Math 361

January 30, 2023

Today

Quiz reminder.

- ▶ Finish proof from last time.
- ► Algebraic numbers, number fields.
- Primitive element theorem.
- Modules
 - definition
 - finitely generated
 - bases (free modules)
 - homomorphisms, kernels, images
 - submodules, quotient modules

Finish theorem from last time

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha) : K] = n < \infty$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n + 1 (not necessarily distinct) elements in a vector space of dimension n, so

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n+1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n + 1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n+1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero. Define the polynomial $f(x) = \sum_{i=0}^{n} c_i x^i$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n+1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero. Define the polynomial $f(x) = \sum_{i=0}^{n} c_i x^i$. Then $f \in K[x]$ and $f(\alpha) = 0$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n + 1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero. Define the polynomial $f(x) = \sum_{i=0}^{n} c_i x^i$. Then $f \in K[x]$ and $f(\alpha) = 0$. So α is algebraic over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n + 1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero. Define the polynomial $f(x) = \sum_{i=0}^{n} c_i x^i$. Then $f \in K[x]$ and $f(\alpha) = 0$. So α is algebraic over K.

Proof continued on next page.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ are linearly independent.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not,

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$. Defining $f = \sum_{i=0}^{n-1} b_i x^i$, we have

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$. Defining $f = \sum_{i=0}^{n-1} b_i x^i$, we have $f \in K[x]$ and $f(\alpha) = 0$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$. Defining $f = \sum_{i=0}^{n-1} b_i x^i$, we have $f \in K[x]$ and $f(\alpha) = 0$. However, deg(f) < deg(p) = n, which contradicts the minimality of p.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$. Defining $f = \sum_{i=0}^{n-1} b_i x^i$, we have $f \in K[x]$ and $f(\alpha) = 0$. However, deg(f) < deg(p) = n, which contradicts the minimality of p.

Proof continued on next page.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p).

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{\mathcal{K}}\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$K(\alpha) \subseteq V$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{\mathcal{K}}\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$\mathcal{K}(\alpha) \subseteq \mathcal{V} \subseteq \mathcal{K}[\alpha]$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$K(\alpha) \subseteq V \subseteq K[\alpha] \subseteq K(\alpha).$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{\mathcal{K}}\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$K(\alpha) \subseteq V \subseteq K[\alpha] \subseteq K(\alpha).$$

It then follows that $K[\alpha] = V = K(\alpha)$, and we are done.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$K(\alpha) \subseteq V \subseteq K[\alpha] \subseteq K(\alpha).$$

It then follows that $K[\alpha] = V = K(\alpha)$, and we are done.

Proof continued on next page.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication?
Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication? Answer: since $p(\alpha) = 0$, we have $\alpha^n = -\sum_{i=0}^{n-1} a_i \alpha^i$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication? Answer: since $p(\alpha) = 0$, we have $\alpha^n = -\sum_{i=0}^{n-1} a_i \alpha^i$.

Most of the rest of the field properties follow since $V \subseteq L$, and L is a field.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication? Answer: since $p(\alpha) = 0$, we have $\alpha^n = -\sum_{i=0}^{n-1} a_i \alpha^i$.

Most of the rest of the field properties follow since $V \subseteq L$, and L is a field.

It remains to show that nonzero elements of V have inverses.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication? Answer: since $p(\alpha) = 0$, we have $\alpha^n = -\sum_{i=0}^{n-1} a_i \alpha^i$.

Most of the rest of the field properties follow since $V \subseteq L$, and L is a field.

It remains to show that nonzero elements of V have inverses.

Proof continued on next page.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}.$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$,

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i} x^{i} \in K[x]$. So $h(\alpha) =$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i} x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i} x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i} x^{i} \in K[x]$. So $h(\alpha) = v$.

