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Proposition. (Division algorithm) Let K be a field, and let
f,g € K[x] with f # 0. Then there exists g, r € K[x] such that
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f,g € K[x] with f # 0. Then there exists g, r € K[x] such that

g="fqg+r
where 0 < deg(r) < deg(f).

Definition. Let L/K be a field extension. Then « € L is algebraic
over K if there exists a nonzero polynomial f € K[x] such that
f(a) =0.



Today

Review.

Gauss's lemma.

>

>

» Ring of integers in a number field.
» Extended primitive element theorem
>

Ring of integers in a quadratic extension.



Review

Let L/K be a field extension.



Review

Let L/K be a field extension.

» « € L is algebraic over K is there exists a nonzero f € K|[x]
such that f(«) = 0.



Review

Let L/K be a field extension.

» « € L is algebraic over K is there exists a nonzero f € K|[x]
such that f(«) = 0. If f is monic and irreducible, it is the
minimal polynomial for « over K.



Review

Let L/K be a field extension.

» « € L is algebraic over K is there exists a nonzero f € K|[x]
such that f(«) = 0. If f is monic and irreducible, it is the
minimal polynomial for « over K.

» « € L is algebraic over K if and only if [K(«a) : K] < o0, in
which case K[a] = K(«).



Review

Let L/K be a field extension.

» « € L is algebraic over K is there exists a nonzero f € K|[x]
such that f(«) = 0. If f is monic and irreducible, it is the
minimal polynomial for « over K.

» « € L is algebraic over K if and only if [K(«a) : K] < o0, in
which case K[a] = K(«).

» L is an algebraic extension of K if every element of L is
algebraic over K.



Review

Let L/K be a field extension.

» « € L is algebraic over K is there exists a nonzero f € K|[x]
such that f(«) = 0. If f is monic and irreducible, it is the
minimal polynomial for « over K.

» « € L is algebraic over K if and only if [K(«a) : K] < o0, in
which case K[a] = K(«).

» L is an algebraic extension of K if every element of L is
algebraic over K.

» [L: K] < oo =L algebraic over K, and the dimension is the
degree of the minimal polynomial.



Review

Let L/K be a field extension.

» « € L is algebraic over K is there exists a nonzero f € K|[x]
such that f(«) = 0. If f is monic and irreducible, it is the
minimal polynomial for « over K.

» « € L is algebraic over K if and only if [K(«a) : K] < o0, in
which case K[a] = K(«).

» L is an algebraic extension of K if every element of L is
algebraic over K.

» [L: K] < oo =L algebraic over K, and the dimension is the
degree of the minimal polynomial.

» Algebraic numbers: A := {a € C: «a is algebraic over Q}.



Review

Let L/K be a field extension.

» « € L is algebraic over K is there exists a nonzero f € K|[x]
such that f(«) = 0. If f is monic and irreducible, it is the
minimal polynomial for « over K.

» « € L is algebraic over K if and only if [K(«a) : K] < o0, in
which case K[a] = K(«).

» L is an algebraic extension of K if every element of L is
algebraic over K.

» [L: K] < oo =L algebraic over K, and the dimension is the
degree of the minimal polynomial.

» Algebraic numbers: A := {a € C: «a is algebraic over Q}.
They form a subfield of C.

» Number field: A subfield K of C that is finite over Q.



Review

Let L/K be a field extension.

» « € L is algebraic over K is there exists a nonzero f € K|[x]
such that f(«) = 0. If f is monic and irreducible, it is the
minimal polynomial for « over K.

» « € L is algebraic over K if and only if [K(«a) : K] < o0, in
which case K[a] = K(«).

» L is an algebraic extension of K if every element of L is
algebraic over K.

» [L: K] < oo =L algebraic over K, and the dimension is the
degree of the minimal polynomial.

» Algebraic numbers: A := {a € C: «a is algebraic over Q}.
They form a subfield of C.

» Number field: A subfield K of C that is finite over Q.

» If K is a number field, then K = Q(«a) = Q[a] for some
algebraic number a € K.
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Review: Integral elements

Definition. Let A and B be integral domains (rings with no zero
divisors) with A C B. An element of o € B is integral over A if
there exists a monic polynomial p € A[x] such that p(a) = 0.

