Math 361

February 3, 2023

Proposition. (Division algorithm) Let K be a field, and let $f, g \in K[x]$ with $f \neq 0$. Then there exists $q, r \in K[x]$ such that

$$g = fq + r$$

where $0 \leq \deg(r) < \deg(f)$.

Proposition. (Division algorithm) Let K be a field, and let $f, g \in K[x]$ with $f \neq 0$. Then there exists $q, r \in K[x]$ such that

$$g = fq + r$$

where $0 \leq \deg(r) < \deg(f)$.

Definition. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if there exists a nonzero polynomial $f \in K[x]$ such that $f(\alpha) = 0$.

Today

Review.

Gauss's lemma.

- ▶ Ring of integers in a number field.
- ► Extended primitive element theorem
- ▶ Ring of integers in a quadratic extension.

- Let L/K be a field extension.

Let L/K be a field extension.

- α ∈ L is algebraic over K if and only if [K(α) : K] < ∞, in
 which case K[α] = K(α).
 </p>

- ► *L* is an *algebraic extension* of *K* if every element of *L* is algebraic over *K*.

- ► *L* is an *algebraic extension* of *K* if every element of *L* is algebraic over *K*.
- [L:K] < ∞ ⇒ L algebraic over K, and the dimension is the degree of the minimal polynomial.</p>

- ► *L* is an *algebraic extension* of *K* if every element of *L* is algebraic over *K*.
- [L:K] < ∞ ⇒ L algebraic over K, and the dimension is the degree of the minimal polynomial.</p>
- Algebraic numbers: $\mathbb{A} := \{ \alpha \in \mathbb{C} : \alpha \text{ is algebraic over } \mathbb{Q} \}.$

- ► *L* is an *algebraic extension* of *K* if every element of *L* is algebraic over *K*.
- [L:K] < ∞ ⇒ L algebraic over K, and the dimension is the degree of the minimal polynomial.</p>
- ► Algebraic numbers: A := {α ∈ C : α is algebraic over Q}. They form a subfield of C.
- Number field: A subfield K of \mathbb{C} that is finite over \mathbb{Q} .

- ▶ *L* is an *algebraic extension* of *K* if every element of *L* is algebraic over *K*.
- [L:K] < ∞ ⇒ L algebraic over K, and the dimension is the degree of the minimal polynomial.</p>
- ► Algebraic numbers: A := {α ∈ C : α is algebraic over Q}. They form a subfield of C.
- Number field: A subfield K of \mathbb{C} that is finite over \mathbb{Q} .
- If K is a number field, then K = Q(α) = Q[α] for some algebraic number α ∈ K.

Definition. Let A and B be integral domains (rings with no zero divisors) with $A \subseteq B$.

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Theorem. Let A and B be domains with $A \subseteq B$, and let $\alpha \in B$. Then the following are equivalent.

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Theorem. Let A and B be domains with $A \subseteq B$, and let $\alpha \in B$. Then the following are equivalent.

1. α is integral over A.

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Theorem. Let A and B be domains with $A \subseteq B$, and let $\alpha \in B$. Then the following are equivalent.

- 1. α is integral over A.
- 2. $A[\alpha] := \{f(\alpha) : f \in A[x]\}$ is a finitely generated A-module.

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Theorem. Let A and B be domains with $A \subseteq B$, and let $\alpha \in B$. Then the following are equivalent.

- 1. α is integral over A.
- 2. $A[\alpha] := \{f(\alpha) : f \in A[x]\}$ is a finitely generated A-module.
- 3. There exists a finitely generated A-module M in B such that $\alpha M \subseteq M$. (Here, $\alpha M = \{am : m \in M\}$).

Definition. Let *A* and *B* be integral domains (rings with no zero divisors) with $A \subseteq B$. An element of $\alpha \in B$ is *integral over A* if there exists a monic polynomial $p \in A[x]$ such that $p(\alpha) = 0$.

Theorem. Let A and B be domains with $A \subseteq B$, and let $\alpha \in B$. Then the following are equivalent.

- 1. α is integral over A.
- 2. $A[\alpha] := \{f(\alpha) : f \in A[x]\}$ is a finitely generated A-module.
- 3. There exists a finitely generated A-module M in B such that $\alpha M \subseteq M$. (Here, $\alpha M = \{am : m \in M\}$).

Corollary. Let $A \subseteq B$ be domains. The set of elements of *B* that are integral over *A* forms a subring of *B*.

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

The algebraic integers form a subring of \mathbb{C} .

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

The algebraic integers form a subring of \mathbb{C} .

Example. Since $\sqrt[3]{2}$ and *i* are algebraic integers,

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

The algebraic integers form a subring of \mathbb{C} .

Example. Since $\sqrt[3]{2}$ and *i* are algebraic integers, there must be a monic $p \in \mathbb{Z}[x]$ such that $p(\sqrt[3]{2} + i) = 0$.

$$\mathfrak{O} := \{ \alpha \in \mathbb{C} : p(\alpha) = 0 \text{ for some monic } p \in \mathbb{Z}[x] \}.$$

The algebraic integers form a subring of \mathbb{C} .

Example. Since $\sqrt[3]{2}$ and *i* are algebraic integers, there must be a monic $p \in \mathbb{Z}[x]$ such that $p(\sqrt[3]{2} + i) = 0$. The determinant trick from last time, gives a method for calculating such a *p*.

Let $f \in \mathbb{Z}[x]$. Gauss's lemma says the if f factors in $\mathbb{Q}[x]$, then it factors in $\mathbb{Z}[x]$.

Let $f \in \mathbb{Z}[x]$. Gauss's lemma says the if f factors in $\mathbb{Q}[x]$, then it factors in $\mathbb{Z}[x]$.

In detail, suppose that f = gh for $g, h \in \mathbb{Q}[x]$.

Let $f \in \mathbb{Z}[x]$. Gauss's lemma says the if f factors in $\mathbb{Q}[x]$, then it factors in $\mathbb{Z}[x]$.

