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Pythagorean triples

A Pythagorean triple is a tuple (x , y , z) of positive integers such
that

x2 + y2 = z2.

It is primitive if gcd(x , y , z) = 1.

Example.

3
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32 + 42 = 52

Problem. Find all primitive Pythagorean triples.
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Pythagorean triples

x2 + y2 = z2

First observations.
1. If (x , y , z) is a primitive Pythagorean triple, and m is a

positive integer, then (mx , my , mz) is a Pythagorean triple. If
(x , y , z) is any Pythagorean triple, then canceling common
factors yields a primitive Pythagorean triple.

2. For a Pythagorean triple (x , y , z), we have gcd(x , y , z) = 1 if
and only if x , y , z are pairwise relatively prime.

3. If (x , y , z) is a primitive Pythagorean theorem, then z must be
odd. (To see this, work modulo 4.)
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Gaussian integers

Problem. Characterize Pythagorean triples.

Key idea: x2 + y2 = (x + iy)(x − iy).

Let Q(i) := {a + bi : a, b ∈ Q}. Then Q(i) is a field. For instance,

1
a + bi = 1

a + bi ·
a − bi
a − bi = 1

a2 + b2 (a−bi) = a
a2 + b2−

b
a2 + b2 i ∈ Q(i).

Gaussian integers: Z[i ] := {a + bi : a, b ∈ Z}.
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Factorization in Z[i ]

1. Let a, b ∈ Z[i ]. Then a divides b, written a|b, if there exists
c ∈ Z[i ] such that b = ac.

2. An element u ∈ Z[i ] is a unit if u|1, i.e., if there exists
v ∈ Z[i ] such that 1 = uv , i.e., if it is invertible in Z[i ].

3. An element p ∈ Z[i ] is prime if it is not 0 or a unit and
whenever p divides ab for some a, b ∈ Z[i ], then p|a or p|b.

Fact. The ring Z[i ] is a unique factorization domain (UFD). That
is, every nonzero element a ∈ Z[i ] can be written uniquely, up to
order, in the form

a = u
k∏

i=1
pei

i

where u is a unit, the pi are primes, and the ei are positive integers.
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Factorization in Z[i ]

Examples (proofs to appear later).

The units of Z[i ] are ±1 and ±i .

The elements 1± i are prime.

Although 2 is prime in Z, it is not prime in Z[i ]. Its prime
factorization in Z[i ] is

2 = (1 + i)(1− i).
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Back to Pythagorean triples

Proposition. Let (x , y , z) be a primitive Pythagorean triple. Then

x + iy = uw2

for some u, w ∈ Z[i ] with u a unit.



Proof of proposition

x + iy = uw2

Let p ∈ Z[i ] be prime and p|(x + iy). Suffices to show p divides
x + iy an even number of times. Considering the prime
factorization of z :

z = v
k∏

i=1
pei

i ⇒ (x + iy)(x − iy) = z2 = v2
k∏

i=1
p2ei

i .

Then p|(x + iy)⇒ p = pi for some i . Since pi = p appears an
even number of times on the right, and p is prime, it suffices to
show p - (x − iy).
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Proof of proposition

For the sake of contradiction, suppose p|(x + iy) and p|(x − iy).

Then p divides both z and (x + iy) + (x − iy) = 2x (in Z[i ]).
Since (x , y , z) is primitive, x and z are relatively prime, i.e., they
share no prime factors in Z. Since z is odd, 2x and z are relatively
prime integers. By Math 113, there exists m, n ∈ Z such that

m(2x) + nz = gcd(2x , z) = 1.

Thinking again about division in Z[i ], since p|(2x) and p|z , it
follows that p|1 in Z[i ]. Hence, p is a unit, contradicting the
assumption that p is prime. This contradiction completes the
proof. �
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follows that p|1 in Z[i ]. Hence, p is a unit, contradicting the
assumption that p is prime. This contradiction completes the
proof. �



Characterization of Pythagorean triples
Corollary. The primitive Pythagorean triples are exactly

(m2 − n2, 2mn, m2 + n2) or (2mn, m2 − n2, m2 + n2)

where m, n ∈ Z>0 are relatively prime, not both of the same parity,
and m > n.

Proof. We leave the check that the displayed triples are primitive if
and only if gcd(m, n) = 1 and have differing parity as an exercise.
Easy check: the displayed triples are Pythagorean triples.
For the converse, suppose (x , y , z) is a primitive Pythagorean
triple. By the Proposition,

(x + iy)(x − iy) = x2 + y2 = z2 ⇒ x + iy = uw2

for some u, w ∈ Z[i ] with u a unit. Write w = m + ni
with m, n ∈ Z. It follows that

x + iy = u(m + in)2 = u((m2 − n2) + 2mni).
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Characterization of Pythagorean triples

We have

x + iy = u(m + in)2 = u((m2 − n2) + 2mni).

with u ∈ Z[i ] a unit.

Hence u ∈ {±1,±i}. The result then follows
by comparing real and imaginary parts in the displayed equation.
For example, if u = 1,

x + iy = (m2 − n2) + 2mni ,

and, hence, x = m2 + n2 and y = 2mn. �
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Pythagorean triples

Corollary. The primitive Pythagorean triples are exactly

(m2 − n2, 2mn, m2 + n2) or (2mn, m2 − n2, m2 + n2)

where m, n ∈ Z>0 are relatively prime, not both of the same parity,
and m > n.

Exercise.
I Show that the Pythagorean triple (9, 12, 15) does not have

either of the forms in the Corollary.
I What doesn’t this contradict the Corollary?
I How can you modify the corollary so that it covers all

Pythagorean triples?
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