Theorem. Let A and B be domains with A C B, and let o € B.
Then the following are equivalent.

1. « is integral over A.

2. Ala] .= {f(«a) : f € A[x]} is a finitely generated A-module.

3. There exists a finitely generated A-module M in B such that
aM C M. (Here, aM = {am : m € M}).

Corollary. Let A C B be domains. The set of elements of B that
are integral over A forms a subring of B.
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The algebraic integers

The algebraic integers are the elements of C that are integral
over Z:

O :={a € C: p(a) =0 for some monic p € Z[x]}.
The algebraic integers form a subring of C.

Example. Since v2 and i are algebraic integers, there must be a
monic p € Z[x] such that p(v/2 + i) = 0. The determinant trick
from last time, gives a method for calculating such a p.
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Gauss’'s lemma

Let f € Z[x]. Gauss's lemma says the if f factors in Q[x], then it
factors in Z[x].

In detail, suppose that f = gh for g, h € Q[x]. Then there exists a
nonzero A € QQ such that

1

)\h € Z[x].

Ag,
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Corollary. Let a be an algebraic number, i.e., a complex number
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Therefore, « is algebraic over QQ and has a minimal polynomial p.
Then f(a) = 0= f = gp for some g € Q[x]. Since f and p are
monic, so is q.

Gauss's lemma implies there exist A € QQ such that \g, %p € Z[x].
So f = (A\q) (%p)

Then A\q € Z[x] = A € Z, and }p € Z[x] = % €Z.

Therefore, A\ = +1.



Algebraic integers and minimal polynomials

Corollary. Let a be an algebraic number, i.e., a complex number
that is algegraic over Q. Then « is an algebraic integer if and only
if its minimal polynomial over QQ has integer coefficients.

Proof. (<) Duh.

(=)

a € O = there exists monic f € Z[x] such that f(«) = 0.
Therefore, « is algebraic over QQ and has a minimal polynomial p.
Then f(a) = 0= f = gp for some g € Q[x]. Since f and p are
monic, so is q.

Gauss's lemma implies there exist A € QQ such that \g, %p € Z[x].
So f = (A\q) (%p)

Then A\q € Z[x] = A € Z, and }p € Z[x] = % €Z.

Therefore, A = £1. So 3p = +p € Z[x], which implies p € Z[x].O
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Another proof that O N Q = Z

We just proved:

Corollary. A complex number « is an algebraic integer if and only
if its minimal polynomial over QQ has integer coefficients.

It follows that O NQ = Z, i.e. a rational number that is integral
over Z is an integer.

Proof. Certainly, Z C O NQ.
For the reverse inclusion, suppose that a € O N Q. The minimal

polynomial for a over Q is x — a. By the Corollary, x — a € Z[x].
In particular, a € Z. ]
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Extended primitive element theorem

[K:Q] < o0

K — Ok

Q — Z.
Lemma. If a € K, then there exists ¢ € Z such that ca € Og.
Proof. HW.

Extended primitive element theorem. Let K be a number field.
Then there exists § € Ok such that K = Q(6) = Q[F].

Proof. The ordinary primitive element theorem gives us oo € K
such that K = Q(a) = Q[a]. By the Lemma, there exists ¢ € Z
such that 6 := ca € O.

Then K = Q(a) = Q() and K = Q[a] = QI[6]. O
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Quadratic number fields

Suppose K is a number field with [K : Q] = 2. Goal. Find the ring
of integers in K.

By the PET, there exists § € Ok such that K = Q(0).
Minimal polynomial for #: p = x> + mx + n € Z[x]. So

—m=E+vm?—4n
5 .

0 =

Let m? — 4n = r?d for r,d € Z with d squarefree. Since § & Z, we
have d #0,1. So 0 = %’\/H, and

K = Q(0) = Q(vVd) = Q[Vd] = Spang{1,Vd}.



Quadratic number fields

Let a € K = Q(v/d) = Q[v/d].



Quadratic number fields

Let o € K = Q(v/d) = Q[Vd]. Goal: Determine when o € Ok.



Quadratic number fields

Let o € K = Q(v/d) = Q[Vd]. Goal: Determine when o € Ok.
We have a = s + tv/d with s, t € Q.



