Math 361

January 25, 2023

Let R be a ring.

- 1. What does it mean to say that $p \in R$ is prime?
- 2. What does it mean to say R is a integral domain?
- 3. Let R be a integral domain, and let $a, b, c \in R$. Suppose that ab = ac and $a \neq 0$. Prove that b = c.

Definition. A *ring* is a set *R* with two operations, addition $+: R \times R \rightarrow R$ and multiplication $\cdot: R \times R \rightarrow R$ satisfying the following axioms:

Definition. A *ring* is a set *R* with two operations, addition $+: R \times R \rightarrow R$ and multiplication $\cdot: R \times R \rightarrow R$ satisfying the following axioms:

A1. a + b = b + a for all $a, b \in R$ (commutativity of addition).

Definition. A *ring* is a set *R* with two operations, addition $+: R \times R \rightarrow R$ and multiplication $\cdot: R \times R \rightarrow R$ satisfying the following axioms:

A1. a + b = b + a for all $a, b \in R$ (commutativity of addition).

A2.
$$a + (b + c) = (a + b) + c$$
 for all $a, b, c \in R$ (associativity of addition).

Definition. A *ring* is a set R with two operations, addition

 $+\colon R\times R\to R$ and multiplication $\cdot\colon R\times R\to R$ satisfying the following axioms:

- A1. a + b = b + a for all $a, b \in R$ (commutativity of addition).
- A2. a + (b + c) = (a + b) + c for all $a, b, c \in R$ (associativity of addition).
- A3. There exists and element $0 \in R$ such that a + 0 = a for all $a \in R$ (additive identity).

Definition. A *ring* is a set R with two operations, addition

 $+\colon R\times R\to R$ and multiplication $\cdot\colon R\times R\to R$ satisfying the following axioms:

- A1. a + b = b + a for all $a, b \in R$ (commutativity of addition).
- A2. a + (b + c) = (a + b) + c for all $a, b, c \in R$ (associativity of addition).
- A3. There exists and element $0 \in R$ such that a + 0 = a for all $a \in R$ (additive identity).
- A4. For each $a \in R$ there exists an element $b \in R$ such that a + b = 0 (additive inverses) [The element b is denoted -a. We then define subtraction by x y := x + (-y) for all $x, y \in R$.]

Definition. A *ring* is a set R with two operations, addition

 $+\colon R\times R\to R$ and multiplication $\cdot\colon R\times R\to R$ satisfying the following axioms:

- A1. a + b = b + a for all $a, b \in R$ (commutativity of addition).
- A2. a + (b + c) = (a + b) + c for all $a, b, c \in R$ (associativity of addition).
- A3. There exists and element $0 \in R$ such that a + 0 = a for all $a \in R$ (additive identity).
- A4. For each $a \in R$ there exists an element $b \in R$ such that a + b = 0 (additive inverses) [The element b is denoted -a. We then define subtraction by x y := x + (-y) for all $x, y \in R$.]

Definition. A *ring* is a set R with two operations, addition

 $+ \colon R \times R \to R$ and multiplication $\cdot \colon R \times R \to R$ satisfying the following axioms:

- A1. a + b = b + a for all $a, b \in R$ (commutativity of addition).
- A2. a + (b + c) = (a + b) + c for all $a, b, c \in R$ (associativity of addition).
- A3. There exists and element $0 \in R$ such that a + 0 = a for all $a \in R$ (additive identity).
- A4. For each $a \in R$ there exists an element $b \in R$ such that a + b = 0 (additive inverses) [The element b is denoted -a. We then define subtraction by x y := x + (-y) for all $x, y \in R$.]

(In the following, we follow the usual convention of writing *ab* for $a \cdot b$.) M1. ab = ba for all $a, b \in R$ (commutativity of multiplication).

Definition. A *ring* is a set R with two operations, addition

 $+ \colon R \times R \to R$ and multiplication $\cdot \colon R \times R \to R$ satisfying the following axioms:

- A1. a + b = b + a for all $a, b \in R$ (commutativity of addition).
- A2. a + (b + c) = (a + b) + c for all $a, b, c \in R$ (associativity of addition).
- A3. There exists and element $0 \in R$ such that a + 0 = a for all $a \in R$ (additive identity).
- A4. For each $a \in R$ there exists an element $b \in R$ such that a + b = 0 (additive inverses) [The element b is denoted -a. We then define subtraction by x y := x + (-y) for all $x, y \in R$.]