Since *p* is irreducible, it is prime. So the only prime factor that both *h* and *p* could share is *p*. But $\deg(h) < \deg(p)$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i} x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$. Therefore, there exist $f, g \in K[x]$ such that

$$fh+gp=\gcd(h,p)=1.$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$. Therefore, there exist $f, g \in K[x]$ such that

$$fh + gp = \gcd(h, p) = 1.$$

So $1 = f(\alpha)h(\alpha) + g(\alpha)p(\alpha)$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$. Therefore, there exist $f, g \in K[x]$ such that

$$fh+gp=\gcd(h,p)=1.$$

So $1 = f(\alpha)h(\alpha) + g(\alpha)p(\alpha) = f(\alpha)v$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$. Therefore, there exist $f, g \in K[x]$ such that

$$fh+gp=\gcd(h,p)=1.$$

So $1 = f(\alpha)h(\alpha) + g(\alpha)p(\alpha) = f(\alpha)v$. Thus, the multiplicative inverse of v is $f(\alpha)$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$. Then since $K(\alpha)$ is a *K*-subvector space of *L*, it follows that $[K(\alpha):K] < \infty$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$. Then since $K(\alpha)$ is a *K*-subvector space of *L*, it follows that $[K(\alpha):K] < \infty$. The result then follows from the Theorem.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$. Then since $K(\alpha)$ is a *K*-subvector space of *L*, it follows that $[K(\alpha):K] < \infty$. The result then follows from the Theorem.

Definition. A field extension L/K is *algebraic* if every element of L is algebraic over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$. Then since $K(\alpha)$ is a *K*-subvector space of *L*, it follows that $[K(\alpha):K] < \infty$. The result then follows from the Theorem.

Definition. A field extension L/K is algebraic if every element of L is algebraic over K.

Big point. We have just seen that *finite extensions are algebraic*.

$$\mathbb{A} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$$

$$\mathbb{A} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$$

Examples.

$$\mathbb{A} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$$

Examples. All rational numbers,

$$\mathbb{A} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$$

Examples. All rational numbers, $\sqrt{2}$,

$$\mathbb{A} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$$

Examples. All rational numbers, $\sqrt{2}$, $\sqrt[3]{5}$,

$$\mathbb{A} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$$

Examples. All rational numbers, $\sqrt{2}$, $\sqrt[3]{5}$, and $e^{2k\pi/n}$ for $\neq 1$ and $k = 0, 1, \dots, n-1$.

$$\mathbb{A} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$$

Examples. All rational numbers, $\sqrt{2}$, $\sqrt[3]{5}$, and $e^{2k\pi/n}$ for $\neq 1$ and k = 0, 1, ..., n - 1.

A complex number that is not algebraic is *transcendental*.

Algebraic numbers

Proposition. \mathbb{A} is a field.

Proposition. \mathbb{A} is a field.

Proof. It suffices to show that \mathbb{A} is closed under addition and multiplication and that every nonzero element of \mathbb{A} has a multiplicative inverse.

Proposition. \mathbb{A} is a field.

Proof. It suffices to show that \mathbb{A} is closed under addition and multiplication and that every nonzero element of \mathbb{A} has a multiplicative inverse. Let $\alpha, \beta \in \mathbb{A}$.
Proof. It suffices to show that \mathbb{A} is closed under addition and multiplication and that every nonzero element of \mathbb{A} has a multiplicative inverse. Let $\alpha, \beta \in \mathbb{A}$.

 α algebraic over $\mathbb{Q} \Rightarrow [\mathbb{Q}(\alpha) : \mathbb{Q}] < \infty$

Proof. It suffices to show that \mathbb{A} is closed under addition and multiplication and that every nonzero element of \mathbb{A} has a multiplicative inverse. Let $\alpha, \beta \in \mathbb{A}$.

 $\alpha \text{ algebraic over } \mathbb{Q} \Rightarrow [\mathbb{Q}(\alpha) : \mathbb{Q}] < \infty$

 β alg. over $\mathbb{Q} \Rightarrow \beta$ alg. over $\mathbb{Q}(\alpha)$

Proof. It suffices to show that \mathbb{A} is closed under addition and multiplication and that every nonzero element of \mathbb{A} has a multiplicative inverse. Let $\alpha, \beta \in \mathbb{A}$.