Quadratic number fields

Let o € K = Q(v/d) = Q[Vd]. Goal: Determine when o € Ok.

We have a = s + tv/d with s, t € Q. So there exists a, b, ¢ not
sharing a prime factor and such that

a+ bvd
—



Quadratic number fields

Let o € K = Q(v/d) = Q[Vd]. Goal: Determine when o € Ok.

We have a = s + tv/d with s, t € Q. So there exists a, b, ¢ not
sharing a prime factor and such that

a+ bvd
—

If b=0, thena =2 € Q.

C



Quadratic number fields

Let o € K = Q(v/d) = Q[Vd]. Goal: Determine when o € Ok.

We have a = s + tv/d with s, t € Q. So there exists a, b, ¢ not
sharing a prime factor and such that

a+ bvd
—

lf b=0,thena=:€Q. Ifae€ Ok, thena € OxNQ =7Z.



Quadratic number fields

Let o € K = Q(v/d) = Q[Vd]. Goal: Determine when o € Ok.

We have a = s + tv/d with s, t € Q. So there exists a, b, ¢ not
sharing a prime factor and such that

a+ bvd
—

lf b=0,thena=:€Q. Ifae€ Ok, thena € OxNQ =7Z.

So one possibility is « € Z, but we already know Z C O.



Quadratic number fields

Let o € K = Q(v/d) = Q[Vd]. Goal: Determine when o € Ok.
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sharing a prime factor and such that

a+ bvd
—

lf b=0,thena=:€Q. Ifae€ Ok, thena € OxNQ =7Z.
So one possibility is « € Z, but we already know Z C O.

From now on, suppose that b # 0.
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The minimal polynomial for « over Q is
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The minimal polynomial for « over Q is

plx) = <x— M) <X_ W) 222,20 o
C C C

Cc

So a € Ok exactly when

2 2 12
—aEZ and #EZ.
c c
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Summary: a = % € O exactly when
2a a’ — b’d
ez ad T2 %cu
c c

Our problem is reduced to finding a, b, ¢ satisfying the above.
Let g # 2 be a prime integer factor of c.

Then c|(2a) = q|(2a) = qla = ¢°|a?

and c?|(a® — b%d) = ¢°|(a® — bd) = ¢?|(b?d) = q|b.

We have shown that a, b, ¢ share a factor of g in this case, but we
have selected a, b, ¢ not sharing any prime factors.

Thus, we know c is a power of 2.
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o= % € O exactly when

2 > — b*d
ez ad T2%¢cz,
C C

and c is a power of 2.

If 4|c, then 4|(2a) = 2|a = 22|a? and 22|(a® — b%d) = 2|b.
So a, b, ¢ share a factor of 2, but they don't.

Soc=1or2.
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= a+b\f € O exactly when
2 2 — b?d
- €7 and 372 € 7,
c c

and cis 1 or 2.
If ¢ =1, the equations are satisfied and « = a + bvd e Ok.

This shows that

Z[Vd] C Ok.

That leaves the case ¢ = 2 to consider.
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o= ic‘/g € O exactly when
2a a’ — b%d
ZPez ad T-ez,
c c

If ¢ = 2, the conditions become

2_b2d
aceZ and %GZ.

. - 2 12
Since a € Z, the condition becomes % €.
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a= if and only if

a%? — b%d

€7
4 )

i.e., if and only if 2> — b?>d = 0 mod 4.

Why must a and b both be odd? Answer: If either is even, the

other is even and thus a, b, ¢ share a prime factor. So a and b are
odd.

In this case, a2 = b2 = 1 mod 4, and
2?—b’d=1—d=0mod 4.

So d =1 mod 4.
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Summary so far:

> If d #1 mod 4, we have Ok = Z[Vd].

» If d = 1 mod 4, we have, in addition to Z[/d] C Ok, the
a+b\f

elements € Ok when a and b are both odd integers.

We claim that if d =1 mod 4, then Ok = Z[%].

Proof. First, note that % € Ok. So Z[%] C Ok. Then
check Z[Vd] C Z[15/9].
a=a+bvVd=(a—b)+2b(1/) e zZ[1y]

If a and b are odd, then

= 2h/d (b)) 4 p (1Yd) ¢ g[leyd)
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