Math 361

January 27, 2023

Let $\phi \colon R \to S$ be a ring homomorphism, and suppose S is an integral domain. Suppose $\phi(1_R) \neq 1_S$.

Let $\phi: R \to S$ be a ring homomorphism, and suppose S is an integral domain. Suppose $\phi(1_R) \neq 1_S$. Then $\phi = 0$.

Let $\phi: R \to S$ be a ring homomorphism, and suppose S is an integral domain. Suppose $\phi(1_R) \neq 1_S$. Then $\phi = 0$.

Proof. We have

 $\phi(1_R) = \phi(1_R \cdot 1_R) = \phi(1_R)\phi(1_R)$

Let $\phi: R \to S$ be a ring homomorphism, and suppose S is an integral domain. Suppose $\phi(1_R) \neq 1_S$. Then $\phi = 0$.

Proof. We have

$$\phi(1_R) = \phi(1_R \cdot 1_R) = \phi(1_R)\phi(1_R) \quad \Rightarrow \quad \phi(1_R)(\phi(1_R) - 1_S) = 0.$$

Let $\phi \colon R \to S$ be a ring homomorphism, and suppose S is an integral domain. Suppose $\phi(1_R) \neq 1_S$. Then $\phi = 0$.

Proof. We have

 $\phi(1_R) = \phi(1_R \cdot 1_R) = \phi(1_R)\phi(1_R) \quad \Rightarrow \quad \phi(1_R)(\phi(1_R) - 1_S) = 0.$ Since S is a domain and $\phi(1_R) \neq 1_S$, we have $\phi(1_R) = 0$.

Let $\phi \colon R \to S$ be a ring homomorphism, and suppose S is an integral domain. Suppose $\phi(1_R) \neq 1_S$. Then $\phi = 0$.

Proof. We have

$$\phi(1_R) = \phi(1_R \cdot 1_R) = \phi(1_R)\phi(1_R) \implies \phi(1_R)(\phi(1_R) - 1_S) = 0.$$

Since S is a domain and $\phi(1_R) \neq 1_S$, we have $\phi(1_R) = 0$. Let $r \in R$. Then

$$\phi(r) = \phi(1_R \cdot r) = \phi(1_R)\phi(r) = 0 \cdot \phi(r) = 0. \qquad \Box$$

Let $\phi \colon R \to S$ be a ring homomorphism, and suppose S is an integral domain. Suppose $\phi(1_R) \neq 1_S$. Then $\phi = 0$.

Proof. We have

$$\phi(1_R) = \phi(1_R \cdot 1_R) = \phi(1_R)\phi(1_R) \implies \phi(1_R)(\phi(1_R) - 1_S) = 0.$$

Since S is a domain and $\phi(1_R) \neq 1_S$, we have $\phi(1_R) = 0$. Let $r \in R$. Then

$$\phi(r) = \phi(1_R \cdot r) = \phi(1_R)\phi(r) = 0 \cdot \phi(r) = 0. \qquad \Box$$

Question: What is wrong with the mapping $\phi \colon \mathbb{Z} \to \mathbb{Z}$ given by $\phi(a) = 2a$?

Let $\phi \colon R \to S$ be a ring homomorphism, and suppose S is an integral domain. Suppose $\phi(1_R) \neq 1_S$. Then $\phi = 0$.

Proof. We have

$$\phi(1_R) = \phi(1_R \cdot 1_R) = \phi(1_R)\phi(1_R) \implies \phi(1_R)(\phi(1_R) - 1_S) = 0.$$

Since S is a domain and $\phi(1_R) \neq 1_S$, we have $\phi(1_R) = 0$. Let $r \in R$. Then

$$\phi(r) = \phi(1_R \cdot r) = \phi(1_R)\phi(r) = 0 \cdot \phi(r) = 0. \quad \Box$$

Question: What is wrong with the mapping $\phi \colon \mathbb{Z} \to \mathbb{Z}$ given by $\phi(a) = 2a$? Answer: it's not a ring homomorphism. For example,

$$2 = \phi(1) = \phi(1 \cdot 1) \neq \phi(1)\phi(1) = 4.$$

Let $\phi \colon R \to S$ be a ring homomorphism. Then $\operatorname{im}(\phi)$ is a ring, and $\phi(1_R)$ is the identity of $\operatorname{im}(\phi)$.