 $\alpha \text{ algebraic over } \mathbb{Q} \Rightarrow [\mathbb{Q}(\alpha) : \mathbb{Q}] < \infty$

 β alg. over $\mathbb{Q} \Rightarrow \beta$ alg. over $\mathbb{Q}(\alpha) \Rightarrow [\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] < \infty$

Proof. It suffices to show that \mathbb{A} is closed under addition and multiplication and that every nonzero element of \mathbb{A} has a multiplicative inverse. Let $\alpha, \beta \in \mathbb{A}$.

 α algebraic over $\mathbb{Q} \Rightarrow [\mathbb{Q}(\alpha) : \mathbb{Q}] < \infty$

 β alg. over $\mathbb{Q} \Rightarrow \beta$ alg. over $\mathbb{Q}(\alpha) \Rightarrow [\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] < \infty$ $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}] = [\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha), \mathbb{Q}] < \infty$

Proof. It suffices to show that \mathbb{A} is closed under addition and multiplication and that every nonzero element of \mathbb{A} has a multiplicative inverse. Let $\alpha, \beta \in \mathbb{A}$.

 α algebraic over $\mathbb{Q} \Rightarrow [\mathbb{Q}(\alpha) : \mathbb{Q}] < \infty$

 β alg. over $\mathbb{Q} \Rightarrow \beta$ alg. over $\mathbb{Q}(\alpha) \Rightarrow [\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)] < \infty$

 $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha),\mathbb{Q}] < \infty \Rightarrow \mathbb{Q}(\alpha,\beta) \subset \mathbb{A}$

Proof. It suffices to show that \mathbb{A} is closed under addition and multiplication and that every nonzero element of \mathbb{A} has a multiplicative inverse. Let $\alpha, \beta \in \mathbb{A}$.

$$\begin{array}{l} \alpha \text{ algebraic over } \mathbb{Q} \Rightarrow [\mathbb{Q}(\alpha) : \mathbb{Q}] < \infty \\ \beta \text{ alg. over } \mathbb{Q} \Rightarrow \beta \text{ alg. over } \mathbb{Q}(\alpha) \Rightarrow [\mathbb{Q}(\alpha,\beta) : \mathbb{Q}(\alpha)] < \infty \\ [\mathbb{Q}(\alpha,\beta) : \mathbb{Q}] = [\mathbb{Q}(\alpha,\beta) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha),\mathbb{Q}] < \infty \Rightarrow \mathbb{Q}(\alpha,\beta) \subset \mathbb{A} \end{array}$$

In particular, $\alpha + \beta, \alpha\beta \in \mathbb{A}$ and if $\alpha \neq 0$, then $\alpha^{-1} \in \mathbb{A}$.

Primitive element theorem

Definition. A number field is a subfield $K \subseteq \mathbb{C}$ such that $[K : \mathbb{Q}] < \infty$.

Definition. A number field is a subfield $K \subseteq \mathbb{C}$ such that $[K : \mathbb{Q}] < \infty$.

Theorem. If K is a number field, then there exists an algebraic number θ such that $K = \mathbb{Q}(\theta)$.

Definition. A number field is a subfield $K \subseteq \mathbb{C}$ such that $[K : \mathbb{Q}] < \infty$.

Theorem. If K is a number field, then there exists an algebraic number θ such that $K = \mathbb{Q}(\theta)$.

Proof. See Theorem 2.2 in our text.

Let R be a ring. An R-module or module over R is an abelian group M and

Let R be a ring. An R-module or module over R is an abelian group M and an operation

 $\begin{array}{l} R \times M \to M \\ (r,m) \mapsto rm \end{array}$

such that

Let R be a ring. An R-module or module over R is an abelian group M and an operation

 $\begin{array}{l} R \times M \to M \\ (r,m) \mapsto rm \end{array}$

such that for all $r, s \in R$ and $m, n \in M$

$$(r+s)m = rm + sm,$$

Let R be a ring. An R-module or module over R is an abelian group M and an operation

 $R \times M \to M$ $(r, m) \mapsto rm$

such that for all $r, s \in R$ and $m, n \in M$

Let R be a ring. An R-module or module over R is an abelian group M and an operation

