Toric Varieties: Hirzebruch surfaces

Homework

Homework for next week.

See the cohomology section of last Wednesday's lecture.

Hirzebruch surfaces

 $\mathbb{C}[S_{\sigma_1}] = \mathbb{C}[u, v], \quad U_{\sigma_1} \approx \mathbb{C}^2; \quad \mathbb{C}[S_{\sigma_2}] = \mathbb{C}[x, y], \quad U_{\sigma_2} \approx \mathbb{C}^2,$

How does U_{σ_1} glue into U_{σ_4} and U_{σ_2} glue into U_{σ_3} ?

\mathbb{P}^1 bundle

There exists a mapping $\pi: H_a \to \mathbb{P}^1$ such that $\pi^{-1}(p) \approx \mathbb{P}^1$ for all $p \in \mathbb{P}^1$. So H_a is a \mathbb{P}^1 bundle over \mathbb{P}^1 .

Underlying reason: What does the projection $\mathbb{R}^2 \to \mathbb{R}$ given by $(x, y) \mapsto x$ do to the lattice *N* and the cones? (See our notes.)

\mathbb{P}^1 bundle

Fill in the following diagram:

\mathbb{P}^1 bundle

Solution: Fill in the following diagram:

$$\begin{array}{cccc} U_{\sigma_4} & (1/u, u^a v) & \longleftarrow & (u, v) & U_{\sigma_1} \\ & & \uparrow & \uparrow & \\ U_{\sigma_3} & (1/u, 1/(u^a v)) & \longleftarrow & (u, 1/v) & U_{\sigma_2} \\ \downarrow & & \downarrow & \downarrow & \downarrow & \\ U_{\tau_2} & & 1/u & \longleftarrow & u & U_{\tau_1} \end{array}$$

Let Δ be a fan for lattice N and Δ' a fan for lattice N'.

Suppose there exist a \mathbb{Z} -linear mapping $\phi \colon N \to N'$ such that for each $\sigma \in \Delta$, there is a cone $\sigma' \in \Delta'$ with $\phi(\sigma) \subseteq \sigma'$.

Then there is a natural mapping $X(\Delta) \to X(\Delta')$ induced by ϕ .

Cohomology of the Hirzebruch surface

Problem: compute $H^k(H_a)$. (Solution: See Example 13.14 in our notes.)

Recall: Δ complete fan, $X = X(\Delta)$ corresponding TV, assumed smooth.

 $\Delta(1) = \{D_1, \dots, D_k\} = \text{one-dimensional cones (rays) of } \Delta$ $\mathbb{Z}[D_1, \dots, D_k] \text{ polynomial ring (treating } D_i \text{ as indeterminates})$ $\text{Chow ring: } A^{\bullet}X := \bigoplus_{k \ge 0} A^k(X) = \mathbb{Z}[D_1, \dots, D_k]/(I+J)$ $I = \{\prod_{D \in S} D : S \subset \Delta(1) \text{ and } S \text{ does not span a cone}\}$ $J = \{\sum_{D \in \Delta(1)} \langle e_i, n_D \rangle D : i = 1, \dots, n\} \text{ where } n_D \text{ is the first lattice point along } D \text{ (and } e_i \text{ is the } i\text{-th basis vector for } N$

Cohomology: $H^k X = A^k X \otimes_{\mathbb{Z}} \mathbb{R}$ if k is even, and $H^k X = 0$ if k is odd