Homotopy invariance of de Rham cohomology

Wednesday quiz

- 1. State Stokes' theorem (with hypotheses).
- 2. Suppose that $M = \mathbb{R}^n_-$ and

$$\omega = \sum_{i=1}^n a_i \, dx_1 \wedge \cdots \wedge \overline{dx_i} \wedge \cdots \wedge dx_n.$$

Prove that $\int_M d\omega = \int_{\partial M} a_1(0, x_2, \dots, x_n)$.

Let $f,g: M \to N$. Then f is *homotopic* to g, denoted $f \sim g$ if there exists $h: [0,1] \times M \to N$ such that

Let $f,g: M \to N$. Then f is *homotopic* to g, denoted $f \sim g$ if there exists $h: [0,1] \times M \to N$ such that

$$h(0, x) = f(x)$$

 $h(1, x) = g(x).$

Let $f,g: M \to N$. Then f is *homotopic* to g, denoted $f \sim g$ if there exists $h: [0,1] \times M \to N$ such that

$$h(0, x) = f(x)$$

 $h(1, x) = g(x).$

Homotopy invariance theorem. If $f, g: M \to N$, and $f \sim g$, then

$$f^* = g^* \colon H^k N \to H^k M$$

for all k.

Let $f,g: M \to N$. Then f is *homotopic* to g, denoted $f \sim g$ if there exists $h: [0,1] \times M \to N$ such that

$$h(0, x) = f(x)$$

 $h(1, x) = g(x).$

Homotopy invariance theorem. If $f, g: M \to N$, and $f \sim g$, then

$$f^* = g^* \colon H^k N \to H^k M$$

for all k.

Homotopy equivalence theorem. Let $f: M \to N$ and $g: N \to M$. Suppose that $g \circ f \sim id_M$ and $f \circ g \sim id_N$. Then

$$H^k M \approx H^k N$$

for all k.

Let $M = \mathbb{R}^2 \setminus \{(0,0)\}$, and define

$$\iota \colon S^1 \to M$$
 $r \colon M \to S^1$
 $(x, y) \mapsto (x, y)$ $p \mapsto \frac{p}{|p|}.$

Let $M = \mathbb{R}^2 \setminus \{(0,0)\}$, and define $\iota \colon S^1 \to M$ $(x,y) \mapsto (x,y)$ $r \colon M \to S^1$ $p \mapsto \frac{p}{|p|}$.

Then, $r \circ \iota =$

Let $M = \mathbb{R}^2 \setminus \{(0,0)\}$, and define $\iota \colon S^1 \to M$ $(x,y) \mapsto (x,y)$ $r \colon M \to S^1$ $p \mapsto \frac{p}{|p|}$.

Then, $r \circ \iota = \operatorname{id}_{S^1}$,

Let $M = \mathbb{R}^2 \setminus \{(0,0)\}$, and define $\iota: S^1 \to M$ $(x,y) \mapsto (x,y)$ $r: M \to S^1$ $p \mapsto \frac{p}{|p|}$.

Then, $r \circ \iota = \operatorname{id}_{S^1}$, and $\operatorname{id}_M \stackrel{h}{\sim} \iota \circ r$ where

$$egin{aligned} h\colon [0,1] imes M & o M\ (t,x)\mapsto (1-t)x+trac{x}{|x|}. \end{aligned}$$

Let $M = \mathbb{R}^2 \setminus \{(0,0)\}$, and define $\iota: S^1 \to M$ $(x,y) \mapsto (x,y)$ $r: M \to S^1$ $p \mapsto \frac{p}{|p|}$. Then, $r \circ \iota = \operatorname{id}_{S^1}$, and $\operatorname{id}_M \stackrel{h}{\sim} \iota \circ r$ where

$$egin{aligned} h\colon [0,1] imes M & o M\ (t,x)\mapsto (1-t)x+trac{x}{|x|}. \end{aligned}$$

By homotopy equivalence, it follows that

$$H^k M \approx H^k S^1$$
.