In detail, suppose that f = gh for $g, h \in \mathbb{Q}[x]$. Then there exists a nonzero $\lambda \in \mathbb{Q}$ such that

$$\lambda g, \ \frac{1}{\lambda}h \in \mathbb{Z}[x].$$

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow)

Corollary. Let α be an algebraic number, i.e., a complex number that is algegraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

 (\Rightarrow)

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (⇐) Duh.

(⇒) $\alpha \in \mathfrak{O}$ ⇒ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$.

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

(⇒) $\alpha \in \mathfrak{O}$ ⇒ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$.

Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p.

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

(⇒) $\alpha \in \mathfrak{O}$ ⇒ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$. Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p. Then $f(\alpha) = 0 \Rightarrow f = qp$ for some $q \in \mathbb{Q}[x]$.
Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

 (\Rightarrow)

 $\alpha \in \mathfrak{O} \Rightarrow$ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$.

Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p.

Then $f(\alpha) = 0 \Rightarrow f = qp$ for some $q \in \mathbb{Q}[x]$. Since f and p are monic,

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

(\Rightarrow) $\alpha \in \mathfrak{O} \Rightarrow$ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$. Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p. Then $f(\alpha) = 0 \Rightarrow f = qp$ for some $q \in \mathbb{Q}[x]$. Since f and p are monic, so is q.

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

 (\Rightarrow)

 $\alpha \in \mathfrak{O} \Rightarrow$ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$. Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p. Then $f(\alpha) = 0 \Rightarrow f = qp$ for some $q \in \mathbb{Q}[x]$. Since f and p are monic, so is q.

Gauss's lemma implies there exist $\lambda \in \mathbb{Q}$ such that $\lambda q, \frac{1}{\lambda} p \in \mathbb{Z}[x]$.

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

 (\Rightarrow)

 $\alpha \in \mathfrak{O} \Rightarrow$ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$. Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p. Then $f(\alpha) = 0 \Rightarrow f = qp$ for some $q \in \mathbb{Q}[x]$. Since f and p are

monic, so is q.

Gauss's lemma implies there exist $\lambda \in \mathbb{Q}$ such that $\lambda q, \frac{1}{\lambda} p \in \mathbb{Z}[x]$. So $f = (\lambda q) (\frac{1}{\lambda} p)$.

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

 (\Rightarrow)

 $\alpha \in \mathfrak{O} \Rightarrow$ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$. Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p.

Then $f(\alpha) = 0 \Rightarrow f = qp$ for some $q \in \mathbb{Q}[x]$. Since f and p are monic, so is q.

Gauss's lemma implies there exist $\lambda \in \mathbb{Q}$ such that $\lambda q, \frac{1}{\lambda} p \in \mathbb{Z}[x]$. So $f = (\lambda q) (\frac{1}{\lambda} p)$. Then $\lambda q \in \mathbb{Z}[x] \Rightarrow \lambda \in \mathbb{Z}$,

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

 (\Rightarrow)

 $\alpha \in \mathfrak{O} \Rightarrow$ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$. Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p. Then $f(\alpha) = 0 \Rightarrow f = qp$ for some $q \in \mathbb{Q}[x]$. Since f and p are

monic, so is q.

Gauss's lemma implies there exist $\lambda \in \mathbb{Q}$ such that $\lambda q, \frac{1}{\lambda} p \in \mathbb{Z}[x]$. So $f = (\lambda q) (\frac{1}{\lambda} p)$. Then $\lambda q \in \mathbb{Z}[x] \Rightarrow \lambda \in \mathbb{Z}$, and $\frac{1}{\lambda} p \in \mathbb{Z}[x] \Rightarrow \frac{1}{\lambda} \in \mathbb{Z}$.

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

 (\Rightarrow)

 $\alpha \in \mathfrak{O} \Rightarrow$ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$. Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p. There $f(\alpha) = 0$ and $f(\alpha) = 0$.

Then $f(\alpha) = 0 \Rightarrow f = qp$ for some $q \in \mathbb{Q}[x]$. Since f and p are monic, so is q.

Gauss's lemma implies there exist $\lambda \in \mathbb{Q}$ such that $\lambda q, \frac{1}{\lambda} p \in \mathbb{Z}[x]$. So $f = (\lambda q) \left(\frac{1}{\lambda} p\right)$. Then $\lambda q \in \mathbb{Z}[x] \Rightarrow \lambda \in \mathbb{Z}$, and $\frac{1}{\lambda} p \in \mathbb{Z}[x] \Rightarrow \frac{1}{\lambda} \in \mathbb{Z}$. Therefore, $\lambda = \pm 1$.

Corollary. Let α be an algebraic number, i.e., a complex number that is algebraic over \mathbb{Q} . Then α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

Proof. (\Leftarrow) Duh.

 (\Rightarrow)

 $\alpha \in \mathfrak{O} \Rightarrow$ there exists monic $f \in \mathbb{Z}[x]$ such that $f(\alpha) = 0$. Therefore, α is algebraic over \mathbb{Q} and has a minimal polynomial p.

Then $f(\alpha) = 0 \Rightarrow f = qp$ for some $q \in \mathbb{Q}[x]$. Since f and p are monic, so is q.

Gauss's lemma implies there exist $\lambda \in \mathbb{Q}$ such that $\lambda q, \frac{1}{\lambda} p \in \mathbb{Z}[x]$. So $f = (\lambda q) (\frac{1}{\lambda} p)$. Then $\lambda q \in \mathbb{Z}[x] \Rightarrow \lambda \in \mathbb{Z}$, and $\frac{1}{\lambda} p \in \mathbb{Z}[x] \Rightarrow \frac{1}{\lambda} \in \mathbb{Z}$. Therefore, $\lambda = \pm 1$. So $\frac{1}{\lambda} p = \pm p \in \mathbb{Z}[x]$, which implies $p \in \mathbb{Z}[x]$.

We just proved:

We just proved:

Corollary. A complex number α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

We just proved:

Corollary. A complex number α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

It follows that $\mathfrak{O}\cap\mathbb{Q}=\mathbb{Z},$ i.e. a rational number that is integral over \mathbb{Z} is an integer.

We just proved:

Corollary. A complex number α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

It follows that $\mathfrak{O}\cap\mathbb{Q}=\mathbb{Z},$ i.e. a rational number that is integral over \mathbb{Z} is an integer.