- M1. ab = ba for all $a, b \in R$ (commutativity of multiplication).
- M2. a(bc) = (ab)c for all $a, b, c \in R$ (associativity of multiplication).

Definition. A *ring* is a set R with two operations, addition

 $+\colon R\times R\to R$ and multiplication $\cdot\colon R\times R\to R$ satisfying the following axioms:

- A1. a + b = b + a for all $a, b \in R$ (commutativity of addition).
- A2. a + (b + c) = (a + b) + c for all $a, b, c \in R$ (associativity of addition).
- A3. There exists and element $0 \in R$ such that a + 0 = a for all $a \in R$ (additive identity).
- A4. For each $a \in R$ there exists an element $b \in R$ such that a + b = 0 (additive inverses) [The element b is denoted -a. We then define subtraction by x y := x + (-y) for all $x, y \in R$.]

- M1. ab = ba for all $a, b \in R$ (commutativity of multiplication).
- M2. a(bc) = (ab)c for all $a, b, c \in R$ (associativity of multiplication).
- M3. There exists an element $1 \in R$ such that a1 = a for all $a \in R$ (multiplicative identity).

Definition. A *ring* is a set R with two operations, addition

 $+ \colon R \times R \to R$ and multiplication $\cdot \colon R \times R \to R$ satisfying the following axioms:

- A1. a + b = b + a for all $a, b \in R$ (commutativity of addition).
- A2. a + (b + c) = (a + b) + c for all $a, b, c \in R$ (associativity of addition).
- A3. There exists and element $0 \in R$ such that a + 0 = a for all $a \in R$ (additive identity).
- A4. For each $a \in R$ there exists an element $b \in R$ such that a + b = 0 (additive inverses) [The element b is denoted -a. We then define subtraction by x y := x + (-y) for all $x, y \in R$.]

- M1. ab = ba for all $a, b \in R$ (commutativity of multiplication).
- M2. a(bc) = (ab)c for all $a, b, c \in R$ (associativity of multiplication).
- M3. There exists an element $1 \in R$ such that a1 = a for all $a \in R$ (multiplicative identity).
 - D. For all $a, b, c \in R$, we have (a + b)c = ac + bc.

Name all the rings you know.

Primes versus irreducibles

Let R be an integral domain. Then if p is prime, it follows that p is irreducible.

Ideals

Definition. A nonempty subset I of a ring R is an *ideal* if

- 1. I is closed under addition, and
- 2. if $r \in R$ and $a \in I$, then $ra \in I$.

Ideals

Definition. A nonempty subset I of a ring R is an *ideal* if

- 1. I is closed under addition, and
- 2. if $r \in R$ and $a \in I$, then $ra \in I$.

Definition. An ideal *I* in a ring *R* is generated by $a_1, \ldots, a_n \in R$ if every element of *I* is an *R*-linear combination of elements of a_1, \ldots, a_n , i.e., for all $a \in I$, we can write

$$a = \sum_{i=1}^{n} r_i a_i$$

for some elements $r_i \in R$. We then write

$$I=(a_1,\ldots,a_n).$$

Definition. We say *I* is a *principal ideal* if it can be generated by a single element, i.e., if there exists $a \in R$ such that $I = (a) = \{ra : r \in R\}$, all multiples of a single element *a* of *R*.

Definition. We say *I* is a *principal ideal* if it can be generated by a single element, i.e., if there exists $a \in R$ such that $I = (a) = \{ra : r \in R\}$, all multiples of a single element *a* of *R*.

Definition. An integral domain *R* in which every ideal is principal is called a *principal ideal domain*, abbreviated PID.

Primes versus irreducibles

Let *R* be a ring. We have seen that if $p \in R$ is prime, then it is irreducible. If *R* is a PID, the converse is true.

Primes versus irreducibles

Let R be a ring. We have seen that if $p \in R$ is prime, then it is irreducible. If R is a PID, the converse is true.

Proof. Math 332.

Proposition. Let R be a principal ideal domain. Then R is a *unique factorization domain* (UFD):

Proposition. Let *R* be a principal ideal domain. Then *R* is a *unique factorization domain* (UFD): Let $r \in R$. Then *r* has a factorization

$$r=u\prod_{n=1}^{k}p_{i}^{e_{i}}$$

where *u* is a unit, the p_i are prime, each e_i is a positive integer, and $k \in \mathbb{N}$.

