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Quiz comments

Proposition. (Division algorithm) Let K be a field, and let
f , g ∈ K [x ] with f 6= 0. Then there exists q, r ∈ K [x ] such that

g = fq + r

where 0 ≤ deg(r) < deg(f ).

Definition. Let L/K be a field extension. Then α ∈ L is algebraic
over K if there exists a nonzero polynomial f ∈ K [x ] such that
f (α) = 0.
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I Review.
I Gauss’s lemma.
I Ring of integers in a number field.
I Extended primitive element theorem
I Ring of integers in a quadratic extension.



Review

Let L/K be a field extension.

I α ∈ L is algebraic over K is there exists a nonzero f ∈ K [x ]
such that f (α) = 0. If f is monic and irreducible, it is the
minimal polynomial for α over K .

I α ∈ L is algebraic over K if and only if [K (α) : K ] <∞, in
which case K [α] = K (α).

I L is an algebraic extension of K if every element of L is
algebraic over K .

I [L : K ] <∞⇒ L algebraic over K , and the dimension is the
degree of the minimal polynomial.

I Algebraic numbers: A := {α ∈ C : α is algebraic over Q}.
They form a subfield of C.

I Number field: A subfield K of C that is finite over Q.
I If K is a number field, then K = Q(α) = Q[α] for some

algebraic number α ∈ K .
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Review: Integral elements

Definition. Let A and B be integral domains (rings with no zero
divisors) with A ⊆ B.

An element of α ∈ B is integral over A if
there exists a monic polynomial p ∈ A[x ] such that p(α) = 0.

Theorem. Let A and B be domains with A ⊆ B, and let α ∈ B.
Then the following are equivalent.

1. α is integral over A.
2. A[α] := {f (α) : f ∈ A[x ]} is a finitely generated A-module.

3. There exists a finitely generated A-module M in B such that
αM ⊆ M. (Here, αM = {am : m ∈ M}).

Corollary. Let A ⊆ B be domains. The set of elements of B that
are integral over A forms a subring of B.
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The algebraic integers

The algebraic integers are the elements of C that are integral
over Z:

O := {α ∈ C : p(α) = 0 for some monic p ∈ Z[x ]}.

The algebraic integers form a subring of C.

Example. Since 3√2 and i are algebraic integers, there must be a
monic p ∈ Z[x ] such that p( 3√2 + i) = 0. The determinant trick
from last time, gives a method for calculating such a p.
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Gauss’s lemma

Let f ∈ Z[x ]. Gauss’s lemma says the if f factors in Q[x ], then it
factors in Z[x ].

In detail, suppose that f = gh for g , h ∈ Q[x ]. Then there exists a
nonzero λ ∈ Q such that

λg , 1
λ

h ∈ Z[x ].
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Algebraic integers and minimal polynomials

Corollary. Let α be an algebraic number, i.e., a complex number
that is algegraic over Q. Then α is an algebraic integer if and only
if its minimal polynomial over Q has integer coefficients.

Proof. (⇐) Duh.

(⇒)
α ∈ O⇒ there exists monic f ∈ Z[x ] such that f (α) = 0.
Therefore, α is algebraic over Q and has a minimal polynomial p.

Then f (α) = 0⇒ f = qp for some q ∈ Q[x ]. Since f and p are
monic, so is q.
Gauss’s lemma implies there exist λ ∈ Q such that λq, 1

λp ∈ Z[x ].

So f = (λq)
(

1
λp
)

.

Then λq ∈ Z[x ]⇒ λ ∈ Z, and 1
λp ∈ Z[x ]⇒ 1

λ ∈ Z.
Therefore, λ = ±1. So 1

λp = ±p ∈ Z[x ], which implies p ∈ Z[x ].�
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Another proof that O ∩Q = Z

We just proved:

Corollary. A complex number α is an algebraic integer if and only
if its minimal polynomial over Q has integer coefficients.

It follows that O ∩Q = Z, i.e. a rational number that is integral
over Z is an integer.
Proof. Certainly, Z ⊆ O ∩Q.