Proof. Certainly, $\mathbb{Z} \subseteq \mathfrak{O} \cap \mathbb{Q}$.

We just proved:

Corollary. A complex number α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

It follows that $\mathfrak{O}\cap\mathbb{Q}=\mathbb{Z},$ i.e. a rational number that is integral over \mathbb{Z} is an integer.

Proof. Certainly, $\mathbb{Z} \subseteq \mathfrak{O} \cap \mathbb{Q}$.

For the reverse inclusion, suppose that $a \in \mathfrak{O} \cap \mathbb{Q}$.

We just proved:

Corollary. A complex number α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

It follows that $\mathfrak{O}\cap\mathbb{Q}=\mathbb{Z},$ i.e. a rational number that is integral over \mathbb{Z} is an integer.

Proof. Certainly, $\mathbb{Z} \subseteq \mathfrak{O} \cap \mathbb{Q}$.

For the reverse inclusion, suppose that $a \in \mathcal{O} \cap \mathbb{Q}$. The minimal polynomial for a over \mathbb{Q} is x - a.

We just proved:

Corollary. A complex number α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

It follows that $\mathfrak{O}\cap\mathbb{Q}=\mathbb{Z},$ i.e. a rational number that is integral over \mathbb{Z} is an integer.

Proof. Certainly, $\mathbb{Z} \subseteq \mathfrak{O} \cap \mathbb{Q}$.

For the reverse inclusion, suppose that $a \in \mathfrak{O} \cap \mathbb{Q}$. The minimal polynomial for a over \mathbb{Q} is x - a. By the Corollary, $x - a \in \mathbb{Z}[x]$.

We just proved:

Corollary. A complex number α is an algebraic integer if and only if its minimal polynomial over \mathbb{Q} has integer coefficients.

It follows that $\mathfrak{O}\cap\mathbb{Q}=\mathbb{Z}$, i.e. a rational number that is integral over \mathbb{Z} is an integer.

Proof. Certainly, $\mathbb{Z} \subseteq \mathfrak{O} \cap \mathbb{Q}$.

For the reverse inclusion, suppose that $a \in \mathfrak{O} \cap \mathbb{Q}$. The minimal polynomial for *a* over \mathbb{Q} is x - a. By the Corollary, $x - a \in \mathbb{Z}[x]$. In particular, $a \in \mathbb{Z}$.

Let K be a *number field*:

Let *K* be a *number field*: a finite field extension of \mathbb{Q} in \mathbb{C} .

Let K be a *number field*: a finite field extension of \mathbb{Q} in \mathbb{C} . **Definition.** The *ring of integers in K* is

 $\mathfrak{O}_{K}=\mathfrak{O}\cap K,$

the algebraic integers lying in K.

Let K be a *number field*: a finite field extension of \mathbb{Q} in \mathbb{C} . **Definition.** The *ring of integers in K* is

$$\mathfrak{O}_{K} = \mathfrak{O} \cap K,$$

the algebraic integers lying in K.

 $[K:\mathbb{Q}]<\infty$

 $[K:\mathbb{Q}]<\infty$

Lemma. If $\alpha \in K$, then there exists $c \in \mathbb{Z}$ such that $c\alpha \in \mathfrak{O}_K$.

 $[K:\mathbb{Q}]<\infty$

Lemma. If $\alpha \in K$, then there exists $c \in \mathbb{Z}$ such that $c\alpha \in \mathfrak{O}_{K}$. **Proof.** HW.

 $[K:\mathbb{Q}]<\infty$

Lemma. If $\alpha \in K$, then there exists $c \in \mathbb{Z}$ such that $c\alpha \in \mathfrak{O}_{K}$. **Proof.** HW.

Extended primitive element theorem. Let K be a number field. Then there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$.

 $[K:\mathbb{Q}]<\infty$

Lemma. If $\alpha \in K$, then there exists $c \in \mathbb{Z}$ such that $c\alpha \in \mathfrak{O}_{K}$. **Proof.** HW.

Extended primitive element theorem. Let K be a number field. Then there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$.

Proof. The ordinary primitive element theorem gives us $\alpha \in K$ such that $K = \mathbb{Q}(\alpha) = \mathbb{Q}[\alpha]$.

 $[K:\mathbb{Q}]<\infty$

Lemma. If $\alpha \in K$, then there exists $c \in \mathbb{Z}$ such that $c\alpha \in \mathfrak{O}_{K}$. **Proof.** HW.

Extended primitive element theorem. Let K be a number field. Then there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$.

Proof. The ordinary primitive element theorem gives us $\alpha \in K$ such that $K = \mathbb{Q}(\alpha) = \mathbb{Q}[\alpha]$. By the Lemma, there exists $c \in \mathbb{Z}$ such that $\theta := c\alpha \in \mathfrak{O}_K$.

 $[K:\mathbb{Q}]<\infty$

Lemma. If $\alpha \in K$, then there exists $c \in \mathbb{Z}$ such that $c\alpha \in \mathfrak{O}_{K}$. **Proof.** HW.

Extended primitive element theorem. Let K be a number field. Then there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta) = \mathbb{Q}[\theta]$.

Proof. The ordinary primitive element theorem gives us $\alpha \in K$ such that $K = \mathbb{Q}(\alpha) = \mathbb{Q}[\alpha]$. By the Lemma, there exists $c \in \mathbb{Z}$ such that $\theta := c\alpha \in \mathfrak{O}_K$.

Then
$$K = \mathbb{Q}(\alpha) = \mathbb{Q}(\theta)$$
 and $K = \mathbb{Q}[\alpha] = \mathbb{Q}[\theta]$.

Suppose K is a number field with $[K : \mathbb{Q}] = 2$.

Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

By the PET, there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta)$.

Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

By the PET, there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta)$.

Minimal polynomial for θ : $p = x^2 + mx + n \in \mathbb{Z}[x]$.

Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

By the PET, there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta)$.

