
Stokes’ theorem



Wednesday quiz

Don’t forget Wednesday’s quiz.



Manifolds with boundary

Definition 10.16. An n-dimensional manifold with boundary is a
second-countable, Hausdorff topological space M that is locally
homeomorphic to open subsets of Rn

− with differentiable
transition functions.

A point p ∈ M is in the boundary of M if there is some (hence
every) chart (U, h) at p such that h(p) ∈ ∂h(U) ⊆ Rn

−. The
collection of all such points is denoted ∂M.



Manifolds with boundary, tangent space

Let p ∈ ∂M, and let (U, h) be a chart at p. Define

T −
p M = dh−1

p (Rn
−), T +

p M = dh−1
p (Rn

+).

The inclusion mapping ι : ∂M ↪→ M induces an inclusion
dιp : Tp∂M ↪→ TpM. We have

Tp∂M = T −
p M ∩ T +

p M.

inward-pointing tangent vectors: T −
p M \ Tp∂M

outward-pointing tangent vectors: T +
p M \ Tp∂M.



Manifolds with boundary

Definition. Let M be an n-dimensional oriented manifold with
boundary and let p ∈ ∂M. We define the natural orientation on
∂M as follows:

An ordered basis ⟨w1, . . . , wn−1⟩ for Tp∂M is positively oriented
if for any outward-pointing tangent vector v ∈ TpM, the ordered
basis ⟨v , w1, . . . , wn−1⟩ for TpM is positively oriented in TpM.



Stokes’ theorem

Let M be an oriented n-manifold with boundary, and let
ω ∈ Ωn−1M be a form with compact support. Then∫

M
dω =

∫
∂M

ω =
∫

∂M
ι∗ω

where ι : ∂M → M is the inclusion mapping.



Example

∫
M

dω =
∫

∂M
ω

Example. Let f : [0, 1] → R. Think of f as a zero-form on the
manifold M = [0, 1], i.e., f ∈ Ω0[0, 1]. Then∫

M
df =

∫
[0,1]

f ′(x) dx =
∫ 1

x=0
f ′(x) = f (1) − f (0) =

∫
∂[0,1]

f .

For the last equality, we need a definition of the oriented
boundary of a one-dimensional manifold.



Examples

n = 1: The flow of a gradient vector field along a curve C is
given by the change in the potential, ϕ:∫

C
∇ϕ = ϕ(C(1)) − ϕ(C(0)).

n = 2 : The flux of the curl of a vector field F through a
surface S equals the flow of the vector field along the boundary
of S: ∫

S
curl(F ) · n⃗ =

∫
∂S

F · t⃗

n = 3 : The integral of the divergence of a vector field F over a
solid V equals the flux of the vector field through the boundary
of V : ∫

V
div(F ) =

∫
∂V

F · n⃗.



Proof of Stokes’ theorem

Case 1. M = Rn
−, ω =

∑n
i=1 ai dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn.

dω =
n∑

i=1

(
∂ai
∂x1

dx1 + · · · + ∂ai
∂xn

dxn

)
∧ dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn

=
n∑

i=1

∂ai
∂xi

dxi ∧ dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn

=
n∑

i=1
(−1)i−1 ∂ai

∂xi
dx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn.

Therefore, ∫
M

dω =
n∑

i=1
(−1)i−1

∫
Rn

−

∂ai
∂xi

.



Apply Fubini’s theorem

For i > 1:∫ ∞

xi =−∞

∂ai
∂xi

= lim
t→∞

∫ t

0

∂ai
∂xi

+ lim
t→−∞

∫ 0

t

∂ai
∂xi

= lim
t→∞

(ai(· · · , t, · · · )) − ai(· · · , 0, · · · ))

+ lim
t→−∞

(ai(· · · , 0, · · · )) − ai(· · · , t, · · · ))

= 0

since supp(ω) is compact.

Thus, ∫
Rn

−

∂ai
∂xi

= 0

for i > 1.



Apply Fubini’s theorem

For i = 1:∫ 0

x1=−∞

∂a1
∂x1

= lim
t→−∞

(a1(0, x2, . . . , xn) − a1(t, x2, . . . , xn))

= a1(0, x2, . . . , xn).



