Integration II

- Review definition of $\int_M \omega$.
- Review change of variables formula for \mathbb{R}^n .
- Formula for pulling back forms.
- Sketch proof that ∫_M ω is independent of the choice of orienting atlas A and the measurable sets A_i. See our text, Theorem 10.4.
- Sufficient condition for integrability.
- Change of variables formula for manifolds.

Warm-up

Let

$$egin{aligned} f \colon (0,1) & o \mathbb{R}^2 \ t &\mapsto (t,t^2), \end{aligned}$$

and let $\omega = x \, dy$.

Compute $\int_{(0,1)} f^* \omega$.

$$f^*\omega = t \, dt^2 = t \cdot 2t \, dt = 2t^2 \, dt.$$

$$\int_{(0,1)} 2t^2 dt = \int_{(0,1)} 2t^2 = \frac{2}{3}.$$

Change of variables formula

 $K \subset \mathbb{R}^n$ compact, connected, $\operatorname{vol}(\partial K) = 0$, open U with $K \subseteq U$. $\phi \colon U \to \mathbb{R}^n$ a C^1 mapping, injective on the interior K° , with $\det(J\phi) \neq 0$ on K°

 $f: \phi(K) \to \mathbb{R}$ continuous.

$$K \xrightarrow{\phi} \phi(K) \xrightarrow{f} \mathbb{R}$$

Theorem (change of variables).

$$\int_{\phi(K)} f = \int_{K} (f \circ \phi) |\det(J\phi)|.$$

Local formula for pulling back forms

Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$, with coordinates x_1, \ldots, x_n on the domain and y_1, \ldots, y_n on the codomain.

Let
$$\omega = a(y) dy_1 \wedge \cdots \wedge dy_n \in \Omega^n \mathbb{R}^n$$
.

Then

$$(f^*\omega)(x) = a(f(x)) df_1 \wedge \dots \wedge df_n$$

= $(a \circ f)(x) \left(\frac{\partial f_1}{\partial x_1} dx_1 + \dots + \frac{\partial f_1}{\partial x_n} dx_n \right) \wedge$
 $\dots \wedge \left(\frac{\partial f_n}{\partial x_1} dx_1 + \dots + \frac{\partial f_n}{\partial x_n} dx_n \right)$
= $(a \circ f)(x) \det(Jf(x)) dx_1 \wedge \dots \wedge dx_n.$

$\int_M \omega$ is independent of choices

Theorem. $\int_M \omega$ is independent of the choice of \mathfrak{A} and the A_i . **Proof.** See page 50 of our notes. A sufficient condition for integrability

The *support* of $\omega \in \Omega^n M$ is

$$\operatorname{supp}(\omega) = \overline{\{ p \in M \colon \omega(p) \neq 0 \}}.$$

Proposition. If supp(ω) is compact, then $\int_M \omega$ exists.

Idea of proof: the sums involved can be taken to be finite.

Corollary. If *M* is compact, the $\int_M \omega$ exists.

Change of variables for a manifold

Proposition. Let $f: M \to N$ be an orientation preserving diffeomorphism of oriented *n*-manifolds, and let $\omega \in \Omega^n N$. Then

$$\int_M f^*\omega = \int_N \omega.$$

Idea: We may use the diffeomorphism f to choose compatible orienting atlases for M and N and compatible decompositions into measurable sets.

Then the question is local. So we may assume $f : \mathbb{R}^n \to \mathbb{R}^n$ and $\omega = a(y) dy_1 \land \cdots \land dy_n$. So

$$\int_{M} f^{*}(a \, dy_{1} \wedge \dots \wedge dy_{n}) = \int_{M} (a \circ f) \det(Jf) \, dx_{1} \wedge \dots \wedge dx_{n}$$
$$= \int_{f(M)} a \, dy_{1} \wedge \dots \wedge dy_{n}$$
$$= \int_{N} \omega.$$