 $R \times M \to M$ $(r, m) \mapsto rm$

such that for all $r, s \in R$ and $m, n \in M$

$$(r+s)m = rm + sm,$$

$$r(m+n) = rm + rn,$$

•
$$r(sm) = (rs)m$$
, and

Let R be a ring. An R-module or module over R is an abelian group M and an operation

 $R \times M \to M$ $(r, m) \mapsto rm$

such that for all $r, s \in R$ and $m, n \in M$

$$(r+s)m = rm + sm,$$

$$r(m+n) = rm + rn,$$

• r(sm) = (rs)m, and

$$\blacktriangleright 1 \cdot m = m.$$

\star If R is a field, then R-modules are exactly vector spaces over R.

* If R is a field, then R-modules are exactly vector spaces over R. * $\mathbb{Z}/n\mathbb{Z}$ is a \mathbb{Z} module:

* If R is a field, then R-modules are exactly vector spaces over R. * $\mathbb{Z}/n\mathbb{Z}$ is a \mathbb{Z} module: If $a \in \mathbb{Z}$ and $\overline{b} \in \mathbb{Z}/n\mathbb{Z}$, then $a\overline{b} := \overline{ab} \in \mathbb{Z}/n\mathbb{Z}$.

 \star Let *R* be a ring, and let *n* be a positive integer. Define

$$R^n := \{(r_1,\ldots,r_n) : r_i \in R\},\$$

the Cartesian product of R with itself n times.

 \star Let *R* be a ring, and let *n* be a positive integer. Define

$$R^n := \{(r_1, \ldots, r_n) : r_i \in R\},\$$

the Cartesian product of R with itself n times.

Then R^n is an R-module via

$$\begin{aligned} r(r_1, \dots, r_n) &:= (rr_1, \dots, rr_n) \\ (r_1, \dots, r_n) + (s_1, \dots, s_n) &:= (r_1 + s_1, \dots, r_n + s_n) \end{aligned}$$
for all $r \in R$ and $(r_1, \dots, r_n), (s_1, \dots, s_n) \in R^n.$

for

 \star Let R be a ring, and let n be a positive integer. Define

$$R^n := \{(r_1,\ldots,r_n) : r_i \in R\},\$$

the Cartesian product of R with itself n times.

Then R^n is an R-module via

$$r(r_1, \ldots, r_n) := (rr_1, \ldots, rr_n)$$
$$(r_1, \ldots, r_n) + (s_1, \ldots, s_n) := (r_1 + s_1, \ldots, r_n + s_n)$$
for all $r \in R$ and $(r_1, \ldots, r_n), (s_1, \ldots, s_n) \in R^n$.
Letting $n = 1$, we see that R is, itself, and R -module.

 \star Let *R* be a ring, and let *n* be a positive integer. Define

$$R^n := \{(r_1,\ldots,r_n) : r_i \in R\},\$$

the Cartesian product of R with itself n times.

Then R^n is an R-module via

$$\begin{aligned} r(r_1, \dots, r_n) &:= (rr_1, \dots, rr_n) \\ (r_1, \dots, r_n) + (s_1, \dots, s_n) &:= (r_1 + s_1, \dots, r_n + s_n) \end{aligned}$$
for all $r \in R$ and $(r_1, \dots, r_n), (s_1, \dots, s_n) \in R^n$.
Letting $n = 1$, we see that R is, itself, and R -module.

Finally, define $R^0 = \{0\}$, the *trivial R*-module.

 \star Abelian groups G are exactly $\mathbb Z\text{-modules:}$

★ Abelian groups *G* are exactly \mathbb{Z} -modules: If *g* ∈ *G* and *n* ∈ $\mathbb{Z}_{>0}$, define

$$ng = \underbrace{g + \cdots + g}_{n-\text{times}}.$$

 \star Abelian groups G are exactly \mathbb{Z} -modules: If $g \in G$ and $n \in \mathbb{Z}_{>0}$, define

$$ng = \underbrace{g + \cdots + g}_{n-\text{times}}.$$

It $n \in \mathbb{Z}_{<0}$, define ng = (-n)(-g),

* Abelian groups G are exactly \mathbb{Z} -modules: If $g \in G$ and $n \in \mathbb{Z}_{>0}$, define

$$ng = \underbrace{g + \cdots + g}_{n-\text{times}}.$$

It $n \in \mathbb{Z}_{<0}$, define ng = (-n)(-g), and finally, for $0 \in \mathbb{Z}$, define 0g = 0, where the second 0 is the additive identity for G.