For the reverse inclusion, suppose that a ∈ O ∩Q. The minimal
polynomial for a over Q is x − a. By the Corollary, x − a ∈ Z[x ].
In particular, a ∈ Z. �
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Ring of integers in a number field

Let K be a number field:

a finite field extension of Q in C.

Definition. The ring of integers in K is

OK = O ∩ K ,

the algebraic integers lying in K .

K OK

Q Z.
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Extended primitive element theorem

[K : Q] <∞

K OK

Q Z.

Lemma. If α ∈ K , then there exists c ∈ Z such that cα ∈ OK .
Proof. HW.

Extended primitive element theorem. Let K be a number field.
Then there exists θ ∈ OK such that K = Q(θ) = Q[θ].
Proof. The ordinary primitive element theorem gives us α ∈ K
such that K = Q(α) = Q[α]. By the Lemma, there exists c ∈ Z
such that θ := cα ∈ OK .
Then K = Q(α) = Q(θ) and K = Q[α] = Q[θ]. �
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Quadratic number fields

Suppose K is a number field with [K : Q] = 2.

Goal. Find the ring
of integers in K .

By the PET, there exists θ ∈ OK such that K = Q(θ).

Minimal polynomial for θ: p = x2 + mx + n ∈ Z[x ]. So

θ = −m ±
√

m2 − 4n
2 .

Let m2 − 4n = r2d for r , d ∈ Z with d squarefree. Since θ 6∈ Z, we
have d 6= 0, 1. So θ = −m±r

√
d

2 , and

K = Q(θ) = Q(
√

d) = Q[
√

d ] = SpanQ{1,
√

d}.
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Quadratic number fields

Let α ∈ K = Q(
√

d) = Q[
√

d ].

Goal: Determine when α ∈ OK .

We have α = s + t
√

d with s, t ∈ Q. So there exists a, b, c not
sharing a prime factor and such that

α = a + b
√

d
c .

If b = 0, then α = a
c ∈ Q. If α ∈ OK , then α ∈ OK ∩Q = Z.

So one possibility is α ∈ Z, but we already know Z ⊂ OK .

From now on, suppose that b 6= 0.
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Quadratic number fields

α = a + b
√

d
c

The minimal polynomial for α over Q is

p(x) =
(

x − a + b
√

d
c

)(
x − a − b

√
d

c

)
= x2−2a

c x+a2 − b2d
c2 ∈ Q[x ].

So α ∈ OK exactly when

2a
c ∈ Z and a2 − b2d

c2 ∈ Z.
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Summary: α = a+b
√

d
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c ∈ Z and a2 − b2d

c2 ∈ Z.

Our problem is reduced to finding a, b, c satisfying the above.

Let q 6= 2 be a prime integer factor of c.

Then c|(2a)⇒ q|(2a)⇒ q|a⇒ q2|a2

and c2|(a2 − b2d)⇒ q2|(a2 − b2d)⇒ q2|(b2d)⇒ q|b.

We have shown that a, b, c share a factor of q in this case, but we
have selected a, b, c not sharing any prime factors.

Thus, we know c is a power of 2.
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In this case, a2 = b2 = 1 mod 4, and

a2 − b2d = 1− d = 0 mod 4.

So d = 1 mod 4.
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Quadratic number fields

Theorem. Let K be a field extension of Q with [K : Q] = 2. Then
K = Q(

√
d) where d 6= 0, 1 is a square-free integer. Its ring of

integers is

OK =

Z[
√

d ] if d 6= 1 mod 4

Z[ 1+
√

d
2 ] if d = 1 mod 4.

We have

Z[
√

d ] = SpanZ{1,
√

d} and Z[ 1+
√

d
2 ] = SpanZ{1, 1+

√
d

2 }.

Example. If K = Q(
√

5), then OK = Z[ 1+
√

5
2 ]. On the other

hand, OQ(
√

7) = Z[
√

7].
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