Stokes' theorem

Wednesday quiz

Don't forget Wednesday's quiz.

Definition 10.16. An *n*-dimensional manifold with boundary is a second-countable, Hausdorff topological space M that is locally homeomorphic to open subsets of $\mathbb{R}^{\underline{n}}$ with differentiable transition functions.

A point $p \in M$ is in the *boundary* of M if there is some (hence every) chart (U, h) at p such that $h(p) \in \partial h(U) \subseteq \mathbb{R}^{\underline{n}}$. The collection of all such points is denoted ∂M .

Manifolds with boundary, tangent space

Let $p \in \partial M$, and let (U, h) be a chart at p. Define

$$T_p^- M = dh_p^{-1}(\mathbb{R}^n_-), \quad T_p^+ M = dh_p^{-1}(\mathbb{R}^n_+).$$

The inclusion mapping $\iota : \partial M \hookrightarrow M$ induces an inclusion $d\iota_p : T_p \partial M \hookrightarrow T_p M$. We have

$$T_p\partial M=T_p^-M\cap T_p^+M.$$

inward-pointing tangent vectors: $T_p^- M \setminus T_p \partial M$ outward-pointing tangent vectors: $T_p^+ M \setminus T_p \partial M$. Definition. Let M be an *n*-dimensional oriented manifold with boundary and let $p \in \partial M$. We define the *natural orientation* on ∂M as follows:

An ordered basis $\langle w_1, \ldots, w_{n-1} \rangle$ for $T_p \partial M$ is positively oriented if for any outward-pointing tangent vector $v \in T_p M$, the ordered basis $\langle v, w_1, \ldots, w_{n-1} \rangle$ for $T_p M$ is positively oriented in $T_p M$. Let M be an oriented *n*-manifold with boundary, and let $\omega \in \Omega^{n-1}M$ be a form with compact support. Then

$$\int_{M} d\omega = \int_{\partial M} \omega = \int_{\partial M} \iota^* \omega$$

where $\iota: \partial M \to M$ is the inclusion mapping.

Example

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Example. Let $f: [0,1] \to \mathbb{R}$. Think of f as a zero-form on the manifold M = [0,1], i.e., $f \in \Omega^0[0,1]$. Then

$$\int_{M} df = \int_{[0,1]} f'(x) \, dx = \int_{x=0}^{1} f'(x) = f(1) - f(0) = \int_{\partial [0,1]} f.$$

For the last equality, we need a definition of the oriented boundary of a one-dimensional manifold.

Examples

n = 1: The flow of a gradient vector field along a curve C is given by the change in the potential, ϕ :

$$\int_C \nabla \phi = \phi(C(1)) - \phi(C(0)).$$

n = 2: The flux of the curl of a vector field F through a surface S equals the flow of the vector field along the boundary of S:

$$\int_{S} \operatorname{curl}(F) \cdot \vec{n} = \int_{\partial S} F \cdot \vec{t}$$

n = 3: The integral of the divergence of a vector field F over a solid V equals the flux of the vector field through the boundary of V:

$$\int_{V} \operatorname{div}(F) = \int_{\partial V} F \cdot \vec{n}$$

Proof of Stokes' theorem

Case 1.
$$M = \mathbb{R}^n_-, \quad \omega = \sum_{i=1}^n a_i \, dx_1 \wedge \dots \wedge \overline{dx_i} \wedge \dots \wedge dx_n.$$

 $d\omega = \sum_{i=1}^n \left(\frac{\partial a_i}{\partial x_1} dx_1 + \dots + \frac{\partial a_i}{\partial x_n} dx_n \right) \wedge dx_1 \wedge \dots \wedge \overline{dx_i} \wedge \dots \wedge dx_n$
 $= \sum_{i=1}^n \frac{\partial a_i}{\partial x_i} dx_i \wedge dx_1 \wedge \dots \wedge \overline{dx_i} \wedge \dots \wedge dx_n$
 $= \sum_{i=1}^n (-1)^{i-1} \frac{\partial a_i}{\partial x_i} dx_1 \wedge \dots \wedge dx_i \wedge \dots \wedge dx_n.$