Let $\phi \colon R \to S$ be a ring homomorphism. Then $\operatorname{im}(\phi)$ is a ring, and $\phi(1_R)$ is the identity of $\operatorname{im}(\phi)$.

Example: Let $\phi: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ be given by $\phi(a) = 3a$.

Let $\phi \colon R \to S$ be a ring homomorphism. Then $\operatorname{im}(\phi)$ is a ring, and $\phi(1_R)$ is the identity of $\operatorname{im}(\phi)$.

Example: Let $\phi: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ be given by $\phi(a) = 3a$. Now we have $3 = \phi(1) = \phi(1 \cdot 1) = 3 \cdot 3 = 3$.

Let $\phi \colon R \to S$ be a ring homomorphism. Then $\operatorname{im}(\phi)$ is a ring, and $\phi(1_R)$ is the identity of $\operatorname{im}(\phi)$.

Example: Let $\phi: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ be given by $\phi(a) = 3a$. Now we have $3 = \phi(1) = \phi(1 \cdot 1) = 3 \cdot 3 = 3$.

The image of ϕ is

Let $\phi \colon R \to S$ be a ring homomorphism. Then $\operatorname{im}(\phi)$ is a ring, and $\phi(1_R)$ is the identity of $\operatorname{im}(\phi)$.

Example: Let $\phi: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ be given by $\phi(a) = 3a$. Now we have $3 = \phi(1) = \phi(1 \cdot 1) = 3 \cdot 3 = 3$.

The image of ϕ is {0,3}, which is a ring with identity 3.

Let $\phi \colon R \to S$ be a ring homomorphism. Then $\operatorname{im}(\phi)$ is a ring, and $\phi(1_R)$ is the identity of $\operatorname{im}(\phi)$.

Example: Let $\phi: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ be given by $\phi(a) = 3a$. Now we have $3 = \phi(1) = \phi(1 \cdot 1) = 3 \cdot 3 = 3$.

The image of ϕ is {0,3}, which is a ring with identity 3.

The kernel of ϕ is

Let $\phi \colon R \to S$ be a ring homomorphism. Then $\operatorname{im}(\phi)$ is a ring, and $\phi(1_R)$ is the identity of $\operatorname{im}(\phi)$.

Example: Let $\phi: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ be given by $\phi(a) = 3a$. Now we have $3 = \phi(1) = \phi(1 \cdot 1) = 3 \cdot 3 = 3$.

The image of ϕ is {0,3}, which is a ring with identity 3.

The kernel of ϕ is $\{0, 2, 4\}$,

Let $\phi \colon R \to S$ be a ring homomorphism. Then $\operatorname{im}(\phi)$ is a ring, and $\phi(1_R)$ is the identity of $\operatorname{im}(\phi)$.

Example: Let $\phi: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ be given by $\phi(a) = 3a$. Now we have $3 = \phi(1) = \phi(1 \cdot 1) = 3 \cdot 3 = 3$.

The image of ϕ is {0,3}, which is a ring with identity 3.

The kernel of ϕ is $\{0, 2, 4\}$, and

$$\mathbb{Z}/6\mathbb{Z} / \ker(\phi) \xrightarrow{\sim} \operatorname{im}(\phi)$$

 $a \mapsto 3a.$

Today

- 1. Field extensions.
- 2. Algebraic elements in an extension.
- 3. The minimal polynomial of an algebraic element.
- 4. Finite extensions are algebraic.

A *field extension* is a pair of fields $K \subseteq L$.

A field extension is a pair of fields $K \subseteq L$. In that case, L is automatically a vector space over K.

A field extension is a pair of fields $K \subseteq L$. In that case, L is automatically a vector space over K. It's dimension is denoted

 $[L:K] := \dim_K L,$

A *field extension* is a pair of fields $K \subseteq L$. In that case, L is automatically a vector space over K. It's dimension is denoted

$$[L:K] := \dim_K L,$$

Standard notation:

 $\begin{bmatrix}
 L \\
 L:K
 \end{bmatrix}$ K.

A *field extension* is a pair of fields $K \subseteq L$. In that case, L is automatically a vector space over K. It's dimension is denoted

$$[L:K] := \dim_{K} L,$$

Standard notation:

$$\int L \\
 \begin{bmatrix} [L:K] \\
 K.
 \end{bmatrix}$$

If $[L:K] < \infty$, we say that L is a finite field extension of K.

