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Questions from last time

Let ¢: R — S be a ring homomorphism, and suppose S is an
integral domain. Suppose ¢(1g) # 1s. Then ¢ = 0.

Proof. We have

#(1r) = #(1r - 1) = ¢(1r)9(1r) = ¢(1r)(#(1r) —1s) =0.

Since S is a domain and ¢(1gr) # 1s, we have ¢(1g) = 0. Let
r € R. Then

o(r) =¢(lr-r) = ¢(1r)p(r) =0-¢(r)=0. O

Question: What is wrong with the mapping ¢: Z — 7Z given by
¢(a) = 2a? Answer: it's not a ring homomorphism. For example,

2= 6(1) = o(1-1) # $(1)p(1) = 4.
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Question for last time

Let ¢: R — S be a ring homomorphism. Then im(¢) is a ring, and
@(1R) is the identity of im(¢).

Example: Let ¢: Z/67Z — Z/6Z be given by ¢(a) = 3a.
Now we have 3 =¢(1) =¢(1-1) =3-3=3.

The image of ¢ is {0, 3}, which is a ring with identity 3.
The kernel of ¢ is {0,2,4}, and

7./67. / ker(6) = im(g)

a— 3a.



Today

1. Field extensions.

2. Algebraic elements in an extension.

3. The minimal polynomial of an algebraic element.
4

. Finite extensions are algebraic.
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Field extensions

A field extension is a pair of fields K C L. In that case, L is
automatically a vector space over K. It's dimension is denoted

[L: K] :=dimgL,

Standard notation:

L
[L:K]

K.

If [L: K] < oo, we say that L is a finite field extension of K.

We usually denote a field extension K C L by L/K.
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Q-basis: {1,i}.
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Proof. Homework.
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over K if there exists a nonzero polynomial f € K[x] such that
f(a) =0.

Examples.
1. v/2 and i are algebraic over Q.
2. What about 7 over Q7

3. Let t be an indeterminate. Is t over Q(t?)? How about t
over Q7
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Proposition. If L/K is a field extension and « € L is algebraic
over K, then there exists a unique monic polynomial p € K[x] of
minimal positive degree such that p(a) = 0.

Proof Let | = {f € K[x] : f(a) = 0}. Then since K[x] is a PID,

I = (p) for some p € K[x]. We may assume p is monic. If f is any
nonzero element of /, we may write f = pq for some nonzero

g € K[x]. We have

deg(f) = deg(pq) = deg(p) + deg(q) > deg(p).

If deg(f) = deg(p), then deg(q) = 0. So g is a nonzero element
of K. Two polynomials are, by definition, equal if and only if their
coefficients are equal. So if deg(f) = deg(p) and f is monic, it
follows that f = p.

Definition. The polynomial p in the above proposition is called
the minimal polynomial for o over K.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.
Then f # 0 and g # 0, but p(a) = f(a)g(a) = 0.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.
Then f # 0 and g # 0, but p(a) = f(a)g(a) = 0. WLOG,
f(a) =0.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.
Then f # 0 and g # 0, but p(a) = f(a)g(a) = 0. WLOG,
f(a) = 0. We must have deg(f) > 0.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.
Then f # 0 and g # 0, but p(a) = f(a)g(a) = 0. WLOG,
f(a) = 0. We must have deg(f) > 0. We have

deg(p) = deg(f) + deg(g)-



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.
Then f # 0 and g # 0, but p(a) = f(a)g(a) = 0. WLOG,
f(a) = 0. We must have deg(f) > 0. We have

deg(p) = deg(f) + deg(g)-

By minimality of p,



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.
Then f # 0 and g # 0, but p(a) = f(a)g(a) = 0. WLOG,
f(a) = 0. We must have deg(f) > 0. We have

deg(p) = deg(f) + deg(g)-

By minimality of p, we have deg(f) = deg(p), and hence



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.
Then f # 0 and g # 0, but p(a) = f(a)g(a) = 0. WLOG,
f(a) = 0. We must have deg(f) > 0. We have

deg(p) = deg(f) + deg(g)-

By minimality of p, we have deg(f) = deg(p), and hence
deg(g) = 0.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.
Then f # 0 and g # 0, but p(a) = f(a)g(a) = 0. WLOG,
f(a) = 0. We must have deg(f) > 0. We have

deg(p) = deg(f) + deg(g)-

By minimality of p, we have deg(f) = deg(p), and hence
deg(g) = 0. Since g # 0, it follows that g is a nonzero constant,
hence a unit in K[x].