Therefore,

$$\int_{M} d\omega = \sum_{i=1}^{n} (-1)^{i-1} \int_{\mathbb{R}^{n}_{-}} \frac{\partial a_{i}}{\partial x_{i}}.$$

Apply Fubini's theorem

For i > 1:

$$\int_{x_i=-\infty}^{\infty} \frac{\partial a_i}{\partial x_i} = \lim_{t \to \infty} \int_0^t \frac{\partial a_i}{\partial x_i} + \lim_{t \to -\infty} \int_t^0 \frac{\partial a_i}{\partial x_i}$$
$$= \lim_{t \to \infty} (a_i(\cdots, t, \cdots)) - a_i(\cdots, 0, \cdots))$$
$$+ \lim_{t \to -\infty} (a_i(\cdots, 0, \cdots)) - a_i(\cdots, t, \cdots))$$
$$= 0$$

since $\operatorname{supp}(\omega)$ is compact.

Thus,

$$\int_{\mathbb{R}^n_-} \frac{\partial a_i}{\partial x_i} = 0$$

for i > 1.

Apply Fubini's theorem

For i = 1:

$$\int_{x_1=-\infty}^0 \frac{\partial a_1}{\partial x_1} = \lim_{t \to -\infty} (a_1(0, x_2, \dots, x_n) - a_1(t, x_2, \dots, x_n))$$
$$= a_1(0, x_2, \dots, x_n).$$

Proof of Stokes' theorem, Case 1

$$\begin{split} \int_{\mathbb{R}^{n}_{-}} d\omega &= \int \sum_{i=1}^{n} (-1)^{i-1} \frac{\partial a_{i}}{\partial x_{i}} \\ &= \int_{\mathbb{R}^{n}_{-}} \frac{\partial a_{1}}{\partial x_{1}} \\ &= \int_{\partial \mathbb{R}^{n}_{-}} \int_{x_{1}=-\infty}^{0} \frac{\partial a_{i}}{\partial x_{i}} \\ &= \int_{\partial \mathbb{R}^{n}_{-}} a_{1}(0, x_{2}, \dots, x_{n}). \end{split}$$

Thus, for the left-hand side of Stokes' theorem:

$$\int_{M} d\omega = \int_{\partial \mathbb{R}^{n}_{-}} a_{1}(0, x_{2}, \ldots, x_{n}).$$

Proof of Stokes' theorem, Case 1

For the right-hand side:

$$\begin{split} \int_{\partial M} \omega &= \int_{\partial \mathbb{R}_{-}^{n}} \iota^{*} \omega \\ &= \int_{\partial \mathbb{R}_{-}^{n}} \iota^{*} \sum_{i=1}^{n} a_{i} dx_{1} \wedge \dots \wedge \overline{dx_{i}} \wedge \dots \wedge dx_{n} \\ &= \int_{\partial \mathbb{R}_{-}^{n}} \sum_{i=1}^{n} (a_{i} \circ \iota) d\iota_{1} \wedge \dots \wedge \overline{d\iota_{i}} \wedge \dots \wedge d\iota_{n} \\ &= \int_{\partial \mathbb{R}_{-}^{n}} a_{1} \circ \iota \\ &= \int_{\partial \mathbb{R}_{-}^{n}} a_{1} (0, x_{2}, \dots, x_{n}) \\ &= \int_{\mathbb{R}_{-}^{n}} d\omega = \int_{M} d\omega. \end{split}$$

Proof of Stokes' theorem, Case 2

Suppose there exists a chart (U, h) such that $supp(\omega) \subseteq U$.