Minimal polynomial for θ : $p = x^2 + mx + n \in \mathbb{Z}[x]$. So

$$\theta = \frac{-m \pm \sqrt{m^2 - 4n}}{2}$$

Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

By the PET, there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta)$.

Minimal polynomial for θ : $p = x^2 + mx + n \in \mathbb{Z}[x]$. So

$$\theta = \frac{-m \pm \sqrt{m^2 - 4n}}{2}$$

Let $m^2 - 4n = r^2 d$ for $r, d \in \mathbb{Z}$ with d squarefree.

Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

By the PET, there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta)$.

Minimal polynomial for θ : $p = x^2 + mx + n \in \mathbb{Z}[x]$. So

$$\theta = \frac{-m \pm \sqrt{m^2 - 4n}}{2}$$

Let $m^2 - 4n = r^2 d$ for $r, d \in \mathbb{Z}$ with d squarefree. Since $\theta \notin \mathbb{Z}$, we have $d \neq 0, 1$.

Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

By the PET, there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta)$.

Minimal polynomial for θ : $p = x^2 + mx + n \in \mathbb{Z}[x]$. So

$$\theta = \frac{-m \pm \sqrt{m^2 - 4n}}{2}$$

Let $m^2 - 4n = r^2 d$ for $r, d \in \mathbb{Z}$ with d squarefree. Since $\theta \notin \mathbb{Z}$, we have $d \neq 0, 1$. So $\theta = \frac{-m \pm r \sqrt{d}}{2}$,

Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

By the PET, there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta)$.

Minimal polynomial for θ : $p = x^2 + mx + n \in \mathbb{Z}[x]$. So

$$\theta = \frac{-m \pm \sqrt{m^2 - 4n}}{2}$$

Let $m^2 - 4n = r^2 d$ for $r, d \in \mathbb{Z}$ with d squarefree. Since $\theta \notin \mathbb{Z}$, we have $d \neq 0, 1$. So $\theta = \frac{-m \pm r \sqrt{d}}{2}$, and

 $K = \mathbb{Q}(\theta) = \mathbb{Q}(\sqrt{d})$
Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

By the PET, there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta)$.

Minimal polynomial for θ : $p = x^2 + mx + n \in \mathbb{Z}[x]$. So

$$\theta = \frac{-m \pm \sqrt{m^2 - 4n}}{2}$$

Let $m^2 - 4n = r^2 d$ for $r, d \in \mathbb{Z}$ with d squarefree. Since $\theta \notin \mathbb{Z}$, we have $d \neq 0, 1$. So $\theta = \frac{-m \pm r \sqrt{d}}{2}$, and

 $K = \mathbb{Q}(\theta) = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$

Suppose *K* is a number field with $[K : \mathbb{Q}] = 2$. **Goal.** Find the ring of integers in *K*.

By the PET, there exists $\theta \in \mathfrak{O}_K$ such that $K = \mathbb{Q}(\theta)$.

Minimal polynomial for θ : $p = x^2 + mx + n \in \mathbb{Z}[x]$. So

$$\theta = \frac{-m \pm \sqrt{m^2 - 4n}}{2}$$

Let $m^2 - 4n = r^2 d$ for $r, d \in \mathbb{Z}$ with d squarefree. Since $\theta \notin \mathbb{Z}$, we have $d \neq 0, 1$. So $\theta = \frac{-m \pm r \sqrt{d}}{2}$, and

$$\mathcal{K} = \mathbb{Q}(\theta) = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}] = \operatorname{Span}_{\mathbb{Q}}\{1, \sqrt{d}\}.$$

Let
$$\alpha \in \mathcal{K} = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}].$$

Let $\alpha \in K = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$. Goal: Determine when $\alpha \in \mathfrak{O}_K$.

Let $\alpha \in K = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$. Goal: Determine when $\alpha \in \mathfrak{O}_K$. We have $\alpha = s + t\sqrt{d}$ with $s, t \in \mathbb{Q}$.

Let $\alpha \in K = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$. **Goal:** Determine when $\alpha \in \mathcal{D}_K$. We have $\alpha = s + t\sqrt{d}$ with $s, t \in \mathbb{Q}$. So there exists a, b, c not sharing a prime factor and such that

$$\alpha = \frac{\mathsf{a} + \mathsf{b}\sqrt{\mathsf{d}}}{\mathsf{c}}.$$

Let $\alpha \in K = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$. **Goal:** Determine when $\alpha \in \mathcal{D}_K$. We have $\alpha = s + t\sqrt{d}$ with $s, t \in \mathbb{Q}$. So there exists a, b, c not sharing a prime factor and such that

$$\alpha = \frac{a + b\sqrt{d}}{c}.$$

If b = 0, then $\alpha = \frac{a}{c} \in \mathbb{Q}$.

Let $\alpha \in K = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$. **Goal:** Determine when $\alpha \in \mathcal{D}_K$. We have $\alpha = s + t\sqrt{d}$ with $s, t \in \mathbb{Q}$. So there exists a, b, c not sharing a prime factor and such that

$$\alpha = \frac{\mathsf{a} + \mathsf{b}\sqrt{\mathsf{d}}}{\mathsf{c}}.$$

If b = 0, then $\alpha = \frac{a}{c} \in \mathbb{Q}$. If $\alpha \in \mathfrak{O}_K$, then $\alpha \in \mathfrak{O}_K \cap \mathbb{Q} = \mathbb{Z}$.

Let $\alpha \in K = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$. **Goal:** Determine when $\alpha \in \mathcal{D}_K$. We have $\alpha = s + t\sqrt{d}$ with $s, t \in \mathbb{Q}$. So there exists a, b, c not sharing a prime factor and such that

$$\alpha = \frac{\mathsf{a} + \mathsf{b}\sqrt{\mathsf{d}}}{\mathsf{c}}.$$

If b = 0, then $\alpha = \frac{a}{c} \in \mathbb{Q}$. If $\alpha \in \mathfrak{O}_K$, then $\alpha \in \mathfrak{O}_K \cap \mathbb{Q} = \mathbb{Z}$. So one possibility is $\alpha \in \mathbb{Z}$, but we already know $\mathbb{Z} \subset \mathfrak{O}_K$.