Proposition. Let *R* be a principal ideal domain. Then *R* is a *unique factorization domain* (UFD): Let $r \in R$. Then *r* has a factorization

$$r=u\prod_{n=1}^{k}p_{i}^{e_{i}}$$

where u is a unit, the p_i are prime, each e_i is a positive integer, and $k \in \mathbb{N}$. The factorization is unique in the following sense; if $r = v \prod_{i=1}^{\ell} q_i^{f_i}$ for some unit v, primes q_i , positive integers f_i , and $\ell \in \mathbb{N}$,

Proposition. Let *R* be a principal ideal domain. Then *R* is a *unique factorization domain* (UFD): Let $r \in R$. Then *r* has a factorization

$$r=u\prod_{n=1}^{k}p_{i}^{e}$$

where *u* is a unit, the p_i are prime, each e_i is a positive integer, and $k \in \mathbb{N}$. The factorization is unique in the following sense; if $r = v \prod_{i=1}^{\ell} q_i^{f_i}$ for some unit *v*, primes q_i , positive integers f_i , and $\ell \in \mathbb{N}$, then $k = \ell$ and up to re-indexing, $p_i = u_i q_i$ with u_i a unit and $e_i = f_i$ for all *i*.

Proposition. Let *R* be a principal ideal domain. Then *R* is a *unique factorization domain* (UFD): Let $r \in R$. Then *r* has a factorization

$$r=u\prod_{n=1}^{k}p_{i}^{e}$$

where *u* is a unit, the p_i are prime, each e_i is a positive integer, and $k \in \mathbb{N}$. The factorization is unique in the following sense; if $r = v \prod_{i=1}^{\ell} q_i^{f_i}$ for some unit *v*, primes q_i , positive integers f_i , and $\ell \in \mathbb{N}$, then $k = \ell$ and up to re-indexing, $p_i = u_i q_i$ with u_i a unit and $e_i = f_i$ for all *i*.

Proof. Math 332.

Proposition. Let *R* be a principal ideal domain. Then *R* is a *unique factorization domain* (UFD): Let $r \in R$. Then *r* has a factorization

$$r=u\prod_{n=1}^{k}p_{i}^{e_{i}}$$

where *u* is a unit, the p_i are prime, each e_i is a positive integer, and $k \in \mathbb{N}$. The factorization is unique in the following sense; if $r = v \prod_{i=1}^{\ell} q_i^{f_i}$ for some unit *v*, primes q_i , positive integers f_i , and $\ell \in \mathbb{N}$, then $k = \ell$ and up to re-indexing, $p_i = u_i q_i$ with u_i a unit and $e_i = f_i$ for all *i*.

Proof. Math 332.

So a PID is a UFD and there is no difference between primes and irreducibles.

Proposition. The ring \mathbb{Z} is a principal ideal domain.

Proposition. The ring \mathbb{Z} is a principal ideal domain.

Proof. Let I be an ideal in \mathbb{Z} .

Proposition. The ring \mathbb{Z} is a principal ideal domain. **Proof.** Let *I* be an ideal in \mathbb{Z} . If I = (0), we are done.

Proposition. The ring \mathbb{Z} is a principal ideal domain.

Proof. Let *I* be an ideal in \mathbb{Z} . If I = (0), we are done. Otherwise, let *a* be the smallest positive element of *I*.

Proposition. The ring \mathbb{Z} is a principal ideal domain.

Proof. Let *I* be an ideal in \mathbb{Z} . If I = (0), we are done. Otherwise, let *a* be the smallest positive element of *I*. Given any element $b \in I$, apply the division algorithm to find $q, r \in \mathbb{Z}$ such that

$$b = aq + r$$

with $0 \leq r < a$.

Proposition. The ring \mathbb{Z} is a principal ideal domain.

Proof. Let *I* be an ideal in \mathbb{Z} . If I = (0), we are done. Otherwise, let *a* be the smallest positive element of *I*. Given any element $b \in I$, apply the division algorithm to find $q, r \in \mathbb{Z}$ such that

$$b = aq + r$$

with $0 \le r < a$. Since $a, b \in I$, and I is an ideal,

$$r = b - aq \in I$$
.

