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Questions from last time

Let φ : R → S be a ring homomorphism, and suppose S is an
integral domain. Suppose φ(1R) 6= 1S .

Then φ = 0.

Proof. We have

φ(1R) = φ(1R · 1R) = φ(1R)φ(1R) ⇒ φ(1R)(φ(1R)− 1S) = 0.

Since S is a domain and φ(1R) 6= 1S , we have φ(1R) = 0. Let
r ∈ R. Then

φ(r) = φ(1R · r) = φ(1R)φ(r) = 0 · φ(r) = 0. �

Question: What is wrong with the mapping φ : Z→ Z given by
φ(a) = 2a? Answer: it’s not a ring homomorphism. For example,

2 = φ(1) = φ(1 · 1) 6= φ(1)φ(1) = 4.



Questions from last time

Let φ : R → S be a ring homomorphism, and suppose S is an
integral domain. Suppose φ(1R) 6= 1S . Then φ = 0.

Proof. We have

φ(1R) = φ(1R · 1R) = φ(1R)φ(1R) ⇒ φ(1R)(φ(1R)− 1S) = 0.

Since S is a domain and φ(1R) 6= 1S , we have φ(1R) = 0. Let
r ∈ R. Then

φ(r) = φ(1R · r) = φ(1R)φ(r) = 0 · φ(r) = 0. �

Question: What is wrong with the mapping φ : Z→ Z given by
φ(a) = 2a? Answer: it’s not a ring homomorphism. For example,

2 = φ(1) = φ(1 · 1) 6= φ(1)φ(1) = 4.



Questions from last time

Let φ : R → S be a ring homomorphism, and suppose S is an
integral domain. Suppose φ(1R) 6= 1S . Then φ = 0.

Proof. We have

φ(1R) = φ(1R · 1R) = φ(1R)φ(1R)

⇒ φ(1R)(φ(1R)− 1S) = 0.

Since S is a domain and φ(1R) 6= 1S , we have φ(1R) = 0. Let
r ∈ R. Then

φ(r) = φ(1R · r) = φ(1R)φ(r) = 0 · φ(r) = 0. �

Question: What is wrong with the mapping φ : Z→ Z given by
φ(a) = 2a? Answer: it’s not a ring homomorphism. For example,

2 = φ(1) = φ(1 · 1) 6= φ(1)φ(1) = 4.



Questions from last time

Let φ : R → S be a ring homomorphism, and suppose S is an
integral domain. Suppose φ(1R) 6= 1S . Then φ = 0.

Proof. We have

φ(1R) = φ(1R · 1R) = φ(1R)φ(1R) ⇒ φ(1R)(φ(1R)− 1S) = 0.

Since S is a domain and φ(1R) 6= 1S , we have φ(1R) = 0. Let
r ∈ R. Then

φ(r) = φ(1R · r) = φ(1R)φ(r) = 0 · φ(r) = 0. �

Question: What is wrong with the mapping φ : Z→ Z given by
φ(a) = 2a? Answer: it’s not a ring homomorphism. For example,

2 = φ(1) = φ(1 · 1) 6= φ(1)φ(1) = 4.



Questions from last time

Let φ : R → S be a ring homomorphism, and suppose S is an
integral domain. Suppose φ(1R) 6= 1S . Then φ = 0.

Proof. We have

φ(1R) = φ(1R · 1R) = φ(1R)φ(1R) ⇒ φ(1R)(φ(1R)− 1S) = 0.

Since S is a domain and φ(1R) 6= 1S , we have φ(1R) = 0.

Let
r ∈ R. Then

φ(r) = φ(1R · r) = φ(1R)φ(r) = 0 · φ(r) = 0. �

Question: What is wrong with the mapping φ : Z→ Z given by
φ(a) = 2a? Answer: it’s not a ring homomorphism. For example,

2 = φ(1) = φ(1 · 1) 6= φ(1)φ(1) = 4.



