
Schubert calculus



GrPn

Goal: Compute HkGrPn.



Algebraic sets

An (affine) algebraic set X is the zero set of a set S of
polynomial equations in K [x1, . . . , xn].

We can replace S with the ideal I generated by S without
changing the solution set.

By the Hilbert basis theorem, I is finitely generated. So,
I = (f1, . . . , fk) for some polynomials fi . Therefore,

X = Z (I) = {p ∈ Kn : f1(p) = · · · = fk(p) = 0}.

Example. X = Z (z − x2 − y2, z − 4) is a circle of radius 2 in
3-space.



Varieties

An algebraic set X = Z (I) is irreducible if it cannot be written as
the proper union of two algebraic sets.

A variety is an irreducible algebraic set.

Example. Z (xy) is the algebraic set xy = 0

= ⋃ = Z (y) ∪ Z (x)



Projective varieties

A polynomial f ∈ K [x1, . . . , xn+1] is homogeneous if each of its
monomials has the same degree.

Example: f (x , y , z) = 3x3 − 7xyz + 8yz2 is homogeneous of
degree 3.

If f is homogeneous of degree d and f (p) = 0, then
f (λp) = λd f (p) = 0. Hence, f defines a subset of Pn.

The solution set to a system of homogeneous polynomials is a
projective algebraic set.

An projective algebraic set that cannot be written as a proper
union of projective algebraic sets is irreducible.

An irreducible projective algebraic set is a projective variety.



Zariski topology

Exercise. The union of a finite number of algebraic sets is
algebraic. The intersection of an arbitrary collection of algebraic
sets is algebraic. The empty set and the whole space are
algebraic (both for affine and projective algebraic sets).

The collection of algebraic sets form the closed sets of a
topology called the Zariski topology.



Cycle space

Zr (X ) = formal Z-linear combinations of r -dimensional
subvarieties of X

Rational equivalence. There is an algebraic geometry version of
continuous deformation) A ∼ B for subvarieties A, B ⊆ X :

A ∼ B if there exists a subvariety V ⊂ P1 × X and points
p, q ∈ P1 such that V ∩ ({p} × X ) − V ∩ ({q} × X ) = A − B.

Example. Z (y − x2) ∼ Z (x2) in X = R2 via αy − x2 for
α ∈ R ⊂ P1.



Chow group

Chow group: Ar (X ) = Zn−r (X )/ ∼

Chow ring: A•(X ) =
⊕

r≥0 Ar (X )

product: [A][B] = [A ∩ B]

If [A] ∈ Ar (X ) and [B] ∈ As(X ), then [A][B] ∈ Ar+s(X ).



Chow ring of GrPn

flag: r + 1 nested linear subspaces: A0 ⊊ · · · ⊊ Ar ⊆ Pn

Schubert variety:

S(A0, . . . , Ar ) = {L ∈ GrPn : dim(L ∩ Ai) ≥ i for all i}

Fact: Regarding GrPn ⊂ P(n+1
r+1)−1 via the Plücker embedding,

there exists some linear subspace M ⊆ P(n+1
r+1)−1 such that

S(A0, . . . , Ar ) = GrPn ∩ M.



Schubert classes

Notation for the rational equivalence class of a Schubert variety:

(a0, . . . , ar ) := [S(A0, . . . , Ar )] ∈ A•(GrPn)

where ai := dim Ai for all i .

Theorem. If A0 ⊊ · · · ⊊ Ar and B0 ⊊ · · · ⊊ Br are two flags
with ai = dim Ai and bi = dim Bi for all i , then

(a0, . . . , ar ) = (b0, . . . , br ) ∈ A•(GrPn)



Chow ring for GrPn

Theorem. The Chow ring for GrPn is a free module with
Z-basis consisting of the Schubert classes:

{(a0, . . . , ar ) : 0 ≤ a0 < · · · < ar ≤ n}.

The codimension of (a0, . . . , ar ) is

dimGrPn −
r∑

i=0
(ai − 1) = (r + 1)(n − r) −

r∑
i=1

(ai − i).



A useful inequality
Lemma. Suppose L and M are linear subspaces of a vector
space V of dimension n. Then

dim(L ∩ M) ≥ dim L + dim M − n.

Proof.
Recall L + M = {ℓ + m : ℓ ∈ L and m ∈ M} ⊆ V . There is a
short exact sequence

0 L ∩ M L × M L + M 0

u (u, u)

(ℓ, m) ℓ − m

The result follows since the alternating sums of the dimensions of
these space is 0.



A useful inequality
An r -plane L in Pn is a linear subspace of dimension r + 1 in
Kn+1. In the context of subspaces of projective spaces, we
write dim L = r . For the purposes of the following corollary, we
will write pdim(L) = r . So pdim(L) = dim(L) − 1.

Corollary. Suppose L and M are r - and s-planes in Pn,
respectively. Then

pdim(L ∩ M) ≥ pdim(L) + pdim(M) − n.

Proof.
pdim(L ∩ M) = dim(L ∩ M) − 1

≥ dim(L) + dim(M) − (n + 1) − 1
= (dim(L) − 1) + (dim(M) − 1) − n
= pdim(L) + pdim(M) − n.



Examples of Schubert classes
Recall:

S(A0, . . . , Ar ) = {L ∈ GrPn : dim(L ∩ Ai) ≥ i for all i}

and (a0, . . . , ar ) is the corresponding class in GrPn

Consider (2, 3) ∈ A•(G1P3).

Flag: a plane sitting in 3-space, P3.

A0 = 2-plane in 3-space, and A1 = 3-plane in 3-space.

dim(L ∩ A0) ≥ 0 is satisfied by all L (no condition on L).

dim(L ∩ A1) ≥ 1 is also no condition.

(2, 3) = [G1P3], no condition. This class is the multiplicative
identity in the Chow (intersection) ring.



Examples

(2, 3) = [G1P3]

What is the codimension of (2, 3)?

The dimension is
r∑

i=0
(ai − i) =

1∑
i=0

(ai − i) = (2 − 0) + (3 − 1) = 4.

So the codimension is

dimG1P3 − 4 = dim G(2, 4) − 4 = 2(4 − 2) − 4 = 0,

as expected.



Examples

S(A0, . . . , Ar ) = {L ∈ GrPn : dim(L ∩ Ai) ≥ i for all i}

and (a0, . . . , ar ) is the corresponding class in GrPn

Now consider (0, 2) ∈ A•G1P3.

Flag: a point sitting in a plane.

dim(L ∩ A0) ≥ 0 iff A0 ∈ L.

dim(L ∩ A1) ≥ 1 iff L ⊂ A1.

So (0, 2) ∈ G1P3 represents the set of lines sitting in a given
plane and passing through a given point in that plane.

Condition: To sit in a given plane and pass through a given point.



Examples

The dimension of (0, 2) is

1∑
i=0

(ai − i) = (0 − 0) + (2 − 1) = 1.

So the codimension of (0, 2) is

dimG1P3 − 1 = 4 − 1 = 3.

Why does this make geometric sense?



Examples

(0, 3, 4) ∈ A•G2P4

Conditions on L ∈ G2P4:

dim(L ∩ A0) ≥ 0: L passes through a given point A0

dim(L ∩ A1) ≥ 1: no condition

dim(L ∩ A2) ≥ 2: no condition

So (0, 3, 4) is the class of planes passing through a given point.

Codimension:

dimG2P4 −
2∑

i=0
(ai − i) = 6 − (0 − 0) − (3 − 1) − (4 − 2) = 2.