Let $\alpha \in K = \mathbb{Q}(\sqrt{d}) = \mathbb{Q}[\sqrt{d}]$. **Goal:** Determine when $\alpha \in \mathcal{D}_K$. We have $\alpha = s + t\sqrt{d}$ with $s, t \in \mathbb{Q}$. So there exists a, b, c not sharing a prime factor and such that

$$\alpha = \frac{\mathsf{a} + \mathsf{b}\sqrt{\mathsf{d}}}{\mathsf{c}}.$$

If b = 0, then $\alpha = \frac{a}{c} \in \mathbb{Q}$. If $\alpha \in \mathfrak{O}_K$, then $\alpha \in \mathfrak{O}_K \cap \mathbb{Q} = \mathbb{Z}$. So one possibility is $\alpha \in \mathbb{Z}$, but we already know $\mathbb{Z} \subset \mathfrak{O}_K$. From now on, suppose that $b \neq 0$.

$$\alpha = \frac{\mathbf{a} + \mathbf{b}\sqrt{\mathbf{d}}}{\mathbf{c}}$$

$$\alpha = \frac{\mathbf{a} + \mathbf{b}\sqrt{\mathbf{d}}}{\mathbf{c}}$$

The minimal polynomial for α over ${\mathbb Q}$ is

$$\alpha = \frac{\mathsf{a} + \mathsf{b}\sqrt{d}}{\mathsf{c}}$$

The minimal polynomial for α over ${\mathbb Q}$ is

$$p(x) = \left(x - \frac{a + b\sqrt{d}}{c}\right) \left(x - \frac{a - b\sqrt{d}}{c}\right)$$

$$\alpha = \frac{\mathbf{a} + \mathbf{b}\sqrt{\mathbf{d}}}{\mathbf{c}}$$

The minimal polynomial for α over ${\mathbb Q}$ is

$$p(x) = \left(x - \frac{a + b\sqrt{d}}{c}\right) \left(x - \frac{a - b\sqrt{d}}{c}\right) = x^2 - \frac{2a}{c}x + \frac{a^2 - b^2d}{c^2} \in \mathbb{Q}[x]$$

$$\alpha = \frac{\mathsf{a} + \mathsf{b}\sqrt{\mathsf{d}}}{\mathsf{c}}$$

The minimal polynomial for α over ${\mathbb Q}$ is

$$p(x) = \left(x - \frac{a + b\sqrt{d}}{c}\right) \left(x - \frac{a - b\sqrt{d}}{c}\right) = x^2 - \frac{2a}{c}x + \frac{a^2 - b^2d}{c^2} \in \mathbb{Q}[x]$$

So $\alpha \in \mathfrak{O}_K$ exactly when

$$\alpha = \frac{\mathbf{a} + \mathbf{b}\sqrt{\mathbf{d}}}{\mathbf{c}}$$

The minimal polynomial for α over ${\mathbb Q}$ is

$$p(x) = \left(x - \frac{a + b\sqrt{d}}{c}\right) \left(x - \frac{a - b\sqrt{d}}{c}\right) = x^2 - \frac{2a}{c}x + \frac{a^2 - b^2d}{c^2} \in \mathbb{Q}[x]$$

So $\alpha \in \mathfrak{O}_K$ exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z}.$$

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when
 $\frac{2a}{c} \in \mathbb{Z}$ and $\frac{a^2 - b^2 d}{c^2} \in \mathbb{Z}$.

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when
 $\frac{2a}{c} \in \mathbb{Z}$ and $\frac{a^2 - b^2d}{c^2} \in \mathbb{Z}.$

Our problem is reduced to finding a, b, c satisfying the above.

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when
 $\frac{2a}{c} \in \mathbb{Z}$ and $\frac{a^2 - b^2 d}{c^2} \in \mathbb{Z}$.

Our problem is reduced to finding a, b, c satisfying the above.

Let $q \neq 2$ be a prime integer factor of c.

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z}$$
 and $rac{a^2-b^2d}{c^2}\in\mathbb{Z}.$

Our problem is reduced to finding a, b, c satisfying the above.

Let $q \neq 2$ be a prime integer factor of c.

Then $c|(2a) \Rightarrow q|(2a) \Rightarrow$

Summary:
$$lpha=rac{a+b\sqrt{d}}{c}\in\mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z}$$
 and $rac{a^2-b^2d}{c^2}\in\mathbb{Z}.$

Our problem is reduced to finding a, b, c satisfying the above.

Let $q \neq 2$ be a prime integer factor of c.

Then $c|(2a) \Rightarrow q|(2a) \Rightarrow q|a \Rightarrow q^2|a^2$

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z}.$$

Our problem is reduced to finding a, b, c satisfying the above.

Let $q \neq 2$ be a prime integer factor of c.

Then $c|(2a) \Rightarrow q|(2a) \Rightarrow q|a \Rightarrow q^2|a^2$ and $c^2|(a^2 - b^2d) \Rightarrow q^2|(a^2 - b^2d)$

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z}.$$

Our problem is reduced to finding a, b, c satisfying the above.

Let $q \neq 2$ be a prime integer factor of c.

Then $c|(2a) \Rightarrow q|(2a) \Rightarrow q|a \Rightarrow q^2|a^2$ and $c^2|(a^2 - b^2d) \Rightarrow q^2|(a^2 - b^2d) \Rightarrow q^2|(b^2d)$

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z}.$$

Our problem is reduced to finding a, b, c satisfying the above.

Let $q \neq 2$ be a prime integer factor of c.

Then $c|(2a) \Rightarrow q|(2a) \Rightarrow q|a \Rightarrow q^2|a^2$ and $c^2|(a^2 - b^2d) \Rightarrow q^2|(a^2 - b^2d) \Rightarrow q^2|(b^2d) \Rightarrow q|b$.

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z}.$$

Our problem is reduced to finding a, b, c satisfying the above.

Let $q \neq 2$ be a prime integer factor of c.