Questions from last time

Let φ : R → S be a ring homomorphism, and suppose S is an
integral domain. Suppose φ(1R) 6= 1S . Then φ = 0.

Proof. We have

φ(1R) = φ(1R · 1R) = φ(1R)φ(1R) ⇒ φ(1R)(φ(1R)− 1S) = 0.

Since S is a domain and φ(1R) 6= 1S , we have φ(1R) = 0. Let
r ∈ R. Then

φ(r) = φ(1R · r) = φ(1R)φ(r) = 0 · φ(r) = 0. �

Question: What is wrong with the mapping φ : Z→ Z given by
φ(a) = 2a? Answer: it’s not a ring homomorphism. For example,

2 = φ(1) = φ(1 · 1) 6= φ(1)φ(1) = 4.



Questions from last time

Let φ : R → S be a ring homomorphism, and suppose S is an
integral domain. Suppose φ(1R) 6= 1S . Then φ = 0.

Proof. We have

φ(1R) = φ(1R · 1R) = φ(1R)φ(1R) ⇒ φ(1R)(φ(1R)− 1S) = 0.

Since S is a domain and φ(1R) 6= 1S , we have φ(1R) = 0. Let
r ∈ R. Then

φ(r) = φ(1R · r) = φ(1R)φ(r) = 0 · φ(r) = 0. �

Question: What is wrong with the mapping φ : Z→ Z given by
φ(a) = 2a?

Answer: it’s not a ring homomorphism. For example,

2 = φ(1) = φ(1 · 1) 6= φ(1)φ(1) = 4.



Questions from last time

Let φ : R → S be a ring homomorphism, and suppose S is an
integral domain. Suppose φ(1R) 6= 1S . Then φ = 0.

Proof. We have

φ(1R) = φ(1R · 1R) = φ(1R)φ(1R) ⇒ φ(1R)(φ(1R)− 1S) = 0.

Since S is a domain and φ(1R) 6= 1S , we have φ(1R) = 0. Let
r ∈ R. Then

φ(r) = φ(1R · r) = φ(1R)φ(r) = 0 · φ(r) = 0. �

Question: What is wrong with the mapping φ : Z→ Z given by
φ(a) = 2a? Answer: it’s not a ring homomorphism. For example,

2 = φ(1) = φ(1 · 1) 6= φ(1)φ(1) = 4.



Question for last time

Let φ : R → S be a ring homomorphism. Then im(φ) is a ring, and
φ(1R) is the identity of im(φ).

Example: Let φ : Z/6Z→ Z/6Z be given by φ(a) = 3a.

Now we have 3 = φ(1) = φ(1 · 1) = 3 · 3 = 3.

The image of φ is {0, 3}, which is a ring with identity 3.

The kernel of φ is {0, 2, 4}, and

Z/6Z
/

ker(φ) ∼−→ im(φ)

a 7→ 3a.
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Today

1. Field extensions.
2. Algebraic elements in an extension.
3. The minimal polynomial of an algebraic element.
4. Finite extensions are algebraic.



Field extensions

A field extension is a pair of fields K ⊆ L.

In that case, L is
automatically a vector space over K . It’s dimension is denoted

[L : K ] := dimK L,

Standard notation:

L

K .

[L:K ]

If [L : K ] <∞, we say that L is a finite field extension of K .

We usually denote a field extension K ⊆ L by L/K .
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Example

Q(i)/Q:

Q(i)

Q

2

Q-basis: {1, i}.
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Field extensions

Proposition. Suppose K ,H and L are fields with K ⊆ H ⊆ L, and
suppose that [L : K ] <∞. Then [L : H] <∞ and [H : K ] <∞, and

[L : K ] = [L : H][H : K ].

L

H

K

[L:H]

[H:K ]

Proof. Homework.
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Algebraic elements

Definition. Let L/K be a field extension. Then α ∈ L is algebraic
over K if there exists a nonzero polynomial f ∈ K [x ] such that
f (α) = 0.

