Math 361

January 25, 2023



Quiz

Let R be a ring.
1. What does it mean to say that p € R is prime?
2. What does it mean to say R is a integral domain?

3. Let R be a integral domain, and let a, b,c € R. Suppose that
ab = ac and a # 0. Prove that b = c.



Rings

Definition. A ring is a set R with two operations, addition
+: R x R — R and multiplication -: R x R — R satisfying the following
axioms:



Rings
Definition. A ring is a set R with two operations, addition
+: R x R — R and multiplication -: R x R — R satisfying the following

axioms:
Al. a4+ b= b+ aforall a,b € R (commutativity of addition).



Rings

Definition. A ring is a set R with two operations, addition

+: R x R — R and multiplication -: R x R — R satisfying the following

axioms:

Al. a4+ b= b+ aforall a,b € R (commutativity of addition).

A2. a+ (b+c)=(a+ b)+ c forall a,b,c € R (associativity of
addition).



Rings

Definition. A ring is a set R with two operations, addition
+: R x R — R and multiplication -: R x R — R satisfying the following
axioms:

Al. a4+ b= b+ aforall a,b € R (commutativity of addition).

A2. a+ (b+c)=(a+ b)+ c forall a,b,c € R (associativity of
addition).

A3. There exists and element 0 € R such that a+0=aforallae R
(additive identity).



Rings

Definition. A ring is a set R with two operations, addition
+: R x R — R and multiplication -: R x R — R satisfying the following
axioms:

Al. a4+ b= b+ aforall a,b € R (commutativity of addition).

A2. a+ (b+c)=(a+ b)+ c forall a,b,c € R (associativity of
addition).

A3. There exists and element 0 € R such that a+0=aforallae R
(additive identity).

A4. For each a € R there exists an element b € R such that a4+ b =0
(additive inverses) [The element b is denoted —a. We then define
subtraction by x —y := x+ (—y) for all x,y € R\]



Rings

Definition. A ring is a set R with two operations, addition
+: R x R — R and multiplication -: R x R — R satisfying the following
axioms:

Al. a4+ b= b+ aforall a,b € R (commutativity of addition).

A2. a+ (b+c)=(a+ b)+ c forall a,b,c € R (associativity of
addition).

A3. There exists and element 0 € R such that a+0=aforallae R
(additive identity).

A4. For each a € R there exists an element b € R such that a4+ b =0
(additive inverses) [The element b is denoted —a. We then define
subtraction by x —y := x+ (—y) for all x,y € R\]

(In the following, we follow the usual convention of writing ab for a- b.)



Rings

Definition. A ring is a set R with two operations, addition
+: R x R — R and multiplication -: R x R — R satisfying the following
axioms:

Al. a4+ b= b+ aforall a,b € R (commutativity of addition).

A2. a+ (b+c)=(a+ b)+ c forall a,b,c € R (associativity of
addition).

A3. There exists and element 0 € R such that a+0=aforallae R
(additive identity).

A4. For each a € R there exists an element b € R such that a4+ b =0
(additive inverses) [The element b is denoted —a. We then define
subtraction by x —y := x+ (—y) for all x,y € R\]

(In the following, we follow the usual convention of writing ab for a- b.)

M1. ab = ba for all a, b € R (commutativity of multiplication).



Rings

Definition. A ring is a set R with two operations, addition
+: R x R — R and multiplication -: R x R — R satisfying the following
axioms:

Al. a4+ b= b+ aforall a,b € R (commutativity of addition).

A2. a+ (b+c)=(a+ b)+ c forall a,b,c € R (associativity of
addition).

A3. There exists and element 0 € R such that a+0=aforallae R
(additive identity).

A4. For each a € R there exists an element b € R such that a4+ b =0
(additive inverses) [The element b is denoted —a. We then define
subtraction by x —y := x+ (—y) for all x,y € R\]

(In the following, we follow the usual convention of writing ab for a- b.)

M1. ab = ba for all a, b € R (commutativity of multiplication).
M2. a(bc) = (ab)c for all a, b, c € R (associativity of multiplication).



Rings

Definition. A ring is a set R with two operations, addition

+: R x R — R and multiplication -: R x R — R satisfying the following

axioms:

Al. a4+ b= b+ aforall a,b € R (commutativity of addition).

A2. a+ (b+c)=(a+ b)+ c forall a,b,c € R (associativity of
addition).

A3. There exists and element 0 € R such that a+0=aforallae R
(additive identity).

A4. For each a € R there exists an element b € R such that a4+ b =0
(additive inverses) [The element b is denoted —a. We then define
subtraction by x —y := x+ (—y) for all x,y € R\]

(In the following, we follow the usual convention of writing ab for a- b.)

M1. ab = ba for all a, b € R (commutativity of multiplication).

M2. a(bc) = (ab)c for all a, b, c € R (associativity of multiplication).

M3. There exists an element 1 € R such that al = a for all a € R
(multiplicative identity).



Rings

Definition. A ring is a set R with two operations, addition

+: R x R — R and multiplication -: R x R — R satisfying the following
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A2. a+ (b+c)=(a+ b)+ c forall a,b,c € R (associativity of
addition).

A3. There exists and element 0 € R such that a+0=aforallae R
(additive identity).

A4. For each a € R there exists an element b € R such that a4+ b =0
(additive inverses) [The element b is denoted —a. We then define
subtraction by x —y := x+ (—y) for all x,y € R\]

(In the following, we follow the usual convention of writing ab for a- b.)