Proof of Stokes’ theorem, Case 1

∫
Rn

−

dω =
∫ ∑n

i=1(−1)i−1 ∂ai
∂xi

=
∫
Rn

−

∂a1
∂x1

=
∫

∂Rn
−

∫ 0

x1=−∞

∂ai
∂xi

=
∫

∂Rn
−

a1(0, x2, . . . , xn).

Thus, for the left-hand side of Stokes’ theorem:∫
M

dω =
∫

∂Rn
−

a1(0, x2, . . . , xn).



Proof of Stokes’ theorem, Case 1
For the right-hand side:∫

∂M
ω =

∫
∂Rn

−

ι∗ω

=
∫

∂Rn
−

ι∗ ∑n
i=1 aidx1 ∧ · · · ∧ dxi ∧ · · · ∧ dxn

=
∫

∂Rn
−

∑n
i=1(ai ◦ ι)dι1 ∧ · · · ∧ dιi ∧ · · · ∧ dιn

=
∫

∂Rn
−

a1 ◦ ι

=
∫

∂Rn
−

a1(0, x2, . . . , xn)

=
∫
Rn

−

dω =
∫

M
dω.



Proof of Stokes’ theorem, Case 2

Suppose there exists a chart (U, h) such that supp(ω) ⊆ U.

Then use h to reduce to Case 1:

We may assume that M = U ⊆ Rn
−. Then extend ω by 0

outside U:

ω̃(p) =
{

ω(p) if p ∈ U
0 if p ̸∈ U.

Then
∫

M dω =
∫

U dω =
∫
Rn

−
dω̃ =

∫
∂Rn

−
ω̃ =

∫
∂U ω.



Proof of Stokes’ theorem, general case
Our goal: find orientation-preserving charts (Ui , hi) for
i = 1, . . . , k and ωi ∈ Ωn−1M such that

▶ ω = ω1 + · · · + ωk
▶ supp(ωi) ⊂ Ui , with supp(ωi) compact.

It will then follow from our previous cases that

∫
M

dω =
k∑

i=1

∫
M

dωi =
k∑

i=1

∫
Ui

dωi

=
k∑

i=1

∫
∂Ui

ωi =
k∑

i=1

∫
∂M

ωi

=
∫

∂M

k∑
i=1

ωi =
∫

∂M
ω.



Partition of unity

▶ For each p ∈ supp(ω), choose an orientation-preserving
chart (Up, hp). Then find a smooth function λp : M → [0, 1]
such that λp(p) > 0, with supp(λp) compact and contained
in Up (bump function).

▶ Let Ũp := λ−1
p ((0, 1]) = M \ λ−1

p (0). Then, Ũp is open, and
supp(ω) ⊂ ∪p∈MŨp.

▶ Since supp(ω) is compact, there exist p1, . . . , pk such that
supp(ω) ⊂ ∪k

i=1Ũpi =: X .
▶ For i = 1, . . . , k define τi : X → [0, 1] by

τi(x) = λpi (x)∑k
j=1 λpj (x)

∈ [0, 1].

▶ Then τi : X → [0, 1], supp(τi) ⊂ Upi is compact, and∑k
i=1 τi(x) = 1 for all x ∈ X .



Partition of unity

τi(x) = λpi (x)∑k
j=1 λpj (x)

∈ [0, 1]

τi : X → [0, 1], supp(τi) ⊂ Upi is compact, and
∑k

i=1 τi(x) = 1
for all x ∈ X .

Definition. For i = 1, . . . , k, let

ωi(p) =
{

τi(p)ω(p) for p ∈ X
0 for p ∈ M \ X .

Then

▶ ω = ω1 + · · · + ωk
▶ supp(ωi) ⊂ Ui , with supp(ωi) compact.



Example

Let
ω = x dy ∧ dz − y dx ∧ dz + z dx ∧ dy .

What is
∫

S2 ω, where S2 ⊂ R3 is the 2-sphere?

Solution:∫
S2

ω =
∫

∂D3
ω =

∫
D3

dω =
∫

D3
3 dx ∧ dy ∧ dz

=
∫

D3
3 = 3 vol(D3) = 3 · 4

3π = 4π.