Important: *R*-ideals are exactly subsets $I \subseteq R$ that are *R*-modules with respect to the natural operation: if $r \in R$ and $i \in I$, then *ri* is just multiplication in *R*.

An *R*-module *M* is generated by $X \subseteq M$

An *R*-module *M* is generated by $X \subseteq M$ if each $m \in M$ is a finite *R*-linear combination of elements of *X*:

An *R*-module *M* is generated by $X \subseteq M$ if each $m \in M$ is a finite *R*-linear combination of elements of *X*:

$$m = \sum_{x \in X} r_x x$$

where each r_x is an element of R and $r_x = 0$ for all but finitely many x.

An *R*-module *M* is generated by $X \subseteq M$ if each $m \in M$ is a finite *R*-linear combination of elements of *X*:

$$m = \sum_{x \in X} r_x x$$

where each r_x is an element of R and $r_x = 0$ for all but finitely many x. Notation:

$$M=\sum_{x\in X}Rx.$$

An *R*-module *M* is generated by $X \subseteq M$ if each $m \in M$ is a finite *R*-linear combination of elements of *X*:

$$m = \sum_{x \in X} r_x x$$

where each r_x is an element of R and $r_x = 0$ for all but finitely many x. Notation:

$$M=\sum_{x\in X}Rx.$$

We say M is finitely generated if

An *R*-module *M* is generated by $X \subseteq M$ if each $m \in M$ is a finite *R*-linear combination of elements of *X*:

$$m = \sum_{x \in X} r_x x$$

where each r_x is an element of R and $r_x = 0$ for all but finitely many x. Notation:

$$M=\sum_{x\in X}Rx.$$

We say *M* is *finitely generated* if it is generated by a finite set.

Bases for modules

A basis for an *R*-module *M* is a subset $B \subseteq M$ such that every element of *M* can be written *uniquely* as a finite *R*-linear combination of *B*.

Bases for modules

A basis for an R-module M is a subset $B \subseteq M$ such that every element of M can be written *uniquely* as a finite R-linear combination of B. Equivalently, B is R-linearly independent and spans M.
A basis for an R-module M is a subset $B \subseteq M$ such that every element of M can be written *uniquely* as a finite R-linear combination of B. Equivalently, B is R-linearly independent and spans M.

A free *R*-module is an *R*-module with a basis.

A basis for an *R*-module *M* is a subset $B \subseteq M$ such that every element of *M* can be written *uniquely* as a finite *R*-linear combination of *B*. Equivalently, *B* is *R*-linearly independent and spans *M*.

A free *R*-module is an *R*-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

A basis for an *R*-module *M* is a subset $B \subseteq M$ such that every element of *M* can be written *uniquely* as a finite *R*-linear combination of *B*. Equivalently, *B* is *R*-linearly independent and spans *M*.

A *free R*-module is an *R*-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The \mathbb{Z} -module $\mathbb{Z}/5\mathbb{Z}$ has no basis.

A basis for an *R*-module *M* is a subset $B \subseteq M$ such that every element of *M* can be written *uniquely* as a finite *R*-linear combination of *B*. Equivalently, *B* is *R*-linearly independent and spans *M*.

A free *R*-module is an *R*-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The \mathbb{Z} -module $\mathbb{Z}/5\mathbb{Z}$ has no basis.

Is \emptyset or $\{0\}$ a basis?

A basis for an *R*-module *M* is a subset $B \subseteq M$ such that every element of *M* can be written *uniquely* as a finite *R*-linear combination of *B*. Equivalently, *B* is *R*-linearly independent and spans *M*.