A *field extension* is a pair of fields $K \subseteq L$. In that case, L is automatically a vector space over K. It's dimension is denoted

$$[L:K] := \dim_{K} L,$$

Standard notation:

$$\int \frac{L}{[L:K]}$$

$$K.$$

If $[L:K] < \infty$, we say that L is a finite field extension of K.

We usually denote a field extension $K \subseteq L$ by L/K.

Example

 $\mathbb{Q}(i)/\mathbb{Q}$:

 $\mathbb{Q}(i)$ $|_2$ \mathbb{Q}

Example

 $\mathbb{Q}(i)/\mathbb{Q}$:

 $\mathbb{Q}(i)$ $|_2$ \mathbb{Q}

 \mathbb{Q} -basis: $\{1, i\}$.

Proposition. Suppose K, H and L are fields with $K \subseteq H \subseteq L$, and suppose that $[L:K] < \infty$. Then $[L:H] < \infty$ and $[H:K] < \infty$, and

[L:K] = [L:H][H:K]. L [L:H] H [H:K] K

Proposition. Suppose K, H and L are fields with $K \subseteq H \subseteq L$, and suppose that $[L:K] < \infty$. Then $[L:H] < \infty$ and $[H:K] < \infty$, and

[L:K] = [L:H][H:K]. L [L:H] H [H:K] K

Proof. Homework.

Definition. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if there exists a nonzero polynomial $f \in K[x]$ such that $f(\alpha) = 0$.

Definition. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if there exists a nonzero polynomial $f \in K[x]$ such that $f(\alpha) = 0$.

Examples.

1. $\sqrt{2}$ and *i* are algebraic over \mathbb{Q} .

Definition. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if there exists a nonzero polynomial $f \in K[x]$ such that $f(\alpha) = 0$.

Examples.

- 1. $\sqrt{2}$ and *i* are algebraic over \mathbb{Q} .
- 2. What about π over \mathbb{Q} ?

Definition. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if there exists a nonzero polynomial $f \in K[x]$ such that $f(\alpha) = 0$.

Examples.

- 1. $\sqrt{2}$ and *i* are algebraic over \mathbb{Q} .
- 2. What about π over \mathbb{Q} ?
- 3. Let t be an indeterminate. Is t over $\mathbb{Q}(t^2)$?

Definition. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if there exists a nonzero polynomial $f \in K[x]$ such that $f(\alpha) = 0$.

Examples.

- 1. $\sqrt{2}$ and *i* are algebraic over \mathbb{Q} .
- 2. What about π over \mathbb{Q} ?
- Let t be an indeterminate. Is t over Q(t²)? How about t over Q?

Minimal polynomial

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Minimal polynomial

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Proof Let $I = \{f \in K[x] : f(\alpha) = 0\}.$

Minimal polynomial

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Proof Let $I = \{f \in K[x] : f(\alpha) = 0\}$. Then since K[x] is a PID, I = (p) for some $p \in K[x]$.

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Proof Let $I = \{f \in K[x] : f(\alpha) = 0\}$. Then since K[x] is a PID, I = (p) for some $p \in K[x]$. We may assume p is monic.

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Proof Let $I = \{f \in K[x] : f(\alpha) = 0\}$. Then since K[x] is a PID, I = (p) for some $p \in K[x]$. We may assume p is monic. If f is any nonzero element of I, we may write f = pq for some nonzero $q \in K[x]$.

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Proof Let $I = \{f \in K[x] : f(\alpha) = 0\}$. Then since K[x] is a PID, I = (p) for some $p \in K[x]$. We may assume p is monic. If f is any nonzero element of I, we may write f = pq for some nonzero $q \in K[x]$. We have

$$\deg(f) = \deg(pq) = \deg(p) + \deg(q) \ge \deg(p).$$

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Proof Let $I = \{f \in K[x] : f(\alpha) = 0\}$. Then since K[x] is a PID, I = (p) for some $p \in K[x]$. We may assume p is monic. If f is any nonzero element of I, we may write f = pq for some nonzero $q \in K[x]$. We have

$$\deg(f) = \deg(pq) = \deg(p) + \deg(q) \ge \deg(p).$$

If $\deg(f) = \deg(p)$, then

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Proof Let $I = \{f \in K[x] : f(\alpha) = 0\}$. Then since K[x] is a PID, I = (p) for some $p \in K[x]$. We may assume p is monic. If f is any nonzero element of I, we may write f = pq for some nonzero $q \in K[x]$. We have

$$\deg(f) = \deg(pq) = \deg(p) + \deg(q) \ge \deg(p).$$

If $\deg(f) = \deg(p)$, then $\deg(q) = 0$. So q is a nonzero element of K.