M1. ab = ba for all a, b € R (commutativity of multiplication).
M2. a(bc) = (ab)c for all a, b, c € R (associativity of multiplication).
M3. There exists an element 1 € R such that al = a for all a € R
(multiplicative identity).
D. For all a,b,c € R, we have (a+ b)c = ac + bc.



Rings

Name all the rings you know.



Primes versus irreducibles

Let R be an integral domain. Then if p is prime, it follows that p
is irreducible.
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Definition. A nonempty subset / of a ring R is an ideal if
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2. ifreRandac/ thenrac |l

Definition. An ideal / in a ring R is generated by ai,...,a, € R if

every element of / is an R-linear combination of elements of
ai,...,an, i.e., for all a € I, we can write

n
a = Z riaj
i=1
for some elements r; € R. We then write

I=(a1,...,an).
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single element, i.e., if there exists a € R such that
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Definition. An integral domain R in which every ideal is principal
is called a principal ideal domain, abbreviated PID.
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Proposition. Let R be a principal ideal domain. Then R is a
unique factorization domain (UFD): Let r € R. Then r has a

factorization
k
r=ullp?
n=1

where u is a unit, the p; are prime, each ¢; is a positive integer,
and k € N. The factorization is unique in the following sense; if
r= vazl q,f" for some unit v, primes g;, positive integers f;, and
£ € N, then k = ¢ and up to re-indexing, p; = u;q; with u; a unit
and ¢ = f; for all i.

Proof. Math 332.

So a PID is a UFD and there is no difference between primes and
irreducibles.
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Proof. Let / be an ideal in Z. If | = (0), we are done. Otherwise,
let a be the smallest positive element of /. Given any element
b € I, apply the division algorithm to find g, r € Z such that

b=aqg+r
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By the definition of a, it follows that r = 0. Hence, b = aq. We
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Division algorithm in K[x]

Proposition. (Division algorithm) Let K be a field, and let
f,g € K[x] with f # 0. Then there exists q, r € K[x] such that

g="fq+r
where 0 < deg(r) < deg(f).

Proof. Math 332.

Example (on board). Let g = x* +x3 +4x> +1and f =x>+1
in Q[x]. Find g, r € Q[x] such that g = fq + r with
0 < deg(r) < deg(f).
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Proof. Let / be an ideal in K[x]. If | =(0), we are done. Similarly,

if I contains any nonzero element a of K, then a has a multiplicative
inverse b € K. By the definition of an ideal, since a € | and

b € K C Kl[x], it follows that ab =1 € [. It then follows that
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algorithm to find g, r € K[x] such that

g="fqg+r

where 0 < deg(r) < deg(f). Since / is and ideal and f,g € [, it
follows that
r=g—fgel.

By definition of f, it follows that deg(r) = 0. Hence, r € KN/ = {0},
i.e., r =0. It follows that g = fq. We have shown that / = (f).
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Ring homomorphisms

Let ¢ : R — S be a ring homomorphism. Then

1.

AR A

¢(0) = 0 (where we are being sloppy with notation: the first 0
is the additive identity of R and the second is the additive
identity of S).

The kernel of ¢ is an ideal of R.

The image of ¢ is not necessarily an ideal of S.

¢ is injective if and only if ker(¢) = {0}.

¢ is an isomorphism if and only if its kernel is trivial (i.e.,
equal to {0}) and its image is S.

If ¢ is bijective, its inverse (as a mapping of sets) is
necessarily a ring homomorphism.
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Quotient rings

Definition. Let / be an ideal in a ring R. The cosets of | are the
sets of the form a+ /:={a+i:i €[} for each a€ R. The
collection of cosets naturally forms a ring where

(a+ N+ (b+1):=(a+b)+1 and (a+1)(b+1):=ab+I.
This ring of cosets is called a quotient ring and is denoted R/|.
Example. Describe the elements of Q[x]/(x? + 1).

Qx]/(x*+1)={a+bx:a,bcQ} with x*>=—-1.

So Q[x]/(x% + 1) =~ Q(i).



Quotient mapping

Definition. If / is an ideal of R, define the (canonical) quotient
mapping

m: R— R/l
ara=a-+ 1.



Quotient mapping

Definition. If / is an ideal of R, define the (canonical) quotient
mapping

m: R— R/l
ara=a-+ 1.

It is a surjective homomorphism with kernel /.



Quotient mapping

Definition. If / is an ideal of R, define the (canonical) quotient
mapping

m: R— R/l
ara=a-+ 1.

It is a surjective homomorphism with kernel /.

If : R — S is a ring homomorphism, then im(¢) is a ring with
unity ¢(1), and there is a well-defined isomorphism

¢: R/ ker(¢) — im(¢)
a+ ker(¢) — ¢(a).
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Definition. Let R be a PID. A greatest common divisor of
a,b € R is an element d € R such that

1.
2.

d|a and d|b, and
if e € R with e|a and e|b, then e|d.

We write ged(a, b) = d.
Proposition. Let R be a PID, and let a,b € R. Then

1.
2. (a,b) = (d).

3.

4. The greatest common divisors of a, b are exactly the elements

There exists a greatest common divisor d of a, b.

There exist m,n € R such that ma+ nb = d.

of the form ud where u is a unit.

If a, b have no prime factors in common, there exist m,n € R
such that ma+ nb = 1.
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Definition. An ideal / in a ring R is maximal if | # R, and the
only ideal of R properly containing [ is R, itself. In other words, if
Jis an ideal of R and J 2 /, then J = R.

Facts:
» [ is maximal if and only if R// is a field.
» In a PID, | = (a) is maximal if and only if a is irreducible
(and, hence, if and only if a is prime). Thus, for example,
Z/(n) is a field if and only if n is prime.