Idea: Find collection of mappings $s: \Omega^k N \to \Omega^{k-1} M$

Idea: Find collection of mappings $s: \Omega^k N \to \Omega^{k-1} M$

such that for all $\omega \in \Omega^k N$,

$$g^*\omega - f^*\omega = (sd + ds)\omega.$$

Idea: Find collection of mappings $s: \Omega^k N \to \Omega^{k-1} M$

such that for all $\omega \in \Omega^k N$,

$$g^*\omega - f^*\omega = (sd + ds)\omega.$$

If ω is closed, i.e., $d\omega = 0$, then $g^*\omega - f^*\omega = (sd + ds)\omega =$

Idea: Find collection of mappings $s: \Omega^k N \to \Omega^{k-1} M$

such that for all $\omega \in \Omega^k N$,

$$g^*\omega - f^*\omega = (sd + ds)\omega.$$

If ω is closed, i.e., $d\omega = 0$, then $g^*\omega - f^*\omega = (sd + ds)\omega = d(s\omega)$.

Idea: Find collection of mappings $s: \Omega^k N \to \Omega^{k-1} M$

such that for all $\omega \in \Omega^k N$,

$$g^*\omega - f^*\omega = (sd + ds)\omega.$$

If ω is closed, i.e., $d\omega = 0$, then $g^*\omega - f^*\omega = (sd + ds)\omega = d(s\omega)$. Therefore, $f^*\omega$ and g^* differ by an element in the image of d_{k-1} . So

Idea: Find collection of mappings $s: \Omega^k N \to \Omega^{k-1} M$

such that for all $\omega \in \Omega^k N$,

$$g^*\omega - f^*\omega = (sd + ds)\omega.$$

If ω is closed, i.e., $d\omega = 0$, then $g^*\omega - f^*\omega = (sd + ds)\omega = d(s\omega)$. Therefore, $f^*\omega$ and g^* differ by an element in the image of d_{k-1} . So $[f^*\omega] = [g^*\omega]$ for all ω .

Idea: Find collection of mappings $s: \Omega^k N \to \Omega^{k-1} M$

such that for all $\omega \in \Omega^k N$,

$$g^*\omega - f^*\omega = (sd + ds)\omega.$$

If ω is closed, i.e., $d\omega = 0$, then $g^*\omega - f^*\omega = (sd + ds)\omega = d(s\omega)$. Therefore, $f^*\omega$ and g^* differ by an element in the image of d_{k-1} . So $[f^*\omega] = [g^*\omega]$ for all ω .

Hence, $f^* = g^*$.

The key ingredient for constructing *s* is the *prism operator*.

$$P: \Omega^{k}([0,1] \times M) \to \Omega^{k-1}M$$
$$\omega \mapsto \int_{t=0}^{1} \omega\left(\frac{\partial}{\partial t}, -\right).$$

The key ingredient for constructing *s* is the *prism operator*.

$$P: \Omega^{k}([0,1] \times M) \to \Omega^{k-1}M$$
$$\omega \mapsto \int_{t=0}^{1} \omega\left(\frac{\partial}{\partial t},-\right).$$

Example. $\omega = (x + 3t^2) dt \wedge dx \in \Omega^2([0, 1] \times \mathbb{R}).$

The key ingredient for constructing *s* is the *prism operator*.

$$P: \Omega^{k}([0,1] \times M) \to \Omega^{k-1}M$$
$$\omega \mapsto \int_{t=0}^{1} \omega\left(\frac{\partial}{\partial t},-\right).$$

Example. $\omega = (x + 3t^2) dt \wedge dx \in \Omega^2([0, 1] \times \mathbb{R}).$

$$P\omega = \left(\int_{t=0}^{1} (x+3t^2) \, dt\right) \wedge dx$$

The key ingredient for constructing *s* is the *prism operator*.

$$P: \Omega^{k}([0,1] \times M) \to \Omega^{k-1}M$$
$$\omega \mapsto \int_{t=0}^{1} \omega\left(\frac{\partial}{\partial t},-\right).$$

Example. $\omega = (x + 3t^2) dt \wedge dx \in \Omega^2([0, 1] \times \mathbb{R}).$

$$P\omega = \left(\int_{t=0}^{1} (x+3t^2) \, dt\right) \wedge dx = (x+1) \, dx.$$

The key ingredient for constructing *s* is the *prism operator*.

$$P: \Omega^{k}([0,1] \times M) \to \Omega^{k-1}M$$
$$\omega \mapsto \int_{t=0}^{1} \omega\left(\frac{\partial}{\partial t},-\right).$$

Example. $\omega = (x + 3t^2) dt \wedge dx \in \Omega^2([0, 1] \times \mathbb{R}).$

$$P\omega = \left(\int_{t=0}^{1} (x+3t^2) \, dt\right) \wedge dx = (x+1) \, dx.$$

(In general, integrate with respect to t and then drop the dt.)

