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Quiz

Let R be a ring.
1. What does it mean to say that p ∈ R is prime?
2. What does it mean to say R is a integral domain?
3. Let R be a integral domain, and let a, b, c ∈ R. Suppose that

ab = ac and a 6= 0. Prove that b = c.



Rings
Definition. A ring is a set R with two operations, addition
+: R × R → R and multiplication · : R × R → R satisfying the following
axioms:

A1. a + b = b + a for all a, b ∈ R (commutativity of addition).
A2. a + (b + c) = (a + b) + c for all a, b, c ∈ R (associativity of

addition).
A3. There exists and element 0 ∈ R such that a + 0 = a for all a ∈ R

(additive identity).
A4. For each a ∈ R there exists an element b ∈ R such that a + b = 0

(additive inverses) [The element b is denoted −a. We then define
subtraction by x − y := x + (−y) for all x , y ∈ R.]

(In the following, we follow the usual convention of writing ab for a · b.)
M1. ab = ba for all a, b ∈ R (commutativity of multiplication).
M2. a(bc) = (ab)c for all a, b, c ∈ R (associativity of multiplication).
M3. There exists an element 1 ∈ R such that a1 = a for all a ∈ R

(multiplicative identity).
D. For all a, b, c ∈ R, we have (a + b)c = ac + bc.
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Rings

Name all the rings you know.



Primes versus irreducibles

Let R be an integral domain. Then if p is prime, it follows that p
is irreducible.



Ideals

Definition. A nonempty subset I of a ring R is an ideal if
1. I is closed under addition, and
2. if r ∈ R and a ∈ I, then ra ∈ I.

Definition. An ideal I in a ring R is generated by a1, . . . , an ∈ R if
every element of I is an R-linear combination of elements of
a1, . . . , an, i.e., for all a ∈ I, we can write

a =
n∑

i=1
riai

for some elements ri ∈ R. We then write

I = (a1, . . . , an).
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Principal ideals

Definition. We say I is a principal ideal if it can be generated by a
single element, i.e., if there exists a ∈ R such that
I = (a) = {ra : r ∈ R}, all multiples of a single element a of R.

Definition. An integral domain R in which every ideal is principal
is called a principal ideal domain, abbreviated PID.
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Proof. Math 332.
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PID ⇒ UFD

Proposition. Let R be a principal ideal domain. Then R is a
unique factorization domain (UFD):

Let r ∈ R. Then r has a
factorization

r = u
k∏

n=1
pei

i

where u is a unit, the pi are prime, each ei is a positive integer,
and k ∈ N. The factorization is unique in the following sense; if
r = v

∏`
i=1 qfi

i for some unit v , primes qi , positive integers fi , and
` ∈ N, then k = ` and up to re-indexing, pi = uiqi with ui a unit
and ei = fi for all i .

Proof. Math 332.

So a PID is a UFD and there is no difference between primes and
irreducibles.
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Z is a PID

Proposition. The ring Z is a principal ideal domain.

Proof. Let I be an ideal in Z. If I = (0), we are done. Otherwise,
let a be the smallest positive element of I. Given any element
b ∈ I, apply the division algorithm to find q, r ∈ Z such that

b = aq + r

with 0 ≤ r < a. Since a, b ∈ I, and I is an ideal,

r = b − aq ∈ I.

By the definition of a, it follows that r = 0. Hence, b = aq. We
have shown that I = (a).
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Division algorithm in K [x ]

Proposition. (Division algorithm) Let K be a field, and let
f , g ∈ K [x ] with f 6= 0. Then there exists q, r ∈ K [x ] such that

g = fq + r

where 0 ≤ deg(r) < deg(f ).

Proof. Math 332.

Example (on board). Let g = x4 + x3 + 4x2 + 1 and f = x2 + 1
in Q[x ]. Find q, r ∈ Q[x ] such that g = fq + r with
0 ≤ deg(r) < deg(f ).
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K [x ] is a PID
Proposition. Let K be a field. Then K [x ] is a principal ideal domain.