Proposition. The ring \mathbb{Z} is a principal ideal domain.

Proof. Let *I* be an ideal in \mathbb{Z} . If I = (0), we are done. Otherwise, let *a* be the smallest positive element of *I*. Given any element $b \in I$, apply the division algorithm to find $q, r \in \mathbb{Z}$ such that

$$b = aq + r$$

with $0 \le r < a$. Since $a, b \in I$, and I is an ideal,

$$r = b - aq \in I$$
.

By the definition of *a*, it follows that r = 0.

Proposition. The ring \mathbb{Z} is a principal ideal domain.

Proof. Let *I* be an ideal in \mathbb{Z} . If I = (0), we are done. Otherwise, let *a* be the smallest positive element of *I*. Given any element $b \in I$, apply the division algorithm to find $q, r \in \mathbb{Z}$ such that

$$b = aq + r$$

with $0 \le r < a$. Since $a, b \in I$, and I is an ideal,

$$r = b - aq \in I$$
.

By the definition of *a*, it follows that r = 0. Hence, b = aq. We have shown that I = (a).

Division algorithm in K[x]

Proposition. (Division algorithm) Let K be a field, and let $f, g \in K[x]$ with $f \neq 0$. Then there exists $q, r \in K[x]$ such that

$$g = fq + r$$

where $0 \leq \deg(r) < \deg(f)$.

Division algorithm in K[x]

Proposition. (Division algorithm) Let K be a field, and let $f, g \in K[x]$ with $f \neq 0$. Then there exists $q, r \in K[x]$ such that

$$g = fq + r$$

where $0 \leq \deg(r) < \deg(f)$.

Proof. Math 332.
Division algorithm in K[x]

Proposition. (Division algorithm) Let K be a field, and let $f, g \in K[x]$ with $f \neq 0$. Then there exists $q, r \in K[x]$ such that

$$g = fq + r$$

where $0 \leq \deg(r) < \deg(f)$.

Proof. Math 332.

Example (on board). Let $g = x^4 + x^3 + 4x^2 + 1$ and $f = x^2 + 1$ in $\mathbb{Q}[x]$. Find $q, r \in \mathbb{Q}[x]$ such that g = fq + r with $0 \leq \deg(r) < \deg(f)$.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proposition. Let K be a field. Then K[x] is a principal ideal domain. **Proof.** Let I be an ideal in K[x].

Proposition. Let K be a field. Then K[x] is a principal ideal domain. **Proof.** Let I be an ideal in K[x]. If I = (0), we are done.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*,

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*, then *a* has a multiplicative inverse $b \in K$.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*, then *a* has a multiplicative inverse $b \in K$. By the definition of an ideal, since $a \in I$ and $b \in K \subset K[x]$, it follows that $ab = 1 \in I$.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*, then *a* has a multiplicative inverse $b \in K$. By the definition of an ideal, since $a \in I$ and $b \in K \subset K[x]$, it follows that $ab = 1 \in I$. It then follows that I = (1) = K[x]. So again, *I* is principal.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*, then *a* has a multiplicative inverse $b \in K$. By the definition of an ideal, since $a \in I$ and $b \in K \subset K[x]$, it follows that $ab = 1 \in I$. It then follows that I = (1) = K[x]. So again, *I* is principal. Now assume that $I \neq (0)$ and the only element of *K* contained in *I* is 0.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*, then *a* has a multiplicative inverse $b \in K$. By the definition of an ideal, since $a \in I$ and $b \in K \subset K[x]$, it follows that $ab = 1 \in I$. It then follows that I = (1) = K[x]. So again, *I* is principal. Now assume that $I \neq (0)$ and the only element of *K* contained in *I* is 0. So there exists an element *f* in *I* of smallest positive degree.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*, then *a* has a multiplicative inverse $b \in K$. By the definition of an ideal, since $a \in I$ and $b \in K \subset K[x]$, it follows that $ab = 1 \in I$. It then follows that I = (1) = K[x]. So again, *I* is principal. Now assume that $I \neq (0)$ and the only element of *K* contained in *I* is 0. So there exists an element *f* in *I* of smallest positive degree. Given $g \in I$, apply the division algorithm to find $q, r \in K[x]$ such that

