
Math 361

January 30, 2023



Today

I Quiz reminder.
I Finish proof from last time.
I Algebraic numbers, number fields.
I Primitive element theorem.
I Modules

I definition
I finitely generated
I bases (free modules)
I homomorphisms, kernels, images
I submodules, quotient modules



Finish theorem from last time

Theorem. Let L/K be a field extension. Then α ∈ L is algebraic
over K if and only if [K (α) : K ] <∞. In this case, K [α] = K (α)
and [K (α) : K ] = deg(p) where p is the minimal polynomial for α
over K .



K [α] versus K (α)

Theorem. Let L/K be a field extension. Then α ∈ L is algebraic
over K if and only if [K (α) : K ] <∞. In this case, K [α] = K (α)
and [K (α) : K ] = deg(p) where p is the minimal polynomial for α
over K .

Proof.
First suppose that [K (α) : K ] = n <∞. Then 1, α, α2, . . . , αn are
n + 1 (not necessarily distinct) elements in a vector space of
dimension n, so they are linearly dependent. This
means

∑n
i=0 ciα

i = 0 for some ci ∈ K , not all zero. Define the
polynomial f (x) =

∑n
i=0 ci x i . Then f ∈ K [x ] and f (α) = 0. So α

is algebraic over K .

Proof continued on next page.
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Conversely, suppose that α is algebraic over K , and
let p =

∑n
i=0 ai x i be its minimal polynomial.

We first claim that 1, α, α2, . . . , αn−1 are linearly independent. If
not, then there is a nontrivial linear relation

∑n−1
i=0 biα

i .
Defining f =

∑n−1
i=0 bi x i , we have f ∈ K [x ] and f (α) = 0.

However, deg(f ) < deg(p) = n, which contradicts the minimality
of p.

Proof continued on next page.
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Finite extensions are algebraic

Theorem. Let L/K be a field extension. Then α ∈ L is algebraic
over K if and only if [K (α) : K ] <∞. In this case, K [α] = K (α)
and [K (α) : K ] = deg(p) where p is the minimal polynomial for α
over K .

Corollary. If [L : K ] <∞ and α ∈ L, then α is algebraic over K .

Proof. Suppose [L : K ] <∞ and α ∈ L. Then since K (α) is a
K -subvector space of L, it follows that [K (α) : K ] <∞. The result
then follows from the Theorem.

Definition. A field extension L/K is algebraic if every element of L
is algebraic over K .

Big point. We have just seen that finite extensions are algebraic.
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Algebraic numbers

The set of algebraic numbers is

A := {α ∈ C : α is algebraic over Q}.

Examples. All rational numbers,
√

2, 3√5, and e2kπ/n for 6= 1 and
k = 0, 1, . . . n − 1.

A complex number that is not algebraic is transcendental.
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Algebraic numbers

Proposition. A is a field.

Proof. It suffices to show that A is closed under addition and
multiplication and that every nonzero element of A has a
multiplicative inverse. Let α, β ∈ A.

α algebraic over Q⇒ [Q(α) : Q] <∞

β alg. over Q⇒ β alg. over Q(α)⇒ [Q(α, β) : Q(α)] <∞

[Q(α, β) : Q] = [Q(α, β) : Q(α)][Q(α),Q] <∞⇒ Q(α, β) ⊂ A

In particular, α + β, αβ ∈ A and if α 6= 0, then α−1 ∈ A. �
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Primitive element theorem

Definition. A number field is a subfield K ⊆ C such that
[K : Q] <∞.

Theorem. If K is a number field, then there exists an algebraic
number θ such that K = Q(θ).

Proof. See Theorem 2.2 in our text.
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Modules

Let R be a ring. An R-module or module over R is an abelian
group M and

an operation

R ×M → M
(r ,m) 7→ rm

such that for all r , s ∈ R and m, n ∈ M
I (r + s)m = rm + sm,
I r(m + n) = rm + rn,
I r(sm) = (rs)m, and
I 1 ·m = m.
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Examples of modules

? If R is a field, then R-modules are exactly vector spaces over R.

? Z/nZ is a Z module:

If a ∈ Z and b ∈ Z/nZ, then ab := ab ∈ Z/nZ.
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Examples of modules

? Let R be a ring, and let n be a positive integer. Define

Rn := {(r1, . . . , rn) : ri ∈ R},

the Cartesian product of R with itself n times.

