Homotopy invariance of de Rham cohomology



Wednesday quiz

1. State Stokes' theorem (with hypotheses).
2. Suppose that M = R" and
n R
w=> ajdxg A--- Adxi A A dxp.
i=1

Prove that [, dw = [, a1(0,x2,. .., Xn).
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Homotopy invariance theorem. If f,g: M — N, and f ~ g,
then
f*=g*: H"N — H*Mm

for all k.

Homotopy equivalence theorem. Let f: M — N and
g: N — M. Suppose that gof ~idyy and fog ~idy. Then

HKM ~ HXN

for all k.
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Example

Let M =R?\ {(0,0)}, and define

L251—>M r:M—>51
(va)H(X7y) PHﬁ

. . h
Then, rov = idg1, and idp ~ ¢ o r where

h:[0,1]] x M - M
X
(t,x)—~ (1 —t)x+t—.
x|

By homotopy equivalence, it follows that

HXM ~ HksSt,
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Proof of homotopy invariance theorem

Idea: Find collection of mappings s: QKN — Qk—1Mm
4y okty 94, ky 4 kL 94 L
d k—1 d k d k+1 d
— QM —— M —— Q"M —— ...
such that for all w € Q¥N,
g'w— f*w = (sd + ds)w.

If w is closed, i.e., dw = 0, then
g'w — f*w = (sd + ds)w = d(sw). Therefore, f*w and g* differ
by an element in the image of dx_1. So [f*w] = [g*w] for all w.

Hence, f* = g*. O
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Prism operator

The key ingredient for constructing s is the prism operator:
P:Q%([0,1] x M) — Q1M
1 0
w = tzow (at, —> .

Example. w = (x + 3t2) dt A dx € Q2([0,1] x R).

Pw = (/tio(x+3t2) dt) Adx = (x + 1) dx.

(In general, integrate with respect to t and then drop the dt.)

If w does not involve dt, then Pw =0, e.g. if
w = (x+y)dx Ady € Q?([0,1] x R?), then Pw = 0.
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Proof of homotopy invariance theorem
For each t € [0, 1], define

iy M—>[O,1] x M
x — (t, x).

We have that (how) =f and (hot) = g.
A straightforward calculation in coordinates (see our text) gives
11—ty =dP — Pd.
Define s = P o h*:
kN L k([0,1] x M) B k1w,
Then g* — f* = i h* — §h* = (1 — 1§)h* = (dP + Pd)h*

= d(Ph*) + (Ph*)d = ds + sd. (Note: d commutes with
pullbacks.) O
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Immersions, submanifolds, embeddings

Va
) 2

p = lim a,(1) SRR T TR
—tw
Immersion, Submanifold, Imbedding
but not a Submanifold but not an Imbedding

f-M—N

» Immersion: df,: ToM — Tg )N injective for all p.
» Submanifold: f is an injective immersion.

» Embedding: f is an injective immersion and a
homeomorphism onto im(f) with the subspace topology.
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Deformation retractions

Suppose ¢: S — M is an embedding.

A retraction from M to S is a map r: M — S such that
rotL= ids.

A deformation retraction from M to S is a homotopy h between
idp and vor such that h(t,s) = s forall t € [0,1] and all s € S.

Exercise. A deformation retraction is a homotopy equivalence,
and thus, H*M ~ HXS for all k.