Examples.
1.
√

2 and i are algebraic over Q.

2. What about π over Q?

3. Let t be an indeterminate. Is t over Q(t2)? How about t
over Q?
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Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}. Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ]. We may assume p is monic. If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ]. We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then deg(q) = 0. So q is a nonzero element
of K . Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}.

Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ]. We may assume p is monic. If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ]. We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then deg(q) = 0. So q is a nonzero element
of K . Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}. Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ].

We may assume p is monic. If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ]. We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then deg(q) = 0. So q is a nonzero element
of K . Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}. Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ]. We may assume p is monic.

If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ]. We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then deg(q) = 0. So q is a nonzero element
of K . Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}. Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ]. We may assume p is monic. If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ].

We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then deg(q) = 0. So q is a nonzero element
of K . Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}. Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ]. We may assume p is monic. If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ]. We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then deg(q) = 0. So q is a nonzero element
of K . Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}. Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ]. We may assume p is monic. If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ]. We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then

deg(q) = 0. So q is a nonzero element
of K . Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}. Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ]. We may assume p is monic. If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ]. We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then deg(q) = 0. So q is a nonzero element
of K .

Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}. Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ]. We may assume p is monic. If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ]. We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then deg(q) = 0. So q is a nonzero element
of K . Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



Minimal polynomial

Proposition. If L/K is a field extension and α ∈ L is algebraic
over K , then there exists a unique monic polynomial p ∈ K [x ] of
minimal positive degree such that p(α) = 0.

Proof Let I = {f ∈ K [x ] : f (α) = 0}. Then since K [x ] is a PID,
I = (p) for some p ∈ K [x ]. We may assume p is monic. If f is any
nonzero element of I, we may write f = pq for some nonzero
q ∈ K [x ]. We have

deg(f ) = deg(pq) = deg(p) + deg(q) ≥ deg(p).

If deg(f ) = deg(p), then deg(q) = 0. So q is a nonzero element
of K . Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f ) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for α over K .



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let α ∈ L be
algebraic over K . Let p be a monic polynomial such
that p(α) = 0. Then p is the minimal polynomial for α over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg .
Then f 6= 0 and g 6= 0, but p(α) = f (α)g(α) = 0. WLOG,
f (α) = 0. We must have deg(f ) > 0. We have

deg(p) = deg(f ) + deg(g).

By minimality of p, we have deg(f ) = deg(p), and hence
deg(g) = 0. Since g 6= 0, it follows that g is a nonzero constant,
hence a unit in K [x ].

We prove the converse on the next page.
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K [α] versus K (α)

Let L/K be a field extension, and let α ∈ L be algebraic over K .

Let K [α] be the smallest subring of L containing α, and let K (α)
be the smallest subfield of L containing α.

Then
K [α] := {f (α) : f ∈ K [x ]},

and
K (α) :=

{ f (α)
g(α) : f , g ∈ K [x ], g(α) 6= 0

}
.

Theorem. Let L/K be a field extension. Then α ∈ L is algebraic
over K if and only if [K (α) : K ] <∞. In this case, K [α] = K (α)
and [K (α) : K ] = deg(p) where p is the minimal polynomial for α
over K .
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Conversely, suppose that α is algebraic over K , and
let p =

∑n
i=0 ai x i be its minimal polynomial.
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Finite extensions are algebraic

Theorem. Let L/K be a field extension. Then α ∈ L is algebraic
over K if and only if [K (α) : K ] <∞. In this case, K [α] = K (α)
and [K (α) : K ] = deg(p) where p is the minimal polynomial for α
over K .

Corollary. If [L : K ] <∞ and α ∈ L, then α is algebraic over K .

Proof. Suppose [L : K ] <∞ and α ∈ L. Then since K (α) is a
K -subvector space of L, it follows that [K (α) : K ] <∞. The result
then follows from the Theorem.

Definition. A field extension L/K is algebraic if every element of L
is algebraic over K .

Big point. We have just seen that finite extensions are algebraic.
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