Then use h to reduce to Case 1:

We may assume that $M = U \subseteq \mathbb{R}^n_-$. Then extend ω by 0 outside U:

$$\widetilde{\omega}(p) = \begin{cases} \omega(p) & \text{if } p \in U \\ 0 & \text{if } p \notin U. \end{cases}$$

Then $\int_M d\omega = \int_U d\omega = \int_{\mathbb{R}^n_-} d\widetilde{\omega} = \int_{\partial \mathbb{R}^n_-} \widetilde{\omega} = \int_{\partial U} \omega.$

Proof of Stokes' theorem, general case

Our goal: find orientation-preserving charts (U_i, h_i) for i = 1, ..., k and $\omega_i \in \Omega^{n-1}M$ such that

$$\blacktriangleright \ \omega = \omega_1 + \dots + \omega_k$$

• $\operatorname{supp}(\omega_i) \subset U_i$, with $\operatorname{supp}(\omega_i)$ compact.

It will then follow from our previous cases that

$$\int_{M} d\omega = \sum_{i=1}^{k} \int_{M} d\omega_{i} = \sum_{i=1}^{k} \int_{U_{i}} d\omega_{i}$$
$$= \sum_{i=1}^{k} \int_{\partial U_{i}} \omega_{i} = \sum_{i=1}^{k} \int_{\partial M} \omega_{i}$$
$$= \int_{\partial M} \sum_{i=1}^{k} \omega_{i} = \int_{\partial M} \omega.$$

Partition of unity

- For each p ∈ supp(ω), choose an orientation-preserving chart (U_p, h_p). Then find a smooth function λ_p: M → [0, 1] such that λ_p(p) > 0, with supp(λ_p) compact and contained in U_p (bump function).
- ▶ Let $\tilde{U}_p := \lambda_p^{-1}((0,1]) = M \setminus \lambda_p^{-1}(0)$. Then, \tilde{U}_p is open, and $\operatorname{supp}(\omega) \subset \cup_{p \in M} \tilde{U}_p$.
- Since supp(ω) is compact, there exist p₁,..., p_k such that supp(ω) ⊂ ∪^k_{i=1} Ũ_{pi} =: X.
- For $i = 1, \ldots, k$ define $\tau_i \colon X \to [0, 1]$ by

$$au_i(x) = rac{\lambda_{p_i}(x)}{\sum_{j=1}^k \lambda_{p_j}(x)} \in [0,1].$$

▶ Then $\tau_i: X \to [0, 1]$, $\operatorname{supp}(\tau_i) \subset U_{p_i}$ is compact, and $\sum_{i=1}^k \tau_i(x) = 1$ for all $x \in X$.

Partition of unity

$$au_i(x) = rac{\lambda_{p_i}(x)}{\sum_{j=1}^k \lambda_{p_j}(x)} \in [0,1]$$

 $\tau_i \colon X \to [0, 1]$, $\operatorname{supp}(\tau_i) \subset U_{p_i}$ is compact, and $\sum_{i=1}^k \tau_i(x) = 1$ for all $x \in X$.

Definition. For $i = 1, \ldots, k$, let

$$\omega_i(p) = \begin{cases} \tau_i(p)\omega(p) & \text{for } p \in X \\ 0 & \text{for } p \in M \setminus X. \end{cases}$$

Then

•
$$\omega = \omega_1 + \dots + \omega_k$$

• $\operatorname{supp}(\omega_i) \subset U_i$, with $\operatorname{supp}(\omega_i)$ compact.

Example

Let

$$\omega = x \, dy \wedge dz - y \, dx \wedge dz + z \, dx \wedge dy.$$

What is $\int_{\mathcal{S}^2} \omega$, where $\mathcal{S}^2 \subset \mathbb{R}^3$ is the 2-sphere?

Solution:

$$\int_{S^2} \omega = \int_{\partial D^3} \omega = \int_{D^3} d\omega = \int_{D^3} 3 \, dx \wedge dy \wedge dz$$
$$= \int_{D^3} 3 = 3 \operatorname{vol}(D^3) = 3 \cdot \frac{4}{3}\pi = 4\pi.$$