A free *R*-module is an *R*-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The \mathbb{Z} -module $\mathbb{Z}/5\mathbb{Z}$ has no basis.

Is \emptyset or $\{0\}$ a basis? No: $\operatorname{Span}_{\mathbb{Z}} \emptyset = \operatorname{Span}_{\mathbb{Z}} \{0\} \neq \mathbb{Z}/5\mathbb{Z}$.

A basis for an *R*-module *M* is a subset $B \subseteq M$ such that every element of *M* can be written *uniquely* as a finite *R*-linear combination of *B*. Equivalently, *B* is *R*-linearly independent and spans *M*.

A *free R*-module is an *R*-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The \mathbb{Z} -module $\mathbb{Z}/5\mathbb{Z}$ has no basis.

Is \emptyset or $\{0\}$ a basis? No: $\operatorname{Span}_{\mathbb{Z}} \emptyset = \operatorname{Span}_{\mathbb{Z}} \{0\} \neq \mathbb{Z}/5\mathbb{Z}$. Otherwise, take $x \neq 0 \in \mathbb{Z}/5\mathbb{Z}$.

A basis for an *R*-module *M* is a subset $B \subseteq M$ such that every element of *M* can be written *uniquely* as a finite *R*-linear combination of *B*. Equivalently, *B* is *R*-linearly independent and spans *M*.

A free *R*-module is an *R*-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The \mathbb{Z} -module $\mathbb{Z}/5\mathbb{Z}$ has no basis.

Is \emptyset or $\{0\}$ a basis? No: $\operatorname{Span}_{\mathbb{Z}} \emptyset = \operatorname{Span}_{\mathbb{Z}} \{0\} \neq \mathbb{Z}/5\mathbb{Z}$. Otherwise, take $x \neq 0 \in \mathbb{Z}/5\mathbb{Z}$. Note that $5 \neq 0 \in \mathbb{Z}$, and

A basis for an R-module M is a subset $B \subseteq M$ such that every element of M can be written *uniquely* as a finite R-linear combination of B. Equivalently, B is R-linearly independent and spans M.

A free *R*-module is an *R*-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The \mathbb{Z} -module $\mathbb{Z}/5\mathbb{Z}$ has no basis.

Is \emptyset or $\{0\}$ a basis? No: $\operatorname{Span}_{\mathbb{Z}} \emptyset = \operatorname{Span}_{\mathbb{Z}} \{0\} \neq \mathbb{Z}/5\mathbb{Z}$. Otherwise, take $x \neq 0 \in \mathbb{Z}/5\mathbb{Z}$. Note that $5 \neq 0 \in \mathbb{Z}$, and

$$5 \cdot x = 0 \in \mathbb{Z}/5\mathbb{Z}$$

is a non-trivial linear relation.

A homomorphism of R-modules M and N is a mapping $\phi: M \to N$ that preserves addition and scalar multiplication

A homomorphism of *R*-modules *M* and *N* is a mapping $\phi \colon M \to N$ that preserves addition and scalar multiplication for all $u, v \in M$ and $r \in R$:

$$\phi(u+v) = \phi(u) + \phi(v)$$

$$\phi(ru) = r\phi(u).$$

A homomorphism of *R*-modules *M* and *N* is a mapping $\phi: M \to N$ that preserves addition and scalar multiplication for all $u, v \in M$ and $r \in R$:

$$\phi(u+v) = \phi(u) + \phi(v)$$

$$\phi(ru) = r\phi(u).$$

(Difference from a ring homomorphism?)

A homomorphism of *R*-modules *M* and *N* is a mapping $\phi \colon M \to N$ that preserves addition and scalar multiplication for all $u, v \in M$ and $r \in R$:

$$\phi(u+v) = \phi(u) + \phi(v)$$

$$\phi(ru) = r\phi(u).$$

(Difference from a ring homomorphism?)

A homomorphism is an *isomorphism* if it is bijective (in which case, the inverse is a homomorphism (exercise!)).

