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Pliicker embedding of G;P3

A:GqP3 — P

Taking coordinates x(01), x(02), x(03), x(12), x(13), x(23)
on PP°, the image is exactly the set of solutions to the Pliicker
relation

x(01)x(23) — x(02)x(13) 4+ x(03)x(12) = 0.

So G1P3 is a quadric hypersurface: it has codimension 1
(dimension 4), and is defined by a single polynomial equation of
degree 2.
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Schubert variety: to meet a line

Consider the flag Ay C A; in P2 where dim Ag = 1 and
dimA; = 3. So Ap is a line L, and A; = PP3.

The corresponding Schubert variety is
S(L,P?) = {¢ € G;P® : dim(¢N L) > 0,dim(£ N P?) > 1}
= {{ € GP? : dim(¢ N L) > 0},
i.e., G(L,P3) is the set of lines in P? meeting the given line L.
Fact: under the Pliicker embedding, G1IP3 C P5, we have
S(L,P?) =GiP> N H,

for some hyperplane H; in P> (consistent with the fact
that G1PP3 has codimension 1 in P%).
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Meeting four lines

We have seen that the set of lines in P2 meeting a give line L is
given by G1PP3 N H; for some hyperplane H; C P5. The lines
meeting four given lines L1, Ly, L3, L4 is therefore given by

N_1(G1P? N H,) = GiP? N (N1 HL).

If the L; are in general position, then N#H,, will be a line M
in P°. Since G1P3 C P is defined by the equation

x(12)x(34) — x(13)x(24) + x(14)x(23),

we expect line M to meet G;P3 in 2 points.

Goal: Compute a concrete example given four specific lines.
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Generalized Laplace Expansion. Let D be an n x n matrix. Let

[n] ={1,...,n}, and fix row indices | C [n]. The complement is
denoted J = I = [n] \ . For each collection of column indices J
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Hy, = [23]x(01) — [13]x(02) + [12]x(03) + [03]x(12) — [02]x(13) + [01]x(23) = 0
So / intersects L if and only if its Pliicker coordinates satisfy H,.

Therefore,
S(L,P3) =G PPN H,.
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Where does this line intersect the Grassmannian G{P3?

Answer: points that satisfy the Pliicker equation
x(01)x(23) — x(02)x(13) 4 x(03)x(12):
(35)0 — t(—3s+t)+s(—2s) = (t —s)(2s — t) = 0.

Solutions: (1,1),(1,2) € PL,.



Example

The line N%_; H;. has parametric equation

L(s,t) = s(3,0,1,—2,—3,0) + t(0,1,0,0,1,0)
= (3s,t,5,—2s,—3s + t,0) € P°.

Where does this line intersect the Grassmannian G{P3?

Answer: points that satisfy the Pliicker equation
x(01)x(23) — x(02)x(13) 4 x(03)x(12):
(35)0 — t(—3s+t) +s(—2s) = (t —s)(2s — t) = 0.
Solutions: (1,1),(1,2) € PL,. Corresponding point in P°:

(3,1,1,-2,-2,0) and (3,2,1,—2,-1,0).



Example

The line N%_; H;. has parametric equation

L(s,t) = s(3,0,1,—2,—3,0) + t(0,1,0,0,1,0)
= (3s,t,5,—2s,—3s + t,0) € P°.

Where does this line intersect the Grassmannian G{P3?
Answer: points that satisfy the Pliicker equation
x(01)x(23) — x(02)x(13) 4 x(03)x(12):
(35)0 — t(—3s+t) +s(—2s) = (t —s)(2s — t) = 0.
Solutions: (1,1),(1,2) € PL,. Corresponding point in P°:
(3,1,1,-2,-2,0) and (3,2,1,—-2,-1,0).

These are the Pliicker coordinates for the two lines in P2 that
meet Ly,..., La.



Example

Pliicker coordinates: (3,1,1,—-2,—2,0) and (3,2,1,—-2,—1,0).
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Pliicker coordinates: (3,1,1,—-2,—2,0) and (3,2,1,—-2,—1,0).

Problem: find corresponding homogeneous coordinates for points
in G1P3.



Example

Pliicker coordinates: (3,1,1,—2,—2,0) and (3,2,1,—2,-1,0).

Problem: find corresponding homogeneous coordinates for points
in G1P3.

Since the second coordinate of (3,1,1,—2,—2,0) is 1, we solve

1 a 0 c
A(O b 1 d)_(bulvdvavad_bC)—(3,1,1,—27—270)_



Example

Pliicker coordinates: (3,1,1,—2,—2,0) and (3,2,1,—2,-1,0).

Problem: find corresponding homogeneous coordinates for points
in G1P3.

Since the second coordinate of (3,1,1,—2,—2,0) is 1, we solve

1 a 0 c
A(O b 1 d)_(bulvdvavad_bC)—(3,1,1,—27—270)_

Thus, one line is given by

(s,t) — s(1,—2,0,0) + £(0,3,1,1) € P,



Example

Pliicker coordinates: (3,1,1,—2,—2,0) and (3,2,1,—2,-1,0).

Problem: find corresponding homogeneous coordinates for points
in G1P3.

Since the second coordinate of (3,1,1,—2,—2,0) is 1, we solve

1 a 0 c
A(O b 1 d)_(bulvdvavad_bC)—(3,1,1,—27—270)_

Thus, one line is given by
(s, t) — s(1,-2,0,0) + £(0,3,1,1) € P?,
or, in coordinates (u, x, y, z) for P3,

{2u+x=3z,y = z}.



Example

Similarly,

A2 ( é Z ; (1’ ) = (b,d,1,ad—bc, a,c) = (3,2,1,-2,—1,0)
yields the other line:
(s,t) — s(1,-1,0,0) + t(0,3,2,1),

or
{u+x=3z,y =2z}.



Example

Similarly,

A2 ( é Z ; (1’ ) = (b,d,1,ad—bc, a,c) = (3,2,1,-2,—1,0)
yields the other line:
(s,t) — s(1,-1,0,0) + t(0,3,2,1),

or
{u+x=3z,y =2z}.
Embedding R3 C P3 as {u = 1}, we get lines in R3:
{2u+x=3z,y=2z} » {24+ x=3z,y =z}
{u+x=3z,y =2z} ~» {1+x=3z,y =2z}



Example

Two solutions in affine space:

{x=3z-2,y=12z}, {x=3z-1,y=2z}.



Example

Two solutions in affine space:

{x=3z-2,y=12z}, {x=3z-1,y=2z}.

Our four lines in affine space:

L; ={y=2z=0}, Ly={x=1zy=1}
L3 ={x=2z,y =2}, Ly={x=y,z=1}.



