
Homotopy invariance of de Rham cohomology



Wednesday quiz

1. State Stokes’ theorem (with hypotheses).

2. Suppose that M = Rn
− and

ω =
n∑

i=1
ai dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn.

Prove that
∫

M dω =
∫

∂M a1(0, x2, . . . , xn).



Review
Let f , g : M → N. Then f is homotopic to g , denoted f ∼ g if
there exists h : [0, 1] × M → N such that

h(0, x) = f (x)
h(1, x) = g(x).

Homotopy invariance theorem. If f , g : M → N, and f ∼ g ,
then

f ∗ = g∗ : HkN → HkM

for all k.

Homotopy equivalence theorem. Let f : M → N and
g : N → M. Suppose that g ◦ f ∼ idM and f ◦ g ∼ idN . Then

HkM ≈ HkN

for all k.
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Example

Let M = R2 \ {(0, 0)}, and define

ι : S1 → M
(x , y) 7→ (x , y)

r : M → S1

p 7→ p
|p|

.

Then, r ◦ ι = idS1 , and idM
h∼ ι ◦ r where

h : [0, 1] × M → M

(t, x) 7→ (1 − t)x + t x
|x |

.

By homotopy equivalence, it follows that

HkM ≈ HkS1.
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Proof of homotopy invariance theorem

Idea: Find collection of mappings s : ΩkN → Ωk−1M

· · · Ωk−1N ΩkN Ωk+1N · · ·

· · · Ωk−1M ΩkM Ωk+1M · · ·

d d

s

d

s

d

s s

d d d d

such that for all ω ∈ ΩkN,

g∗ω − f ∗ω = (sd + ds)ω.

If ω is closed, i.e., dω = 0, then
g∗ω − f ∗ω = (sd + ds)ω = d(sω). Therefore, f ∗ω and g∗ differ
by an element in the image of dk−1. So [f ∗ω] = [g∗ω] for all ω.

Hence, f ∗ = g∗. □
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Prism operator

The key ingredient for constructing s is the prism operator:

P : Ωk([0, 1] × M) → Ωk−1M

ω 7→
∫ 1

t=0
ω

(
∂

∂t , −
)

.

Example. ω = (x + 3t2) dt ∧ dx ∈ Ω2([0, 1] × R).

Pω =
(∫ 1

t=0
(x + 3t2) dt

)
∧ dx = (x + 1) dx .

(In general, integrate with respect to t and then drop the dt.)

If ω does not involve dt, then Pω = 0, e.g. if
ω = (x + y) dx ∧ dy ∈ Ω2([0, 1] × R2), then Pω = 0.
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Proof of homotopy invariance theorem
For each t ∈ [0, 1], define

it : M → [0, 1] × M
x 7→ (t, x).

We have that (h ◦ ι0) = f and (h ◦ ι1) = g .

A straightforward calculation in coordinates (see our text) gives

ι∗
1 − ι∗

0 = dP − Pd .

Define s = P ◦ h∗:

ΩkN h∗
−→ Ωk([0, 1] × M) P−→ Ωk−1M,

Then g∗ − f ∗ = ι∗
1h∗ − ι∗

0h∗ = (ι∗
1 − ι∗

0)h∗ = (dP + Pd)h∗

= d(Ph∗) + (Ph∗)d = ds + sd . (Note: d commutes with
pullbacks.) □
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Immersions, submanifolds, embeddings

f : M → N

▶ Immersion: dfp : TpM → Tf (p)N injective for all p.
▶ Submanifold: f is an injective immersion.
▶ Embedding: f is an injective immersion and a

homeomorphism onto im(f ) with the subspace topology.
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Deformation retractions

Suppose ι : S → M is an embedding.

A retraction from M to S is a map r : M → S such that
r ◦ ι = idS .

A deformation retraction from M to S is a homotopy h between
idM and ι ◦ r such that h(t, s) = s for all t ∈ [0, 1] and all s ∈ S.

Exercise. A deformation retraction is a homotopy equivalence,
and thus, HkM ≈ HkS for all k.
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