A homomorphism of *R*-modules *M* and *N* is a mapping $\phi \colon M \to N$ that preserves addition and scalar multiplication for all $u, v \in M$ and $r \in R$:

$$\phi(u+v) = \phi(u) + \phi(v)$$

$$\phi(ru) = r\phi(u).$$

(Difference from a ring homomorphism?)

A homomorphism is an *isomorphism* if it is bijective (in which case, the inverse is a homomorphism (exercise!)). The *kernel* of a homomorphism ϕ is

$$\ker(\phi) := \phi^{-1}(0) := \{ m \in M : \phi(m) = 0 \},\$$

A homomorphism of *R*-modules *M* and *N* is a mapping $\phi \colon M \to N$ that preserves addition and scalar multiplication for all $u, v \in M$ and $r \in R$:

$$\phi(u+v) = \phi(u) + \phi(v)$$

$$\phi(ru) = r\phi(u).$$

(Difference from a ring homomorphism?)

A homomorphism is an *isomorphism* if it is bijective (in which case, the inverse is a homomorphism (exercise!)). The *kernel* of a homomorphism ϕ is

$$\ker(\phi) := \phi^{-1}(0) := \{ m \in M : \phi(m) = 0 \},\$$

and the *image* is

$$\operatorname{im}(\phi) := \phi(M) := \{\phi(m) : m \in M\}.$$

A submodule of an *R*-module *M* is a subset $N \subseteq M$ that is itself an *R*-module (under the operations inherited from *M*).

A submodule of an *R*-module *M* is a subset $N \subseteq M$ that is itself an *R*-module (under the operations inherited from *M*).

Exercise: N is a submodule if and only if it is nonempty and closed under addition and scalar multiplication.

A submodule of an *R*-module *M* is a subset $N \subseteq M$ that is itself an *R*-module (under the operations inherited from *M*).

Exercise: N is a submodule if and only if it is nonempty and closed under addition and scalar multiplication.

Let M be an R-module with submodule N.

A submodule of an *R*-module *M* is a subset $N \subseteq M$ that is itself an *R*-module (under the operations inherited from *M*).

Exercise: N is a submodule if and only if it is nonempty and closed under addition and scalar multiplication.

Let *M* be an *R*-module with submodule *N*. The *quotient module* M/N is the set of *cosets*

$$\overline{m} = m + N := \{m + n : n \in N\}$$

A submodule of an *R*-module *M* is a subset $N \subseteq M$ that is itself an *R*-module (under the operations inherited from *M*).

Exercise: N is a submodule if and only if it is nonempty and closed under addition and scalar multiplication.

Let *M* be an *R*-module with submodule *N*. The *quotient module* M/N is the set of *cosets*

$$\overline{m} = m + N := \{m + n : n \in N\}$$

with addition and scalar multiplication defined by

$$\overline{m} + \overline{m'} := \overline{m + m'}$$
 and

A submodule of an *R*-module *M* is a subset $N \subseteq M$ that is itself an *R*-module (under the operations inherited from *M*).

Exercise: N is a submodule if and only if it is nonempty and closed under addition and scalar multiplication.

Let *M* be an *R*-module with submodule *N*. The *quotient module* M/N is the set of *cosets*

$$\overline{m} = m + N := \{m + n : n \in N\}$$

with addition and scalar multiplication defined by

$$\overline{m} + \overline{m'} := \overline{m + m'}$$
 and $r\overline{m} := \overline{rm}$.

$\mathbb{Z}[x]$ generating set:

$\mathbb{Z}[x]$ generating set: $\{1, x, x^2, \ldots\}$

$\mathbb{Z}[x]$ generating set: $\{1, x, x^2, \ldots\}$ $\mathbb{Z}[i]$ generating set:

$$\mathbb{Z}[x]$$
 generating set: $\{1, x, x^2, \ldots\}$
 $\mathbb{Z}[i]$ generating set: $\{1, i\}$

$$\begin{split} \mathbb{Z}[x] & \text{generating set: } \{1, x, x^2, \ldots\} \\ \mathbb{Z}[i] & \text{generating set: } \{1, i\} \\ \mathbb{Z} & \text{generating set: } \end{split}$$