$$g = fq + r$$

where $0 \leq \deg(r) < \deg(f)$.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*, then *a* has a multiplicative inverse $b \in K$. By the definition of an ideal, since $a \in I$ and $b \in K \subset K[x]$, it follows that $ab = 1 \in I$. It then follows that I = (1) = K[x]. So again, *I* is principal. Now assume that $I \neq (0)$ and the only element of *K* contained in *I* is 0. So there exists an element *f* in *I* of smallest positive degree. Given $g \in I$, apply the division algorithm to find $q, r \in K[x]$ such that

$$g = fq + r$$

where $0 \leq \deg(r) < \deg(f)$. Since *I* is and ideal and $f, g \in I$, it follows that

$$r = g - fq \in I$$
.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*, then *a* has a multiplicative inverse $b \in K$. By the definition of an ideal, since $a \in I$ and $b \in K \subset K[x]$, it follows that $ab = 1 \in I$. It then follows that I = (1) = K[x]. So again, *I* is principal. Now assume that $I \neq (0)$ and the only element of *K* contained in *I* is 0. So there exists an element *f* in *I* of smallest positive degree. Given $g \in I$, apply the division algorithm to find $q, r \in K[x]$ such that

$$g = fq + r$$

where $0 \leq \deg(r) < \deg(f)$. Since *I* is and ideal and $f, g \in I$, it follows that

$$r = g - fq \in I$$
.

By definition of f, it follows that deg(r) = 0.

Proposition. Let K be a field. Then K[x] is a principal ideal domain.

Proof. Let *I* be an ideal in K[x]. If I = (0), we are done. Similarly, if *I* contains any nonzero element *a* of *K*, then *a* has a multiplicative inverse $b \in K$. By the definition of an ideal, since $a \in I$ and $b \in K \subset K[x]$, it follows that $ab = 1 \in I$. It then follows that I = (1) = K[x]. So again, *I* is principal. Now assume that $I \neq (0)$ and the only element of *K* contained in *I* is 0. So there exists an element *f* in *I* of smallest positive degree. Given $g \in I$, apply the division algorithm to find $q, r \in K[x]$ such that

$$g = fq + r$$

where $0 \leq \deg(r) < \deg(f)$. Since *I* is and ideal and $f, g \in I$, it follows that

$$r = g - fq \in I$$
.

By definition of f, it follows that deg(r) = 0. Hence, $r \in K \cap I = \{0\}$, i.e., r = 0. It follows that g = fq. We have shown that I = (f).

Definition. A mapping $\phi: R \to S$ between rings R and S is a *(ring) homomorphism* if it preserves the ring operations, i.e., for all $a, b \in R$,

 $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$.

Definition. A mapping $\phi: R \to S$ between rings R and S is a (*ring*) homomorphism if it preserves the ring operations, i.e., for all $a, b \in R$,

$$\phi(a+b) = \phi(a) + \phi(b)$$
 and $\phi(ab) = \phi(a)\phi(b).$

In that case, the kernel of ϕ is

$$\ker(\phi) := \{r \in R : \phi(r) = 0\},\$$

Definition. A mapping $\phi: R \to S$ between rings R and S is a (*ring*) homomorphism if it preserves the ring operations, i.e., for all $a, b \in R$,

$$\phi(a+b) = \phi(a) + \phi(b)$$
 and $\phi(ab) = \phi(a)\phi(b).$

In that case, the kernel of ϕ is

$$\ker(\phi) := \{r \in R : \phi(r) = 0\},\$$

and the *image* of ϕ is

$$\operatorname{im}(\phi) := \phi(R) := \{\phi(r) : r \in R\}.$$

The homomorphism ϕ is an *isomorphism* if it is bijective.

Let $\phi: R \to S$ be a ring homomorphism. Then

1. $\phi(0) = 0$ (where we are being sloppy with notation: the first 0 is the additive identity of R and the second is the additive identity of S).

- 1. $\phi(0) = 0$ (where we are being sloppy with notation: the first 0 is the additive identity of R and the second is the additive identity of S).
- 2. The kernel of ϕ is an ideal of R.

- 1. $\phi(0) = 0$ (where we are being sloppy with notation: the first 0 is the additive identity of R and the second is the additive identity of S).
- 2. The kernel of ϕ is an ideal of R.
- 3. The image of ϕ is not necessarily an ideal of S.