Then
$$c|(2a) \Rightarrow q|(2a) \Rightarrow q|a \Rightarrow q^2|a^2$$

and $c^2|(a^2 - b^2d) \Rightarrow q^2|(a^2 - b^2d) \Rightarrow q^2|(b^2d) \Rightarrow q|b.$

We have shown that a, b, c share a factor of q in this case,

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z}.$$

Our problem is reduced to finding a, b, c satisfying the above.

Let $q \neq 2$ be a prime integer factor of c.

$$\begin{array}{l} \text{Then } c|(2a) \Rightarrow q|(2a) \Rightarrow q|a \Rightarrow q^2|a^2 \\ \text{and } c^2|(a^2-b^2d) \Rightarrow q^2|(a^2-b^2d) \Rightarrow q^2|(b^2d) \Rightarrow q|b. \end{array}$$

We have shown that a, b, c share a factor of q in this case, but we have selected a, b, c not sharing any prime factors.

Summary:
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z}.$$

Our problem is reduced to finding a, b, c satisfying the above.

Let $q \neq 2$ be a prime integer factor of c.

$$\begin{array}{l} \text{Then } c|(2a) \Rightarrow q|(2a) \Rightarrow q|a \Rightarrow q^2|a^2 \\ \text{and } c^2|(a^2-b^2d) \Rightarrow q^2|(a^2-b^2d) \Rightarrow q^2|(b^2d) \Rightarrow q|b. \end{array}$$

We have shown that a, b, c share a factor of q in this case, but we have selected a, b, c not sharing any prime factors.

Thus, we know c is a power of 2.

$$lpha = rac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when
 $rac{2a}{c} \in \mathbb{Z}$ and $rac{a^2 - b^2 d}{c^2} \in \mathbb{Z},$

and c is a power of 2.

$$\begin{split} \alpha &= \frac{a+b\sqrt{d}}{c} \in \mathfrak{O} \text{ exactly when} \\ & \frac{2a}{c} \in \mathbb{Z} \quad \text{and} \quad \frac{a^2-b^2d}{c^2} \in \mathbb{Z}, \end{split}$$
 and *c* is a power of 2.

If 4|*c*, then 4|(2*a*) \Rightarrow 2|*a*

$$\begin{split} \alpha &= \frac{a+b\sqrt{d}}{c} \in \mathfrak{O} \text{ exactly when} \\ & \frac{2a}{c} \in \mathbb{Z} \quad \text{and} \quad \frac{a^2-b^2d}{c^2} \in \mathbb{Z}, \end{split}$$
 and *c* is a power of 2.

If 4|c, then 4|(2a) \Rightarrow 2|a \Rightarrow 2²|a²

$$\begin{aligned} \alpha &= \frac{a+b\sqrt{d}}{c} \in \mathfrak{O} \text{ exactly when} \\ & \frac{2a}{c} \in \mathbb{Z} \quad \text{and} \quad \frac{a^2-b^2d}{c^2} \in \mathbb{Z}, \end{aligned}$$
 and *c* is a power of 2.

If 4|c, then 4|(2a) \Rightarrow 2|a \Rightarrow 2²|a² and 2²|(a² - b²d)

$$lpha = rac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when
 $rac{2a}{c} \in \mathbb{Z}$ and $rac{a^2 - b^2 d}{c^2} \in \mathbb{Z}$,
and c is a power of 2.

If 4|c, then $4|(2a) \Rightarrow 2|a \Rightarrow 2^2|a^2$ and $2^2|(a^2 - b^2d) \Rightarrow 2|b$.

$$lpha = rac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when $rac{2a}{c} \in \mathbb{Z}$ and $rac{a^2 - b^2 d}{c^2} \in \mathbb{Z},$

and c is a power of 2.

If 4|c, then $4|(2a) \Rightarrow 2|a \Rightarrow 2^2|a^2$ and $2^2|(a^2 - b^2d) \Rightarrow 2|b$. So a, b, c share a factor of 2,

$$\alpha = \frac{\textit{a} + \textit{b} \sqrt{\textit{d}}}{\textit{c}} \in \mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z},$$

and c is a power of 2.

If 4|c, then $4|(2a) \Rightarrow 2|a \Rightarrow 2^2|a^2$ and $2^2|(a^2 - b^2d) \Rightarrow 2|b$. So a, b, c share a factor of 2, but they don't.

$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z},$$

and c is a power of 2.

If 4|c, then $4|(2a) \Rightarrow 2|a \Rightarrow 2^2|a^2$ and $2^2|(a^2 - b^2d) \Rightarrow 2|b$. So a, b, c share a factor of 2, but they don't. So c = 1 or 2.

$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O} \text{ exactly when}$$
$$\frac{2a}{c} \in \mathbb{Z} \quad \text{and} \quad \frac{a^2 - b^2 d}{c^2} \in \mathbb{Z},$$
and *c* is 1 or 2.
$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O} \text{ exactly when}$$
$$\frac{2a}{c} \in \mathbb{Z} \quad \text{and} \quad \frac{a^2 - b^2 d}{c^2} \in \mathbb{Z},$$
and *c* is 1 or 2.

If c = 1, the equations are satisfied and $\alpha = a + b\sqrt{d} \in \mathfrak{O}_{K}$.

$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O} \text{ exactly when}$$
$$\frac{2a}{c} \in \mathbb{Z} \text{ and } \frac{a^2 - b^2 d}{c^2} \in \mathbb{Z},$$

and *c* is 1 or 2.

If c = 1, the equations are satisfied and $\alpha = a + b\sqrt{d} \in \mathfrak{O}_K$.

This shows that

 $\mathbb{Z}[\sqrt{d}] \subseteq \mathfrak{O}_{K}.$

$$\alpha = \frac{a+b\sqrt{d}}{c} \in \mathfrak{O} \text{ exactly when}$$
$$\frac{2a}{c} \in \mathbb{Z} \quad \text{and} \quad \frac{a^2 - b^2 d}{c^2} \in \mathbb{Z},$$
and *c* is 1 or 2.

If c = 1, the equations are satisfied and $\alpha = a + b\sqrt{d} \in \mathfrak{O}_K$.

This shows that

 $\mathbb{Z}[\sqrt{d}] \subseteq \mathfrak{O}_{K}.$

That leaves the case c = 2 to consider.

