) = 1.

So 1= f(a)h(a) + g(a)p(e)
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Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued. Let 0 # v € V := Spang{l,a,a?,--- ,a" 1}
We claim v has a multiplicative inverse in V. Write v = Z,’-’Z_ol bio
for some b; € K, then define h = 7"} bix’ € K[x]. So h(a) = v.

Since p is irreducible, it is prime. So the only prime factor that
both h and p could share is p. But deg(h) < deg(p). So
gecd(h, p) = 1. Therefore, there exist f, g € K[x] such that

fh+ gp = ged(h, p) = 1.

So 1 = f(a)h(a) + g(a)p(a) = f(a)v. Thus, the multiplicative
inverse of v is f(«).
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Finite extensions are algebraic

Theorem. Let L/K be a field extension. Then a € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Corollary. If [L: K] < oo and « € L, then « is algebraic over K.

Proof. Suppose [L: K] < 0o and e € L. Then since K(a) is a
K-subvector space of L, it follows that [K(«) : K] < co. The result
then follows from the Theorem.

Definition. A field extension L/K is algebraic if every element of L
is algebraic over K.

Big point. We have just seen that finite extensions are algebraic.
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Algebraic numbers

The set of algebraic numbers is

A :={a € C: «is algebraic over Q}.

Examples. All rational numbers, /2, ¥/5, and e2™/" for # 1 and
k=0,1,...n—1.

A complex number that is not algebraic is transcendental.
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Algebraic numbers

Proposition. A is a field.

Proof. It suffices to show that A is closed under addition and
multiplication and that every nonzero element of A has a
multiplicative inverse. Let «, 8 € A.

« algebraic over Q = [Q(«) : Q] < o
S alg. over Q = S alg. over Q(a) = [Q(«, 5) : Q(a)] < o0
[Q(a, ) : Q] = [Q(«, B) : Q()][Q(er), Q] < 00 = Q(av, B) C A

In particular, o + 8, af € A and if a # 0, then aleA.
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Primitive element theorem

Definition. A number field is a subfield K C C such that
[K: Q] < 0.

Theorem. If K is a number field, then there exists an algebraic
number 6 such that K = Q(0).

Proof. See Theorem 2.2 in our text.
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Modules

Let R be a ring. An R-module or module over R is an abelian
group M and an operation

RxM—M
(r,m) — rm

such that for all r,s € Rand mne M
» (r+s)m=rm+ sm,
» r(m-+n)=rm+rn,
» r(sm) = (rs)m, and
>

1-m=m.
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* If R is a field, then R-modules are exactly vector spaces over R.

* Z./nZ is a Z module:
If a€ Z and b € Z/nZ, then ab := ab € Z/nZ.
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* Let R be a ring, and let n be a positive integer. Define
R"™:={(rn,...,m):ri € R},
the Cartesian product of R with itself n times.

Then R" is an R-module via

r(r,...,rm)=(rm,...,rm)

(ry.-oyrn)+(s1,.--,80) = (rn+5S1,-.-,rn+ Sn)

forall r€ Rand (rn,...,r),(s1,...,5,) € R".

Letting n = 1, we see that R is, itself, and R-module.

Finally, define R® = {0}, the trivial R-module.
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Examples of modules

* If R is a ring, then the ring of polynomials R[x] is an R-module.

* Abelian groups G are exactly Z-modules:
If g € G and n € Z~g, define
| ——
n—times

It n € Z.o, define ng = (—n)(—g), and finally, for 0 € Z,
define 0g = 0, where the second 0 is the additive identity for G.



Examples of modules

Important: R-ideals are exactly subsets | C R that are R-modules
with respect to the natural operation: if r € R and i € /, then ri is
just multiplication in R.
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Finitely-generated modules

An R-module M is generated by X C M if each m € M is a finite
R-linear combination of elements of X:

m=3" rex
where each ry is an element of R and r, = 0 for all but finitely

many x. Notation:
M= Rx.
xeX

We say M is finitely generated if it is generated by a finite set.
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Bases for modules

A basis for an R-module M is a subset B C M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is 0 or {0} a basis? No: Spany () = Span;{0} # Z/5Z.
Otherwise, take x # 0 € Z/57Z. Note that 5 # 0 € Z, and

5-x=0€Z/5Z

is a non-trivial linear relation.
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Module homomorphisms

A homomorphism of R-modules M and N is a mapping ¢: M — N
that preserves addition and scalar multiplication for all u,v € M
and r € R:

¢(u+v) = ¢(u) + ¢(v)
¢(ru) = ro(u).

(Difference from a ring homomorphism?)

A homomorphism is an isomorphism if it is bijective (in which case,
the inverse is a homomorphism (exercise!)). The kernel of a
homomorphism ¢ is

ker(¢) := ¢ *(0) := {m € M : ¢(m) = 0},

and the image is
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Submodules and quotient modules

A submodule of an R-module M is a subset N C M that is itself
an R-module (under the operations inherited from M).

Exercise: N is a submodule if and only if it is nonempty and
closed under addition and scalar multiplication.

Let M be an R-module with submodule N. The quotient module
M /N is the set of cosets

m=m+N:={m+n:ne N}
with addition and scalar multiplication defined by

m+m =m+m and rm:=7rm.
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Z[x]

2]

7

Zx,yl/(x*, ¥?)

generating set
generating set
generating set

generating set

c{Lx,x%,.. .}
- A{L,i}

- {1}

c {L x,y,xy}.
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Finitely-generated free modules

Proposition. A finitely-generated R-module M is free if and only
if it is isomorphic to R" for some n > 0.

Proof. If by, ..., b, is a basis, define ¢: M — R" by b; — €; and
extending linearly:

d(oiy ribi) =31y rip(by) = >y rieg = (r1,...,ra) € R".

Conversely, if : M — R" is an isomorphism, then define
bi = ¢~ (&) for i =1,...,n to get a basis. 0.

Example.

Z[i] — 72
a—+ bi— (a,b),