- 1. $\phi(0) = 0$ (where we are being sloppy with notation: the first 0 is the additive identity of R and the second is the additive identity of S).
- 2. The kernel of ϕ is an ideal of R.
- 3. The image of ϕ is not necessarily an ideal of *S*.
- 4. ϕ is injective if and only if ker $(\phi) = \{0\}$.

- 1. $\phi(0) = 0$ (where we are being sloppy with notation: the first 0 is the additive identity of R and the second is the additive identity of S).
- 2. The kernel of ϕ is an ideal of R.
- 3. The image of ϕ is not necessarily an ideal of S.
- 4. ϕ is injective if and only if ker $(\phi) = \{0\}$.
- 5. ϕ is an isomorphism if and only if its kernel is trivial (i.e., equal to {0}) and its image is S.

- 1. $\phi(0) = 0$ (where we are being sloppy with notation: the first 0 is the additive identity of R and the second is the additive identity of S).
- 2. The kernel of ϕ is an ideal of R.
- 3. The image of ϕ is not necessarily an ideal of *S*.
- 4. ϕ is injective if and only if ker $(\phi) = \{0\}$.
- 5. ϕ is an isomorphism if and only if its kernel is trivial (i.e., equal to {0}) and its image is S.
- 6. If ϕ is bijective, its inverse (as a mapping of sets) is necessarily a ring homomorphism.

Definition. Let *I* be an ideal in a ring *R*. The *cosets* of *I* are the sets of the form $a + I := \{a + i : i \in I\}$ for each $a \in R$.

Definition. Let *I* be an ideal in a ring *R*. The *cosets* of *I* are the sets of the form $a + I := \{a + i : i \in I\}$ for each $a \in R$. The collection of cosets naturally forms a ring where

$$(a+I) + (b+I) := (a+b) + I$$
 and $(a+I)(b+I) := ab + I$.

Definition. Let *I* be an ideal in a ring *R*. The *cosets* of *I* are the sets of the form $a + I := \{a + i : i \in I\}$ for each $a \in R$. The collection of cosets naturally forms a ring where

$$(a+I) + (b+I) := (a+b) + I$$
 and $(a+I)(b+I) := ab + I$.

This ring of cosets is called a *quotient ring* and is denoted R/I.

Definition. Let *I* be an ideal in a ring *R*. The *cosets* of *I* are the sets of the form $a + I := \{a + i : i \in I\}$ for each $a \in R$. The collection of cosets naturally forms a ring where

$$(a+I) + (b+I) := (a+b) + I$$
 and $(a+I)(b+I) := ab + I$.

This ring of cosets is called a *quotient ring* and is denoted R/I.

Example. Describe the elements of $\mathbb{Q}[x]/(x^2+1)$.

Definition. Let *I* be an ideal in a ring *R*. The *cosets* of *I* are the sets of the form $a + I := \{a + i : i \in I\}$ for each $a \in R$. The collection of cosets naturally forms a ring where

$$(a+I) + (b+I) := (a+b) + I$$
 and $(a+I)(b+I) := ab + I$.

This ring of cosets is called a *quotient ring* and is denoted R/I.

Example. Describe the elements of $\mathbb{Q}[x]/(x^2+1)$.

$$\mathbb{Q}[x]/(x^2+1) = \{a+bx: a, b \in \mathbb{Q}\}$$
 with $x^2 = -1$.

Definition. Let *I* be an ideal in a ring *R*. The *cosets* of *I* are the sets of the form $a + I := \{a + i : i \in I\}$ for each $a \in R$. The collection of cosets naturally forms a ring where

$$(a+I) + (b+I) := (a+b) + I$$
 and $(a+I)(b+I) := ab + I$.

This ring of cosets is called a *quotient ring* and is denoted R/I.

Example. Describe the elements of $\mathbb{Q}[x]/(x^2+1)$.

$$\mathbb{Q}[x]/(x^2+1) = \{a+bx: a, b \in \mathbb{Q}\}$$
 with $x^2 = -1$.
So $\mathbb{Q}[x]/(x^2+1) \approx \mathbb{Q}(i)$.

Quotient mapping

Definition. If *I* is an ideal of *R*, define the *(canonical) quotient mapping*

 $\pi \colon R \to R/I$ $a \mapsto \overline{a} = a + I.$

Quotient mapping

Definition. If *I* is an ideal of *R*, define the *(canonical) quotient mapping*

$$\pi\colon R\to R/I$$
$$a\mapsto \overline{a}=a+I.$$

It is a surjective homomorphism with kernel *I*.