 $\alpha = \frac{\textit{a} + \textit{b} \sqrt{\textit{d}}}{\textit{c}} \in \mathfrak{O}$ exactly when

$$rac{2a}{c}\in\mathbb{Z} \quad ext{and} \quad rac{a^2-b^2d}{c^2}\in\mathbb{Z},$$

$$lpha = rac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when
 $rac{2a}{c} \in \mathbb{Z}$ and $rac{a^2 - b^2 d}{c^2} \in \mathbb{Z}$,

If c = 2, the conditions become

$$a\in\mathbb{Z}$$
 and $rac{a^2-b^2d}{4}\in\mathbb{Z}.$

$$lpha = rac{a+b\sqrt{d}}{c} \in \mathfrak{O}$$
 exactly when
 $rac{2a}{c} \in \mathbb{Z}$ and $rac{a^2 - b^2 d}{c^2} \in \mathbb{Z}$,

If c = 2, the conditions become

$$a\in\mathbb{Z}$$
 and $rac{a^2-b^2d}{4}\in\mathbb{Z}.$

Since $a \in \mathbb{Z}$, the condition becomes $\frac{a^2-b^2d}{4} \in \mathbb{Z}$.

 $\alpha = \frac{a + b \sqrt{d}}{2} \in \mathfrak{O}$ if and only if

$$\frac{a^2-b^2d}{4}\in\mathbb{Z},$$

$$lpha=rac{a+b\sqrt{d}}{2}\in\mathfrak{O}$$
 if and only if $rac{a^2-b^2d}{4}\in\mathbb{Z},$

i.e., if and only if $a^2 - b^2 d = 0 \mod 4$.

$$\alpha=\frac{a+b\sqrt{d}}{2}\in\mathfrak{O}$$
 if and only if
$$\frac{a^2-b^2d}{4}\in\mathbb{Z},$$

i.e., if and only if $a^2 - b^2 d = 0 \mod 4$.

Why must a and b both be odd?

$$lpha=rac{a+b\sqrt{d}}{2}\in\mathfrak{O}$$
 if and only if $rac{a^2-b^2d}{4}\in\mathbb{Z},$

i.e., if and only if $a^2 - b^2 d = 0 \mod 4$.

Why must a and b both be odd? Answer: If either is even, the other is even and thus a, b, c share a prime factor.

$$lpha=rac{a+b\sqrt{d}}{2}\in\mathfrak{O}$$
 if and only if $rac{a^2-b^2d}{4}\in\mathbb{Z},$

i.e., if and only if $a^2 - b^2 d = 0 \mod 4$.

Why must a and b both be odd? Answer: If either is even, the other is even and thus a, b, c share a prime factor. So a and b are odd.

$$lpha=rac{a+b\sqrt{d}}{2}\in\mathfrak{O}$$
 if and only if $rac{a^2-b^2d}{4}\in\mathbb{Z},$

i.e., if and only if $a^2 - b^2 d = 0 \mod 4$.

Why must a and b both be odd? Answer: If either is even, the other is even and thus a, b, c share a prime factor. So a and b are odd.

In this case, $a^2 = b^2 = 1 \mod 4$, and

$$a^2 - b^2 d = 1 - d = 0 \mod 4.$$

So $d = 1 \mod 4$.

Summary so far:

Summary so far:

▶ If
$$d \neq 1 \mod 4$$
, we have $\mathfrak{O}_K = \mathbb{Z}[\sqrt{d}]$.

Summary so far:

- If $d \neq 1 \mod 4$, we have $\mathfrak{O}_K = \mathbb{Z}[\sqrt{d}]$.
- ▶ If $d = 1 \mod 4$, we have, in addition to $\mathbb{Z}[\sqrt{d}] \subset \mathfrak{O}_K$, the elements $\frac{a+b\sqrt{d}}{2} \in \mathfrak{O}_K$ when *a* and *b* are both odd integers.

Summary so far:

- If $d \neq 1 \mod 4$, we have $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{d}]$.
- ▶ If $d = 1 \mod 4$, we have, in addition to $\mathbb{Z}[\sqrt{d}] \subset \mathfrak{O}_K$, the elements $\frac{a+b\sqrt{d}}{2} \in \mathfrak{O}_K$ when *a* and *b* are both odd integers.

We claim that if $d = 1 \mod 4$, then $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$.

Summary so far:

• If $d \neq 1 \mod 4$, we have $\mathfrak{O}_K = \mathbb{Z}[\sqrt{d}]$.

▶ If $d = 1 \mod 4$, we have, in addition to $\mathbb{Z}[\sqrt{d}] \subset \mathfrak{O}_K$, the elements $\frac{a+b\sqrt{d}}{2} \in \mathfrak{O}_K$ when *a* and *b* are both odd integers.

We claim that if $d = 1 \mod 4$, then $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$.

Proof. First, note that $\frac{1+\sqrt{d}}{2} \in \mathfrak{O}_{\mathcal{K}}$. So $\mathbb{Z}[\frac{1+\sqrt{d}}{2}] \subseteq \mathfrak{O}_{\mathcal{K}}$.

Summary so far:

• If $d \neq 1 \mod 4$, we have $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{d}]$.

▶ If $d = 1 \mod 4$, we have, in addition to $\mathbb{Z}[\sqrt{d}] \subset \mathfrak{O}_K$, the elements $\frac{a+b\sqrt{d}}{2} \in \mathfrak{O}_K$ when *a* and *b* are both odd integers.

We claim that if $d = 1 \mod 4$, then $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$.

Proof. First, note that $\frac{1+\sqrt{d}}{2} \in \mathfrak{O}_{K}$. So $\mathbb{Z}[\frac{1+\sqrt{d}}{2}] \subseteq \mathfrak{O}_{K}$. Then check $\mathbb{Z}[\sqrt{d}] \subset \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$:

Summary so far:

• If $d \neq 1 \mod 4$, we have $\mathfrak{O}_K = \mathbb{Z}[\sqrt{d}]$.