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Proof Let $I = \{f \in K[x] : f(\alpha) = 0\}$. Then since K[x] is a PID, I = (p) for some $p \in K[x]$. We may assume p is monic. If f is any nonzero element of I, we may write f = pq for some nonzero $q \in K[x]$. We have

$$\deg(f) = \deg(pq) = \deg(p) + \deg(q) \ge \deg(p).$$

If $\deg(f) = \deg(p)$, then $\deg(q) = 0$. So q is a nonzero element of K. Two polynomials are, by definition, equal if and only if their coefficients are equal. So if $\deg(f) = \deg(p)$ and f is monic, it follows that f = p.

Proposition. If L/K is a field extension and $\alpha \in L$ is algebraic over K, then there exists a unique *monic* polynomial $p \in K[x]$ of minimal positive degree such that $p(\alpha) = 0$.

Proof Let $I = \{f \in K[x] : f(\alpha) = 0\}$. Then since K[x] is a PID, I = (p) for some $p \in K[x]$. We may assume p is monic. If f is any nonzero element of I, we may write f = pq for some nonzero $q \in K[x]$. We have

$$\deg(f) = \deg(pq) = \deg(p) + \deg(q) \ge \deg(p).$$

If $\deg(f) = \deg(p)$, then $\deg(q) = 0$. So q is a nonzero element of K. Two polynomials are, by definition, equal if and only if their coefficients are equal. So if $\deg(f) = \deg(p)$ and f is monic, it follows that f = p.

Definition. The polynomial p in the above proposition is called the *minimal polynomial for* α *over* K.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg. Then $f \neq 0$ and $g \neq 0$, but $p(\alpha) = f(\alpha)g(\alpha) = 0$.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg. Then $f \neq 0$ and $g \neq 0$, but $p(\alpha) = f(\alpha)g(\alpha) = 0$. WLOG, $f(\alpha) = 0$.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg. Then $f \neq 0$ and $g \neq 0$, but $p(\alpha) = f(\alpha)g(\alpha) = 0$. WLOG, $f(\alpha) = 0$. We must have $\deg(f) > 0$.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg. Then $f \neq 0$ and $g \neq 0$, but $p(\alpha) = f(\alpha)g(\alpha) = 0$. WLOG, $f(\alpha) = 0$. We must have deg(f) > 0. We have

 $\deg(p) = \deg(f) + \deg(g).$

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg. Then $f \neq 0$ and $g \neq 0$, but $p(\alpha) = f(\alpha)g(\alpha) = 0$. WLOG, $f(\alpha) = 0$. We must have deg(f) > 0. We have

$$\deg(p) = \deg(f) + \deg(g).$$

By minimality of p,

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg. Then $f \neq 0$ and $g \neq 0$, but $p(\alpha) = f(\alpha)g(\alpha) = 0$. WLOG, $f(\alpha) = 0$. We must have deg(f) > 0. We have

$$\deg(p) = \deg(f) + \deg(g).$$

By minimality of p, we have deg(f) = deg(p), and hence

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg. Then $f \neq 0$ and $g \neq 0$, but $p(\alpha) = f(\alpha)g(\alpha) = 0$. WLOG, $f(\alpha) = 0$. We must have $\deg(f) > 0$. We have

$$\deg(p) = \deg(f) + \deg(g).$$

By minimality of p, we have deg(f) = deg(p), and hence deg(g) = 0.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg. Then $f \neq 0$ and $g \neq 0$, but $p(\alpha) = f(\alpha)g(\alpha) = 0$. WLOG, $f(\alpha) = 0$. We must have deg(f) > 0. We have

$$\deg(p) = \deg(f) + \deg(g).$$

By minimality of p, we have $\deg(f) = \deg(p)$, and hence $\deg(g) = 0$. Since $g \neq 0$, it follows that g is a nonzero constant, hence a unit in K[x].