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let « € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof. Suppose p is the minimal polynomial and p = fg.
Then f # 0 and g # 0, but p(a) = f(a)g(a) = 0. WLOG,
f(a) = 0. We must have deg(f) > 0. We have

deg(p) = deg(f) + deg(g)-

By minimality of p, we have deg(f) = deg(p), and hence
deg(g) = 0. Since g # 0, it follows that g is a nonzero constant,
hence a unit in K[x].

We prove the converse on the next page.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible
and monic.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible
and monic. Let f be the minimal polynomial for o over K.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible
and monic. Let f be the minimal polynomial for o over K. Apply
the division algorithm:

p=qf +r

for some g, r € K[x]| with degr < deg f.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible
and monic. Let f be the minimal polynomial for o over K. Apply
the division algorithm:

p=qf +r

for some g, r € K[x]| with degr < deg f. We have
0= p(a) = g(a)f(a) + r(a) =



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible
and monic. Let f be the minimal polynomial for o over K. Apply
the division algorithm:

p=qf +r

for some g, r € K[x]| with degr < deg f. We have
0 = p(a) = g(a)f(a) + r(a) = r(a).



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible
and monic. Let f be the minimal polynomial for o over K. Apply
the division algorithm:

p=qf +r

for some g, r € K[x]| with degr < deg f. We have
0=p(a) =qg(a)f(a) + r(a) = r(a). If r # 0, we contradict the
minimality of f.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible
and monic. Let f be the minimal polynomial for o over K. Apply
the division algorithm:

p=qf +r

for some g, r € K[x]| with degr < deg f. We have
0=p(a) =qg(a)f(a) + r(a) = r(a). If r # 0, we contradict the
minimality of f. So r =0 and p = gf.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible
and monic. Let f be the minimal polynomial for o over K. Apply
the division algorithm:

p=qf +r

for some g, r € K[x]| with degr < deg f. We have

0=p(a) =qg(a)f(a) + r(a) = r(a). If r # 0, we contradict the
minimality of f. So r =0 and p = gf. Then p irreducible

and f € K imply g is a unit, i.e.,, g € K\ {0}.



The minimal polynomial and irreducibility

Proposition. Let L/K be a field extension, and let a € L be
algebraic over K. Let p be a monic polynomial such

that p(a) = 0. Then p is the minimal polynomial for a over K if
and only if p is irreducible.

Proof continued. To prove the converse, assume p is irreducible
and monic. Let f be the minimal polynomial for o over K. Apply
the division algorithm:

p=qf +r

for some g, r € K[x]| with degr < deg f. We have

0=p(a) =qg(a)f(a) + r(a) = r(a). If r # 0, we contradict the
minimality of f. So r =0 and p = gf. Then p irreducible

and f € K imply g is a unit, i.e., g € K\ {0}. Finally, since p
and f are both monic, p = f.
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K|a] versus K(«)

Theorem. Let L/K be a field extension. Then « € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(«) : K] = deg(p) where p is the minimal polynomial for «
over K.

Proof continued. Let 0 # v € V := Spang{l,a,a?,--- ,a" 1}
We claim v has a multiplicative inverse in V. Write v = Z,’-’Z_ol bio
for some b; € K, then define h = 7"} bix’ € K[x]. So h(a) = v.

Since p is irreducible, it is prime. So the only prime factor that
both h and p could share is p. But deg(h) < deg(p). So
gecd(h, p) = 1. Therefore, there exist f, g € K[x] such that

th+gp = 1.

So 1 = f(a)h(a) + g(a)p(a) = f(a)v. Thus, the multiplicative
inverse of v is f(«).
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Finite extensions are algebraic

Theorem. Let L/K be a field extension. Then a € L is algebraic
over K if and only if [K(a) : K] < co. In this case, K[a] = K(«)
and [K(a) : K] = deg(p) where p is the minimal polynomial for o
over K.

Corollary. If [L: K] < oo and « € L, then « is algebraic over K.

Proof. Suppose [L: K] < 0o and e € L. Then since K(a) is a
K-subvector space of L, it follows that [K(«) : K] < co. The result
then follows from the Theorem.

Definition. A field extension L/K is algebraic if every element of L
is algebraic over K.

Big point. We have just seen that finite extensions are algebraic.