Proof. Let I be an ideal in K [x ]. If I = (0), we are done. Similarly,
if I contains any nonzero element a of K , then a has a multiplicative
inverse b ∈ K . By the definition of an ideal, since a ∈ I and
b ∈ K ⊂ K [x ], it follows that ab = 1 ∈ I. It then follows that
I = (1) = K [x ]. So again, I is principal. Now assume that I 6= (0) and
the only element of K contained in I is 0. So there exists an element f
in I of smallest positive degree. Given g ∈ I, apply the division
algorithm to find q, r ∈ K [x ] such that

g = fq + r

where 0 ≤ deg(r) < deg(f ). Since I is and ideal and f , g ∈ I, it
follows that

r = g − fq ∈ I.

By definition of f , it follows that deg(r) = 0. Hence, r ∈ K ∩ I = {0},
i.e., r = 0. It follows that g = fq. We have shown that I = (f ).
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Ring homomorphisms

Definition. A mapping φ : R → S between rings R and S is a
(ring) homomorphism if it preserves the ring operations, i.e., for all
a, b ∈ R,

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b).

In that case, the kernel of φ is

ker(φ) := {r ∈ R : φ(r) = 0},

and the image of φ is

im(φ) := φ(R) := {φ(r) : r ∈ R}.

The homomorphism φ is an isomorphism if it is bijective.
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Ring homomorphisms

Let φ : R → S be a ring homomorphism.

Then
1. φ(0) = 0 (where we are being sloppy with notation: the first 0

is the additive identity of R and the second is the additive
identity of S).

2. The kernel of φ is an ideal of R.
3. The image of φ is not necessarily an ideal of S.
4. φ is injective if and only if ker(φ) = {0}.
5. φ is an isomorphism if and only if its kernel is trivial (i.e.,

equal to {0}) and its image is S.
6. If φ is bijective, its inverse (as a mapping of sets) is

necessarily a ring homomorphism.
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Quotient rings

Definition. Let I be an ideal in a ring R. The cosets of I are the
sets of the form a + I := {a + i : i ∈ I} for each a ∈ R.

The
collection of cosets naturally forms a ring where

(a + I) + (b + I) := (a + b) + I and (a + I)(b + I) := ab + I.

This ring of cosets is called a quotient ring and is denoted R/I.

Example. Describe the elements of Q[x ]/(x2 + 1).

Q[x ]/(x2 + 1) = {a + bx : a, b ∈ Q} with x2 = −1.

So Q[x ]/(x2 + 1) ≈ Q(i).
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Quotient mapping

Definition. If I is an ideal of R, define the (canonical) quotient
mapping

π : R → R/I
a 7→ a = a + I.

It is a surjective homomorphism with kernel I.

If φ : R → S is a ring homomorphism, then im(φ) is a ring with
unity φ(1), and there is a well-defined isomorphism

φ : R/ ker(φ)→ im(φ)
a + ker(φ) 7→ φ(a).
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GCDs

Definition. Let R be a PID. A greatest common divisor of
a, b ∈ R is an element d ∈ R such that

1. d |a and d |b, and
2. if e ∈ R with e|a and e|b, then e|d .

We write gcd(a, b) = d .

Proposition. Let R be a PID, and let a, b ∈ R. Then
1. There exists a greatest common divisor d of a, b.
2. (a, b) = (d).
3. There exist m, n ∈ R such that ma + nb = d .
4. The greatest common divisors of a, b are exactly the elements

of the form ud where u is a unit.
5. If a, b have no prime factors in common, there exist m, n ∈ R

such that ma + nb = 1.
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3. There exist m, n ∈ R such that ma + nb = d .

4. The greatest common divisors of a, b are exactly the elements
of the form ud where u is a unit.

5. If a, b have no prime factors in common, there exist m, n ∈ R
such that ma + nb = 1.
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Maximal ideals

Definition. An ideal I in a ring R is maximal if I 6= R, and the
only ideal of R properly containing I is R, itself.

In other words, if
J is an ideal of R and J ) I, then J = R.

Facts:
I I is maximal if and only if R/I is a field.
I In a PID, I = (a) is maximal if and only if a is irreducible

(and, hence, if and only if a is prime). Thus, for example,
Z/(n) is a field if and only if n is prime.
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