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg. Then $f \neq 0$ and $g \neq 0$, but $p(\alpha) = f(\alpha)g(\alpha) = 0$. WLOG, $f(\alpha) = 0$. We must have $\deg(f) > 0$. We have

$$\deg(p) = \deg(f) + \deg(g).$$

By minimality of p, we have $\deg(f) = \deg(p)$, and hence $\deg(g) = 0$. Since $g \neq 0$, it follows that g is a nonzero constant, hence a unit in K[x].

We prove the converse on the next page.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible and monic.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible and monic. Let f be the minimal polynomial for α over K.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible and monic. Let f be the minimal polynomial for α over K. Apply the division algorithm:

$$p = qf + r$$

for some $q, r \in K[x]$ with deg $r < \deg f$.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof continued. To prove the converse, assume *p* is irreducible and monic. Let *f* be the minimal polynomial for α over *K*. Apply the division algorithm:

$$p = qf + r$$

for some $q, r \in K[x]$ with deg $r < \deg f$. We have $0 = p(\alpha) = q(\alpha)f(\alpha) + r(\alpha) =$

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof continued. To prove the converse, assume *p* is irreducible and monic. Let *f* be the minimal polynomial for α over *K*. Apply the division algorithm:

$$p = qf + r$$

for some $q, r \in K[x]$ with deg $r < \deg f$. We have $0 = p(\alpha) = q(\alpha)f(\alpha) + r(\alpha) = r(\alpha)$.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof continued. To prove the converse, assume *p* is irreducible and monic. Let *f* be the minimal polynomial for α over *K*. Apply the division algorithm:

$$p = qf + r$$

for some $q, r \in K[x]$ with deg $r < \deg f$. We have $0 = p(\alpha) = q(\alpha)f(\alpha) + r(\alpha) = r(\alpha)$. If $r \neq 0$, we contradict the minimality of f.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof continued. To prove the converse, assume *p* is irreducible and monic. Let *f* be the minimal polynomial for α over *K*. Apply the division algorithm:

$$p = qf + r$$

for some $q, r \in K[x]$ with deg $r < \deg f$. We have $0 = p(\alpha) = q(\alpha)f(\alpha) + r(\alpha) = r(\alpha)$. If $r \neq 0$, we contradict the minimality of f. So r = 0 and p = qf.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof continued. To prove the converse, assume *p* is irreducible and monic. Let *f* be the minimal polynomial for α over *K*. Apply the division algorithm:

$$p = qf + r$$

for some $q, r \in K[x]$ with deg $r < \deg f$. We have $0 = p(\alpha) = q(\alpha)f(\alpha) + r(\alpha) = r(\alpha)$. If $r \neq 0$, we contradict the minimality of f. So r = 0 and p = qf. Then p irreducible and $f \notin K$ imply q is a unit, i.e., $q \in K \setminus \{0\}$.

Proposition. Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let p be a monic polynomial such that $p(\alpha) = 0$. Then p is the minimal polynomial for α over K if and only if p is irreducible.

Proof continued. To prove the converse, assume *p* is irreducible and monic. Let *f* be the minimal polynomial for α over *K*. Apply the division algorithm:

$$p = qf + r$$

for some $q, r \in K[x]$ with deg $r < \deg f$. We have $0 = p(\alpha) = q(\alpha)f(\alpha) + r(\alpha) = r(\alpha)$. If $r \neq 0$, we contradict the minimality of f. So r = 0 and p = qf. Then p irreducible and $f \notin K$ imply q is a unit, i.e., $q \in K \setminus \{0\}$. Finally, since pand f are both monic, p = f.

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K.

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let $K[\alpha]$ be the smallest subring of L containing α , and let $K(\alpha)$ be the smallest subfield of L containing α .

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let $K[\alpha]$ be the smallest subring of L containing α , and let $K(\alpha)$ be the smallest subfield of L containing α .

Then

$$K[\alpha] := \{f(\alpha) : f \in K[x]\},\$$

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let $K[\alpha]$ be the smallest subring of L containing α , and let $K(\alpha)$ be the smallest subfield of L containing α .