Quotient mapping

Definition. If *I* is an ideal of *R*, define the *(canonical) quotient mapping*

$$\pi \colon R \to R/I$$
$$a \mapsto \overline{a} = a + I.$$

It is a surjective homomorphism with kernel *I*.

If $\phi \colon R \to S$ is a ring homomorphism, then $\operatorname{im}(\phi)$ is a ring with unity $\phi(1)$, and there is a well-defined isomorphism

$$ar{\phi} \colon R/ \ker(\phi) o \operatorname{im}(\phi) \ a + \ker(\phi) \mapsto \phi(a).$$

GCDs

Definition. Let *R* be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

GCDs

Definition. Let *R* be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

1. d|a and d|b, and

GCDs

Definition. Let R be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

- 1. d|a and d|b, and
- 2. if $e \in R$ with e|a and e|b, then e|d.
Definition. Let R be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

- 1. d|a and d|b, and
- 2. if $e \in R$ with e|a and e|b, then e|d.

Definition. Let R be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

1. d|a and d|b, and

2. if $e \in R$ with e|a and e|b, then e|d.

We write gcd(a, b) = d.

Definition. Let R be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

- 1. d|a and d|b, and
- 2. if $e \in R$ with e|a and e|b, then e|d.
- We write gcd(a, b) = d.

Proposition. Let *R* be a PID, and let $a, b \in R$. Then

Definition. Let R be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

- 1. d|a and d|b, and
- 2. if $e \in R$ with e|a and e|b, then e|d.
- We write gcd(a, b) = d.

Proposition. Let *R* be a PID, and let $a, b \in R$. Then

1. There exists a greatest common divisor d of a, b.

Definition. Let R be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

- 1. d|a and d|b, and
- 2. if $e \in R$ with e|a and e|b, then e|d.

We write gcd(a, b) = d.

Proposition. Let *R* be a PID, and let $a, b \in R$. Then

There exists a greatest common divisor d of a, b.
(a, b) = (d).

Definition. Let R be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

- 1. d|a and d|b, and
- 2. if $e \in R$ with e|a and e|b, then e|d.

We write gcd(a, b) = d.

Proposition. Let *R* be a PID, and let $a, b \in R$. Then

1. There exists a greatest common divisor d of a, b.

2.
$$(a, b) = (d)$$
.

3. There exist $m, n \in R$ such that ma + nb = d.

Definition. Let R be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

- 1. d|a and d|b, and
- 2. if $e \in R$ with e|a and e|b, then e|d.

We write gcd(a, b) = d.

Proposition. Let *R* be a PID, and let $a, b \in R$. Then

1. There exists a greatest common divisor d of a, b.

2.
$$(a, b) = (d)$$
.

- 3. There exist $m, n \in R$ such that ma + nb = d.
- 4. The greatest common divisors of *a*, *b* are exactly the elements of the form *ud* where *u* is a unit.

Definition. Let R be a PID. A greatest common divisor of $a, b \in R$ is an element $d \in R$ such that

- 1. d|a and d|b, and
- 2. if $e \in R$ with e|a and e|b, then e|d.

We write gcd(a, b) = d.

Proposition. Let *R* be a PID, and let $a, b \in R$. Then

1. There exists a greatest common divisor d of a, b.

2.
$$(a, b) = (d)$$
.

- 3. There exist $m, n \in R$ such that ma + nb = d.
- 4. The greatest common divisors of *a*, *b* are exactly the elements of the form *ud* where *u* is a unit.
- 5. If a, b have no prime factors in common, there exist $m, n \in R$ such that ma + nb = 1.

Definition. An ideal *I* in a ring *R* is *maximal* if $I \neq R$, and the only ideal of *R* properly containing *I* is *R*, itself.

Facts:

▶ *I* is maximal if and only if R/I is a field.

Facts:

- ▶ *I* is maximal if and only if R/I is a field.
- ► In a PID, I = (a) is maximal if and only if a is irreducible (and, hence, if and only if a is prime).

Facts:

- ▶ *I* is maximal if and only if R/I is a field.
- In a PID, *I* = (*a*) is maximal if and only if *a* is irreducible (and, hence, if and only if *a* is prime). Thus, for example, ℤ/(*n*) is a field if and only if *n* is prime.