▶ If $d = 1 \mod 4$, we have, in addition to $\mathbb{Z}[\sqrt{d}] \subset \mathfrak{O}_K$, the elements $\frac{a+b\sqrt{d}}{2} \in \mathfrak{O}_K$ when *a* and *b* are both odd integers.

We claim that if $d = 1 \mod 4$, then $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$.

Proof. First, note that $\frac{1+\sqrt{d}}{2} \in \mathfrak{O}_{K}$. So $\mathbb{Z}[\frac{1+\sqrt{d}}{2}] \subseteq \mathfrak{O}_{K}$. Then check $\mathbb{Z}[\sqrt{d}] \subset \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$: $\alpha = a + b\sqrt{d} = (a - b) + 2b\left(\frac{1+\sqrt{d}}{2}\right) \in \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$

Summary so far:

- If $d \neq 1 \mod 4$, we have $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\sqrt{d}]$.
- ▶ If $d = 1 \mod 4$, we have, in addition to $\mathbb{Z}[\sqrt{d}] \subset \mathfrak{O}_K$, the elements $\frac{a+b\sqrt{d}}{2} \in \mathfrak{O}_K$ when *a* and *b* are both odd integers.

We claim that if $d = 1 \mod 4$, then $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$.

Proof. First, note that $\frac{1+\sqrt{d}}{2} \in \mathfrak{O}_{K}$. So $\mathbb{Z}[\frac{1+\sqrt{d}}{2}] \subseteq \mathfrak{O}_{K}$. Then check $\mathbb{Z}[\sqrt{d}] \subset \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$: $\alpha = a + b\sqrt{d} = (a - b) + 2b\left(\frac{1+\sqrt{d}}{2}\right) \in \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$ If *a* and *b* are odd, then

Summary so far:

- If $d \neq 1 \mod 4$, we have $\mathfrak{O}_K = \mathbb{Z}[\sqrt{d}]$.
- ▶ If $d = 1 \mod 4$, we have, in addition to $\mathbb{Z}[\sqrt{d}] \subset \mathfrak{O}_K$, the elements $\frac{a+b\sqrt{d}}{2} \in \mathfrak{O}_K$ when *a* and *b* are both odd integers.

We claim that if $d = 1 \mod 4$, then $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$.

Proof. First, note that $\frac{1+\sqrt{d}}{2} \in \mathfrak{O}_{K}$. So $\mathbb{Z}[\frac{1+\sqrt{d}}{2}] \subseteq \mathfrak{O}_{K}$. Then check $\mathbb{Z}[\sqrt{d}] \subset \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$: $\alpha = a + b\sqrt{d} = (a - b) + 2b\left(\frac{1+\sqrt{d}}{2}\right) \in \mathbb{Z}[\frac{1+\sqrt{d}}{2}]$

If a and b are odd, then

$$\alpha = \frac{a+b\sqrt{d}}{2} = \left(\frac{a-b}{2}\right) + b\left(\frac{1+\sqrt{d}}{2}\right) \in \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right].$$

Theorem. Let *K* be a field extension of \mathbb{Q} with $[K : \mathbb{Q}] = 2$. Then $K = \mathbb{Q}(\sqrt{d})$ where $d \neq 0, 1$ is a square-free integer. Its ring of integers is

$$\mathfrak{O}_{K} = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \neq 1 \mod 4 \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d = 1 \mod 4. \end{cases}$$

Theorem. Let K be a field extension of \mathbb{Q} with $[K : \mathbb{Q}] = 2$. Then $K = \mathbb{Q}(\sqrt{d})$ where $d \neq 0, 1$ is a square-free integer. Its ring of integers is

$$\mathfrak{O}_{K} = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \neq 1 \mod 4 \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d = 1 \mod 4. \end{cases}$$

We have

$$\mathbb{Z}[\sqrt{d}] = \operatorname{Span}_{\mathbb{Z}}\{1, \sqrt{d}\} \quad \text{and} \quad \mathbb{Z}[\frac{1+\sqrt{d}}{2}] = \operatorname{Span}_{\mathbb{Z}}\{1, \frac{1+\sqrt{d}}{2}\}.$$

Theorem. Let *K* be a field extension of \mathbb{Q} with $[K : \mathbb{Q}] = 2$. Then $K = \mathbb{Q}(\sqrt{d})$ where $d \neq 0, 1$ is a square-free integer. Its ring of integers is

$$\mathfrak{O}_{\mathcal{K}} = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \neq 1 \mod 4 \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d = 1 \mod 4. \end{cases}$$

We have

$$\mathbb{Z}[\sqrt{d}] = \operatorname{Span}_{\mathbb{Z}}\{1, \sqrt{d}\} \text{ and } \mathbb{Z}[\frac{1+\sqrt{d}}{2}] = \operatorname{Span}_{\mathbb{Z}}\{1, \frac{1+\sqrt{d}}{2}\}.$$

Example. If $\mathcal{K} = \mathbb{Q}(\sqrt{5})$, then $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1+\sqrt{5}}{2}]$.

Theorem. Let *K* be a field extension of \mathbb{Q} with $[K : \mathbb{Q}] = 2$. Then $K = \mathbb{Q}(\sqrt{d})$ where $d \neq 0, 1$ is a square-free integer. Its ring of integers is

$$\mathfrak{O}_{\mathcal{K}} = \begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \neq 1 \mod 4 \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d = 1 \mod 4. \end{cases}$$

We have

$$\mathbb{Z}[\sqrt{d}] = \operatorname{Span}_{\mathbb{Z}}\{1, \sqrt{d}\} \quad \text{and} \quad \mathbb{Z}[\frac{1+\sqrt{d}}{2}] = \operatorname{Span}_{\mathbb{Z}}\{1, \frac{1+\sqrt{d}}{2}\}.$$

Example. If $\mathcal{K} = \mathbb{Q}(\sqrt{5})$, then $\mathfrak{O}_{\mathcal{K}} = \mathbb{Z}[\frac{1+\sqrt{5}}{2}]$. On the other hand, $\mathfrak{O}_{\mathbb{Q}(\sqrt{7})} = \mathbb{Z}[\sqrt{7}]$.