Then

$$\mathcal{K}[\alpha] := \{ f(\alpha) : f \in \mathcal{K}[x] \},\$$

and

$$K(\alpha) := \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in K[x], g(\alpha) \neq 0 \right\}.$$

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let $K[\alpha]$ be the smallest subring of L containing α , and let $K(\alpha)$ be the smallest subfield of L containing α .

Then

$$\mathcal{K}[\alpha] := \{f(\alpha) : f \in \mathcal{K}[x]\},\$$

and

$$K(\alpha) := \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in K[x], g(\alpha) \neq 0 \right\}.$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$.

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let $K[\alpha]$ be the smallest subring of L containing α , and let $K(\alpha)$ be the smallest subfield of L containing α .

Then

$$\mathcal{K}[\alpha] := \{f(\alpha) : f \in \mathcal{K}[x]\},\$$

and

$$K(\alpha) := \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in K[x], g(\alpha) \neq 0 \right\}.$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$

Let L/K be a field extension, and let $\alpha \in L$ be algebraic over K. Let $K[\alpha]$ be the smallest subring of L containing α , and let $K(\alpha)$ be the smallest subfield of L containing α .

Then

$$\mathcal{K}[\alpha] := \{f(\alpha) : f \in \mathcal{K}[x]\},\$$

and

$$K(\alpha) := \left\{ \frac{f(\alpha)}{g(\alpha)} : f, g \in K[x], g(\alpha) \neq 0 \right\}.$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha) : K] = n < \infty$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n+1 (not necessarily distinct) elements in a vector space of dimension n, so

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n+1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n + 1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n+1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero. Define the polynomial $f(x) = \sum_{i=0}^{n} c_i x^i$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n+1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero. Define the polynomial $f(x) = \sum_{i=0}^{n} c_i x^i$. Then $f \in K[x]$ and $f(\alpha) = 0$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n+1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero. Define the polynomial $f(x) = \sum_{i=0}^{n} c_i x^i$. Then $f \in K[x]$ and $f(\alpha) = 0$. So α is algebraic over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof.

First suppose that $[K(\alpha): K] = n < \infty$. Then $1, \alpha, \alpha^2, \ldots, \alpha^n$ are n+1 (not necessarily distinct) elements in a vector space of dimension n, so they are linearly dependent. This means $\sum_{i=0}^{n} c_i \alpha^i = 0$ for some $c_i \in K$, not all zero. Define the polynomial $f(x) = \sum_{i=0}^{n} c_i x^i$. Then $f \in K[x]$ and $f(\alpha) = 0$. So α is algebraic over K.

Proof continued on next page.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ are linearly independent.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not,

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$. Defining $f = \sum_{i=0}^{n-1} b_i x^i$, we have

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$. Defining $f = \sum_{i=0}^{n-1} b_i x^i$, we have $f \in K[x]$ and $f(\alpha) = 0$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$. Defining $f = \sum_{i=0}^{n-1} b_i x^i$, we have $f \in K[x]$ and $f(\alpha) = 0$. However, deg(f) < deg(p) = n, which contradicts the minimality of p.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Conversely, suppose that α is algebraic over K, and let $p = \sum_{i=0}^{n} a_i x^i$ be its minimal polynomial. We first claim that $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$ are linearly independent. If not, then there is a nontrivial linear relation $\sum_{i=0}^{n-1} b_i \alpha^i$. Defining $f = \sum_{i=0}^{n-1} b_i x^i$, we have $f \in K[x]$ and $f(\alpha) = 0$. However, deg(f) < deg(p) = n, which contradicts the minimality of p.

Proof continued on next page.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p).

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$K(\alpha) \subseteq V$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{\mathcal{K}}\{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$\mathcal{K}(\alpha) \subseteq \mathcal{V} \subseteq \mathcal{K}[\alpha]$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$K(\alpha) \subseteq V \subseteq K[\alpha] \subseteq K(\alpha).$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$K(\alpha) \subseteq V \subseteq K[\alpha] \subseteq K(\alpha).$$

It then follows that $K[\alpha] = V = K(\alpha)$, and we are done.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Now define $V = \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We have seen that dim V = n = deg(p). Our goal is to prove that V is a field. We then have

$$K(\alpha) \subseteq V \subseteq K[\alpha] \subseteq K(\alpha).$$

It then follows that $K[\alpha] = V = K(\alpha)$, and we are done.