Then Rn is an R-module via

r(r1, . . . , rn) := (rr1, . . . , rrn)
(r1, . . . , rn) + (s1, . . . , sn) := (r1 + s1, . . . , rn + sn)

for all r ∈ R and (r1, . . . , rn), (s1, . . . , sn) ∈ Rn.

Letting n = 1, we see that R is, itself, and R-module.

Finally, define R0 = {0}, the trivial R-module.
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Examples of modules

? If R is a ring, then the ring of polynomials R[x ] is an R-module.

? Abelian groups G are exactly Z-modules:

If g ∈ G and n ∈ Z>0, define

ng = g + · · ·+ g︸ ︷︷ ︸
n−times

.

It n ∈ Z<0, define ng = (−n)(−g), and finally, for 0 ∈ Z,
define 0g = 0, where the second 0 is the additive identity for G .
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Examples of modules

Important: R-ideals are exactly subsets I ⊆ R that are R-modules
with respect to the natural operation: if r ∈ R and i ∈ I, then ri is
just multiplication in R.



Finitely-generated modules

An R-module M is generated by X ⊆ M

if each m ∈ M is a finite
R-linear combination of elements of X :

m =
∑
x∈X

rx x

where each rx is an element of R and rx = 0 for all but finitely
many x . Notation:

M =
∑
x∈X

Rx .

We say M is finitely generated if it is generated by a finite set.
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Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B.

Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis? No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.
Otherwise, take x 6= 0 ∈ Z/5Z. Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis? No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.
Otherwise, take x 6= 0 ∈ Z/5Z. Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis? No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.
Otherwise, take x 6= 0 ∈ Z/5Z. Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis? No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.
Otherwise, take x 6= 0 ∈ Z/5Z. Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis? No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.
Otherwise, take x 6= 0 ∈ Z/5Z. Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis?

No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.
Otherwise, take x 6= 0 ∈ Z/5Z. Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis? No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.

Otherwise, take x 6= 0 ∈ Z/5Z. Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis? No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.
Otherwise, take x 6= 0 ∈ Z/5Z.

Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis? No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.
Otherwise, take x 6= 0 ∈ Z/5Z. Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Bases for modules

A basis for an R-module M is a subset B ⊆ M such that every
element of M can be written uniquely as a finite R-linear
combination of B. Equivalently, B is R-linearly independent and
spans M.

A free R-module is an R-module with a basis.

Unlike vector spaces, modules do not necessarily have bases.

Example. The Z-module Z/5Z has no basis.

Is ∅ or {0} a basis? No: SpanZ ∅ = SpanZ{0} 6= Z/5Z.
Otherwise, take x 6= 0 ∈ Z/5Z. Note that 5 6= 0 ∈ Z, and

5 · x = 0 ∈ Z/5Z

is a non-trivial linear relation.



Module homomorphisms
A homomorphism of R-modules M and N is a mapping φ : M → N
that preserves addition and scalar multiplication

for all u, v ∈ M
and r ∈ R:

φ(u + v) = φ(u) + φ(v)
φ(ru) = rφ(u).

(Difference from a ring homomorphism?)
A homomorphism is an isomorphism if it is bijective (in which case,
the inverse is a homomorphism (exercise!)). The kernel of a
homomorphism φ is

ker(φ) := φ−1(0) := {m ∈ M : φ(m) = 0},

and the image is

im(φ) := φ(M) := {φ(m) : m ∈ M}.
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Submodules and quotient modules

A submodule of an R-module M is a subset N ⊆ M that is itself
an R-module (under the operations inherited from M).

Exercise: N is a submodule if and only if it is nonempty and
closed under addition and scalar multiplication.

Let M be an R-module with submodule N. The quotient module
M/N is the set of cosets

m = m + N := {m + n : n ∈ N}

with addition and scalar multiplication defined by

m + m′ := m + m′ and rm := rm.
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Z[x ] generating set: {1, x , x2, . . .}
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Z generating set: {1}
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Finitely-generated free modules

Proposition. A finitely-generated R-module M is free if and only
if it is isomorphic to Rn for some n ≥ 0.

Proof. If b1, . . . , bn is a basis, define φ : M → Rn by bi 7→ ei and
extending linearly:

φ(
∑n

i=1 ri bi ) :=
∑n

i=1 riφ(bi ) =
∑n

i=1 ri ei = (r1, . . . , rn) ∈ Rn.

Conversely, if φ : M → Rn is an isomorphism, then define
bi = φ−1(ei ) for i = 1, . . . , n to get a basis. �.

Example.

Z[i ]→ Z2

a + bi 7→ (a, b),
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