Toric Varieties: polytopes, cohomology

Quiz

- What does it mean to say f : M → N is null-homotopic, and what can we then conclude about the cohomology of M and N?
- What does it mean to say *M* is *contractible*, and what can we then conclude about the homology of *M*? Give a concrete example of a contractible space.
- Give, with proof, an example of a manifold that is not contractible.

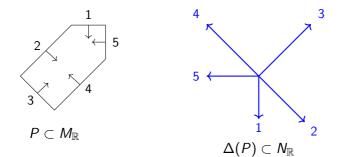
$\mathsf{Geometry} \leftrightarrow \mathsf{Combinatorics}$

- 1. Compactness: A TV is compact iff its fan covers $N_{\mathbb{R}}$ (we say the fan is *complete*).
- 2. Smoothness: A TV is smooth iff $\sigma \cap N$ is generated by part of a \mathbb{Z} -basis for N for each cone σ .
- 3. Orientability: A smooth TV is symplectic, hence orientable. (Warning example: $\mathbb{P}^2_{\mathbb{C}}$ versus $\mathbb{P}^2_{\mathbb{R}}$.)

$\mathsf{Polytopes} \to \mathsf{toric} \mathsf{ varieties}$

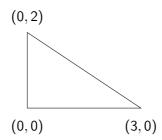
Let $P \subset M \approx \mathbb{R}^n$ be a rational polytope (the smallest convex set containing a finite set of points with rational coordinates).

Then the inward pointing normals to the facets of P determine a complete fan, $\Delta(P)$.



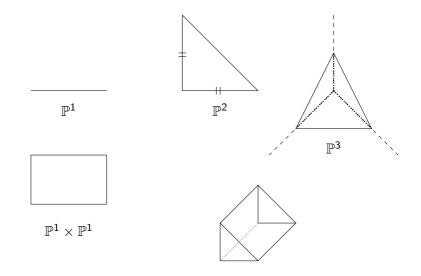
$\mathsf{Polytopes} \to \mathsf{toric} \mathsf{ varieties}$

Example. We saw last time that the triangle with vertices (0,0), (1,0), and (0,1) has corresponding toric variety \mathbb{P}^2 . What about the following triangle:



(Example to be done on board.)

$\mathsf{Polytopes} \to \mathsf{toric} \ \mathsf{varieties:} \ \mathsf{more} \ \mathsf{examples}$



 $\mathbb{P}^2 imes \mathbb{P}^1$

Chow ring & cohomology

 Δ complete fan, $X = X(\Delta)$ corresponding TV, assumed smooth.

 $\Delta(1) = \{D_1, \dots, D_k\} =$ one-dimensional cones (rays) of Δ $\mathbb{Z}[D_1,\ldots,D_k]$ polynomial ring (treating D_i as indeterminates) Chow ring: $A^{\bullet}X := \bigoplus_{k\geq 0} A^k(X) = \mathbb{Z}[D_1, \dots, D_k]/(I+J)$ $I = \{\prod_{D \in S} D : S \subset \Delta(1) \text{ and } S \text{ does not span a cone} \}$ $J = \{\sum_{D \in \Delta(1)} \langle e_i, n_D \rangle D : i = 1, \dots, n\}$ where n_D is the first lattice point along D (and e_i is the *i*-th basis vector for N Cohomology: $H^k X = A^k X \otimes_{\mathbb{Z}} \mathbb{R}$ if k is even, and $H^k X = 0$ if k

is odd

Example: \mathbb{P}^2 , on the board