Proof continued on next page.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication?

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication? Answer: since $p(\alpha) = 0$, we have $\alpha^n = -\sum_{i=0}^{n-1} a_i \alpha^i$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication? Answer: since $p(\alpha) = 0$, we have $\alpha^n = -\sum_{i=0}^{n-1} a_i \alpha^i$.

Most of the rest of the field properties follow since $V \subseteq L$, and L is a field.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication? Answer: since $p(\alpha) = 0$, we have $\alpha^n = -\sum_{i=0}^{n-1} a_i \alpha^i$.

Most of the rest of the field properties follow since $V \subseteq L$, and L is a field.

It remains to show that nonzero elements of V have inverses.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Claim: $V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}$ is a field.

Why is V closed under multiplication? Answer: since $p(\alpha) = 0$, we have $\alpha^n = -\sum_{i=0}^{n-1} a_i \alpha^i$.

Most of the rest of the field properties follow since $V \subseteq L$, and L is a field.

It remains to show that nonzero elements of V have inverses.

Proof continued on next page.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{\mathcal{K}} \{1, \alpha, \alpha^2, \cdots, \alpha^{n-1}\}.$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$,

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) =$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i} x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i} x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i} x^{i} \in K[x]$. So $h(\alpha) = v$.

Since *p* is irreducible, it is prime. So the only prime factor that both *h* and *p* could share is *p*. But $\deg(h) < \deg(p)$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K} \{1, \alpha, \alpha^{2}, \dots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i} \alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i} x^{i} \in K[x]$. So $h(\alpha) = v$.

Since *p* is irreducible, it is prime. So the only prime factor that both *h* and *p* could share is *p*. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$. Therefore, there exist $f, g \in K[x]$ such that

$$fh + gp = 1.$$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$. Therefore, there exist $f, g \in K[x]$ such that

$$fh + gp = 1.$$

So $1 = f(\alpha)h(\alpha) + g(\alpha)p(\alpha)$

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$. Therefore, there exist $f, g \in K[x]$ such that

$$fh + gp = 1.$$

So $1 = f(\alpha)h(\alpha) + g(\alpha)p(\alpha) = f(\alpha)v$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Proof continued. Let $0 \neq v \in V := \text{Span}_{K}\{1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\}$. We claim v has a multiplicative inverse in V. Write $v = \sum_{i=0}^{n-1} b_{i}\alpha^{i}$ for some $b_{i} \in K$, then define $h = \sum_{i=0}^{n-1} b_{i}x^{i} \in K[x]$. So $h(\alpha) = v$.

Since p is irreducible, it is prime. So the only prime factor that both h and p could share is p. But $\deg(h) < \deg(p)$. So $\gcd(h, p) = 1$. Therefore, there exist $f, g \in K[x]$ such that

$$fh + gp = 1.$$

So $1 = f(\alpha)h(\alpha) + g(\alpha)p(\alpha) = f(\alpha)v$. Thus, the multiplicative inverse of v is $f(\alpha)$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$. Then since $K(\alpha)$ is a *K*-subvector space of *L*, it follows that $[K(\alpha):K] < \infty$.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$. Then since $K(\alpha)$ is a *K*-subvector space of *L*, it follows that $[K(\alpha):K] < \infty$. The result then follows from the Theorem.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$. Then since $K(\alpha)$ is a *K*-subvector space of *L*, it follows that $[K(\alpha):K] < \infty$. The result then follows from the Theorem.

Definition. A field extension L/K is *algebraic* if every element of L is algebraic over K.

Theorem. Let L/K be a field extension. Then $\alpha \in L$ is algebraic over K if and only if $[K(\alpha) : K] < \infty$. In this case, $K[\alpha] = K(\alpha)$ and $[K(\alpha) : K] = \deg(p)$ where p is the minimal polynomial for α over K.

Corollary. If $[L:K] < \infty$ and $\alpha \in L$, then α is algebraic over K.

Proof. Suppose $[L:K] < \infty$ and $\alpha \in L$. Then since $K(\alpha)$ is a *K*-subvector space of *L*, it follows that $[K(\alpha):K] < \infty$. The result then follows from the Theorem.

Definition. A field extension L/K is algebraic if every element of L is algebraic over K.

Big point. We have just seen that *finite extensions are algebraic*.