The key ingredient for constructing *s* is the *prism operator*.

$$P: \Omega^{k}([0,1] \times M) \to \Omega^{k-1}M$$
$$\omega \mapsto \int_{t=0}^{1} \omega\left(\frac{\partial}{\partial t},-\right).$$

Example. $\omega = (x + 3t^2) dt \wedge dx \in \Omega^2([0, 1] \times \mathbb{R}).$

$$P\omega = \left(\int_{t=0}^{1} (x+3t^2) dt\right) \wedge dx = (x+1) dx.$$

(In general, integrate with respect to t and then drop the dt.)

If ω does not involve dt, then $P\omega = 0$,

The key ingredient for constructing *s* is the *prism operator*.

$$P: \Omega^{k}([0,1] \times M) \to \Omega^{k-1}M$$
$$\omega \mapsto \int_{t=0}^{1} \omega\left(\frac{\partial}{\partial t},-\right).$$

Example. $\omega = (x + 3t^2) dt \wedge dx \in \Omega^2([0, 1] \times \mathbb{R}).$

$$P\omega = \left(\int_{t=0}^{1} (x+3t^2) dt\right) \wedge dx = (x+1) dx.$$

(In general, integrate with respect to t and then drop the dt.)

If
$$\omega$$
 does not involve dt , then $P\omega = 0$, e.g. if
 $\omega = (x + y) dx \wedge dy \in \Omega^2([0, 1] \times \mathbb{R}^2)$, then $P\omega = 0$.

For each $t \in [0, 1]$, define

$$egin{aligned} & i_t \colon M o [0,1] imes M \ & x \mapsto (t,x). \end{aligned}$$

We have that $(h \circ \iota_0) = f$ and $(h \circ \iota_1) = g$.

For each $t \in [0, 1]$, define

$$egin{aligned} & i_t \colon M o [0,1] imes M \ & x \mapsto (t,x). \end{aligned}$$

We have that $(h \circ \iota_0) = f$ and $(h \circ \iota_1) = g$.

A straightforward calculation in coordinates (see our text) gives

$$\iota_1^* - \iota_0^* = dP - Pd.$$

For each $t \in [0, 1]$, define

$$egin{aligned} & i_t \colon M o [0,1] imes M \ & x \mapsto (t,x). \end{aligned}$$

We have that $(h \circ \iota_0) = f$ and $(h \circ \iota_1) = g$.

A straightforward calculation in coordinates (see our text) gives

$$\iota_1^*-\iota_0^*=dP-Pd.$$

Define $s = P \circ h^*$:

$$\Omega^k N \xrightarrow{h^*} \Omega^k([0,1] \times M) \xrightarrow{P} \Omega^{k-1} M,$$

For each $t \in [0, 1]$, define

$$egin{aligned} & i_t \colon M o [0,1] imes M \ & x \mapsto (t,x). \end{aligned}$$

We have that $(h \circ \iota_0) = f$ and $(h \circ \iota_1) = g$.

A straightforward calculation in coordinates (see our text) gives

$$\iota_1^*-\iota_0^*=dP-Pd.$$

Define $s = P \circ h^*$:

$$\Omega^k N \xrightarrow{h^*} \Omega^k([0,1] \times M) \xrightarrow{P} \Omega^{k-1} M,$$

Then $g^* - f^* = \iota_1^* h^* - \iota_0^* h^*$

For each $t \in [0, 1]$, define

$$egin{aligned} & i_t \colon M o [0,1] imes M \ & x \mapsto (t,x). \end{aligned}$$

We have that $(h \circ \iota_0) = f$ and $(h \circ \iota_1) = g$.

A straightforward calculation in coordinates (see our text) gives

$$\iota_1^*-\iota_0^*=dP-Pd.$$

Define $s = P \circ h^*$:

$$\Omega^k N \xrightarrow{h^*} \Omega^k([0,1] \times M) \xrightarrow{P} \Omega^{k-1} M,$$

Then $g^* - f^* = \iota_1^* h^* - \iota_0^* h^* = (\iota_1^* - \iota_0^*) h^*$

For each $t \in [0, 1]$, define

$$egin{aligned} & i_t \colon M o [0,1] imes M \ & x \mapsto (t,x). \end{aligned}$$

We have that $(h \circ \iota_0) = f$ and $(h \circ \iota_1) = g$.