$$\begin{split} \mathbb{Z}[x] & \text{generating set: } \{1, x, x^2, \ldots\} \\ \mathbb{Z}[i] & \text{generating set: } \{1, i\} \\ \mathbb{Z} & \text{generating set: } \{1\} \end{split}$$

$$\begin{split} \mathbb{Z}[x] & \text{generating set: } \{1, x, x^2, \ldots\} \\ \mathbb{Z}[i] & \text{generating set: } \{1, i\} \\ \mathbb{Z} & \text{generating set: } \{1\} \\ \mathbb{Z}[x, y]/(x^2, y^2) & \text{generating set: } \end{split}$$

$$\begin{split} \mathbb{Z}[x] & \text{generating set: } \{1, x, x^2, \ldots\} \\ \mathbb{Z}[i] & \text{generating set: } \{1, i\} \\ \mathbb{Z} & \text{generating set: } \{1\} \\ \mathbb{Z}[x, y]/(x^2, y^2) & \text{generating set: } \{1, x, y, xy\}. \end{split}$$

Proposition. A finitely-generated *R*-module *M* is free if and only if it is isomorphic to R^n for some $n \ge 0$.

Proposition. A finitely-generated *R*-module *M* is free if and only if it is isomorphic to R^n for some $n \ge 0$.

Proof. If b_1, \ldots, b_n is a basis, define $\phi: M \to R^n$ by $b_i \mapsto e_i$ and extending linearly:

Proposition. A finitely-generated *R*-module *M* is free if and only if it is isomorphic to R^n for some $n \ge 0$.

Proof. If b_1, \ldots, b_n is a basis, define $\phi: M \to R^n$ by $b_i \mapsto e_i$ and extending linearly:

$$\phi(\sum_{i=1}^{n} r_i b_i) := \sum_{i=1}^{n} r_i \phi(b_i) = \sum_{i=1}^{n} r_i e_i = (r_1, \dots, r_n) \in \mathbb{R}^n.$$

Proposition. A finitely-generated *R*-module *M* is free if and only if it is isomorphic to R^n for some $n \ge 0$.

Proof. If b_1, \ldots, b_n is a basis, define $\phi: M \to R^n$ by $b_i \mapsto e_i$ and extending linearly:

$$\phi(\sum_{i=1}^{n} r_i b_i) := \sum_{i=1}^{n} r_i \phi(b_i) = \sum_{i=1}^{n} r_i e_i = (r_1, \dots, r_n) \in \mathbb{R}^n.$$

Conversely, if $\phi \colon M \to R^n$ is an isomorphism, then

Proposition. A finitely-generated *R*-module *M* is free if and only if it is isomorphic to R^n for some $n \ge 0$.

Proof. If b_1, \ldots, b_n is a basis, define $\phi: M \to R^n$ by $b_i \mapsto e_i$ and extending linearly:

$$\phi(\sum_{i=1}^{n} r_i b_i) := \sum_{i=1}^{n} r_i \phi(b_i) = \sum_{i=1}^{n} r_i e_i = (r_1, \ldots, r_n) \in \mathbb{R}^n.$$

Π.

Conversely, if $\phi: M \to R^n$ is an isomorphism, then define $b_i = \phi^{-1}(e_i)$ for i = 1, ..., n to get a basis.

Proposition. A finitely-generated *R*-module *M* is free if and only if it is isomorphic to R^n for some $n \ge 0$.

Proof. If b_1, \ldots, b_n is a basis, define $\phi: M \to R^n$ by $b_i \mapsto e_i$ and extending linearly:

$$\phi(\sum_{i=1}^{n} r_i b_i) := \sum_{i=1}^{n} r_i \phi(b_i) = \sum_{i=1}^{n} r_i e_i = (r_1, \ldots, r_n) \in \mathbb{R}^n.$$

Π.

Conversely, if $\phi: M \to R^n$ is an isomorphism, then define $b_i = \phi^{-1}(e_i)$ for i = 1, ..., n to get a basis.

Example.

$$\mathbb{Z}[i] o \mathbb{Z}^2$$

 $a + bi \mapsto (a, b),$