A straightforward calculation in coordinates (see our text) gives

$$\iota_1^*-\iota_0^*=dP-Pd.$$

Define $s = P \circ h^*$:

$$\Omega^k N \xrightarrow{h^*} \Omega^k([0,1] \times M) \xrightarrow{P} \Omega^{k-1} M,$$

Then $g^* - f^* = \iota_1^* h^* - \iota_0^* h^* = (\iota_1^* - \iota_0^*) h^* = (dP + Pd) h^*$

For each $t \in [0, 1]$, define

$$egin{aligned} & i_t \colon M o [0,1] imes M \ & x \mapsto (t,x). \end{aligned}$$

We have that $(h \circ \iota_0) = f$ and $(h \circ \iota_1) = g$.

A straightforward calculation in coordinates (see our text) gives

$$\iota_1^*-\iota_0^*=dP-Pd.$$

Define $s = P \circ h^*$:

$$\Omega^k N \xrightarrow{h^*} \Omega^k([0,1] \times M) \xrightarrow{P} \Omega^{k-1} M,$$

Then $g^* - f^* = \iota_1^* h^* - \iota_0^* h^* = (\iota_1^* - \iota_0^*) h^* = (dP + Pd) h^*$ = $d(Ph^*) + (Ph^*)d$

For each $t \in [0, 1]$, define

$$egin{aligned} & i_t \colon M o [0,1] imes M \ & x \mapsto (t,x). \end{aligned}$$

We have that $(h \circ \iota_0) = f$ and $(h \circ \iota_1) = g$.

A straightforward calculation in coordinates (see our text) gives

$$\iota_1^*-\iota_0^*=dP-Pd.$$

Define $s = P \circ h^*$:

$$\Omega^k N \xrightarrow{h^*} \Omega^k([0,1] \times M) \xrightarrow{P} \Omega^{k-1} M,$$

Then $g^* - f^* = \iota_1^* h^* - \iota_0^* h^* = (\iota_1^* - \iota_0^*) h^* = (dP + Pd) h^*$ = $d(Ph^*) + (Ph^*)d = ds + sd$. (Note: *d* commutes with pullbacks.)

 $f: M \to N$

• Immersion: $df_p: T_pM \to T_{f(p)}N$ injective for all p.

 $f: M \to N$

- Immersion: $df_p: T_pM \to T_{f(p)}N$ injective for all p.
- Submanifold: *f* is an injective immersion.

 $f: M \to N$

- Immersion: $df_p: T_pM \to T_{f(p)}N$ injective for all p.
- Submanifold: f is an injective immersion.
- Embedding: f is an injective immersion and a homeomorphism onto im(f) with the subspace topology.

Suppose $\iota \colon S \to M$ is an embedding.

Suppose $\iota \colon S \to M$ is an embedding.

A retraction from M to S is a map $r: M \to S$ such that $r \circ \iota = id_S$.

Suppose $\iota \colon S \to M$ is an embedding.

A retraction from M to S is a map $r: M \to S$ such that $r \circ \iota = id_S$.

A deformation retraction from M to S is a homotopy h between id_M and $\iota \circ r$ such that h(t,s) = s for all $t \in [0,1]$ and all $s \in S$.

Suppose $\iota \colon S \to M$ is an embedding.

A retraction from M to S is a map $r: M \to S$ such that $r \circ \iota = id_S$.

A deformation retraction from M to S is a homotopy h between id_M and $\iota \circ r$ such that h(t,s) = s for all $t \in [0,1]$ and all $s \in S$.

Exercise. A deformation retraction is a homotopy equivalence,

Suppose $\iota \colon S \to M$ is an embedding.

A retraction from M to S is a map $r: M \to S$ such that $r \circ \iota = id_S$.

A deformation retraction from M to S is a homotopy h between id_M and $\iota \circ r$ such that h(t,s) = s for all $t \in [0,1]$ and all $s \in S$.

Exercise. A deformation retraction is a homotopy equivalence, and thus, $H^k M \approx H^k S$ for all k.